
LECTURES ON SHIMURA VARIETIES

A. GENESTIER AND B.C. NGÔ

Abstract. The main goal of these lectures will be to explain the
representability of moduli space abelian varieties with polarization,
endomorphism and level structure, due to Mumford [GIT] and the
description of the set of its points over a finite field, due to Kot-
twitz [JAMS]. We also try to motivate the general definition of
Shimura varieties and their canonical models as in the article of
Deligne [Corvallis]. We will leave aside important topics like com-
pactifications, bad reductions and p-adic uniformization of Shimura
varieties.

This is the set notes for the lectures on Shimura varieties given
in the Asia-French summer school organized at IHES on July 2006.
It is based on the notes of a course given by A. Genestier and myself
in Universté Paris-Nord on 2002.
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1. Quotients of Siegel’s upper half space

1.1. Review on complex tori and abelian varieties. Let V denote
a complex vector space of dimension n and U a lattice in V which is
by definition a discrete subgroup of V of rang 2n. The quotient X =
V/U of V by U acting on V by translation, is naturally equipped with
a structure of compact complex manifold and a structure of abelian
group.

Lemma 1.1.1. We have canonical isomorphisms from Hr(X,Z) to the
group of alternating r-form

∧r U → Z.

Proof. Since X = V/U with V contractible, H1(X,U) = Hom(U,Z).
The cup-product defines a homomorphism

r∧
H1(X,Z) → Hr(X,Z)

which is an isomorphism since X is isomorphic with (S1)
2n as real

manifolds where S1 = R/Z is the unit circle. �

Let L be a holomorphic line bundle over the compact complex variety
X. Its Chern class c1(L) ∈ H2(X,Z) is an alternating 2-form on U
which can be made explicite as follows. By pulling back L to V by
the quotient morphism π : V → X, we get a trivial line bundle since
every holomorphic line bundle over a complex vector space is trivial.
We choose an isomorphism π∗L→ OV . For every u ∈ U , the canonical
isomorphism u∗π∗L ' π∗L gives rise to an automorphism of OV which
consists in an invertible holomorphic function

eu ∈ Γ(V,O×
V ).

The collection of these invertible holomorphic functions for all u ∈ U ,
satisfies the cocycle equation

eu+u′(z) = eu(z + u′)eu′(z).

If we write au(z) = e2πifu(z) where fu(z) are holomorphic function well
defined up to a constant in Z, the above cocycle equation is equivalent
to

F (u1, u2) = fu2(z + u1) + fu1(z)− fu1+u2(z) ∈ Z.

The Chern class

c1 : H1(X,O×
X) → H2(X,Z)

sends the class of L in H1(X,O×
X) on c1(L) ∈ H2(X,Z) whose corre-

sponding 2-form E :
∧2 U → Z is given by

(u1, u2) 7→ E(u1, u2) := F (u1, u2)− F (u2, u1).
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Lemma 1.1.2. The Neron-Severi group NS(X), defined as the image
of c1 : H1(X,O×

X) → H2(X,Z) consists in the alternating 2-form E :∧2 U → Z satisfying the equation

E(iu1, iu2) = E(u1, u2)

in which E denotes the alternating 2-form extended to U ⊗Z R = V by
R-linearity.

Proof. The short exact sequence

0 → Z → O×
X → OX → 0

induces a long exact sequence which contains

H1(X,O×
X) → H2(X,Z) → H2(X,OX).

It follows that the Neron-Severi group is the kernel of the map H2(X,Z) →
H2(X,OX). This map is the composition of the obvious maps

H2(X,Z) → H2(X,C) → H2(X,OX).

The Hodge decomposition

Hm(X,C) =
⊕
p+q=m

Hp(X,Ωq
X)

where Ωq
X is the sheaf of holomorphic q-forms on X, can be made

explicite [13, page 4]. For m = 1, we have

H1(X,C) = V ∗
R ⊗R C = V ∗

C ⊕ V
∗
C

where V ∗
C is the space of C-linear maps V → C, V ∗

C is the space of
conjugate C-linear maps and V ∗

R is the space of R-linear maps V →
R. There is a canonical isomorphism H0(X,Ω1

X) = V ∗
C defined by

evaluating a holomorphic 1-form on X on the tangent space V of X at
the origine. There is also a canonical isomorphism H1(X,OX) = V

∗
C.

By taking
∧2 of the both sides, the Hodge decomposition of H2(X,C)

can also be made explicite. We have H2(X,OX) =
∧2 V

∗
C, H1(X,Ω1

X) =

V ∗
C ⊗V

∗
C and H0(X,Ω2

X) =
∧2 V ∗

C . It follows that the map H2(X,Z) →
H2(X,OX) is the obvious map

∧
U∗

Z →
∧2 V ∗

C . Its kernel are precisely
the integral 2-forms E on U which satisfies the relation E(iu1, iu2) =
E(u1, u2) after extension to V by R-linearity. �

Let E :
∧2 U → Z be an integral alternating 2-form on U satisfying

E(iu1, iu2) = E(u1, u2) after extension to V by R-linearity. The real
2-form E on V defines a Hermitian form λ on the C-vector space V by

λ(x, y) = E(ix, y) + iE(x, y)

which in turns determines E by the relation E = Im(λ). The Neron-
Severi group NS(X) can be described in yet another way as the group
of Hermitian forms λ on the C-vector space V of which the imaginary
part takes integral values on U .
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Theorem 1.1.3 (Appell-Humbert). The holomorphic line bundles on
X = V/U are in bijection with the pairs (λ, α) where λ is a Hermitian
form on V of which the imaginary part takes integral values on U and
α : U → S1 is a map from U to the unit circle S1 satisfying the equation

α(u1 + u2) = eiπIm(λ)(u1,u2)α(u1)α(u2).

For every (λ, α) as above, the line bundle L(λ, α) is given by the cocycle

eu(z) = α(u)eπλ(z,u)+ 1
2
πλ(u,u).

Let denote Pic(X) the abelian group of isomorphism classes of line
bundle on X, Pic0(X) the subgroup of line bundle of which the Chern
class vanishes. We have an exact sequence :

0 → Pic0(X) → Pic(X) → NS(X) → 0.

Let denote X̂ = Pic0(X) whose elements are characters α : U → S1

from U to the unit circle S1. Let V ∗
R = HomR(V,R). There is a

homomorphism V ∗
R → X̂ sending v∗ ∈ V ∗

R on the line bundle L(0, α)
where α : U → S1 is the character

α(u) = exp(2iπ〈u, v∗〉).
This induces an isomorphism V ∗

R/U
∗ → X̂ where

U∗ = {u∗ ∈ V̂ ∗
R such that ∀u ∈ U, 〈u, u∗〉 ∈ Z}.

We can identify the real vector space V̂ with the space V
∗
C of conjugate

C-linear application V → C. This gives to X̂ = V
∗
C/Û a structure

of complex torus which is called the dual complex torus of X. With
respect to this complex structure, the universal line bundle over X×X̂
given by Appell-Humbert formula is a holomorphic line bundle.

A Hermitian form on V induces a C-linear map V → V
∗
C. If moreover

its imaginary part takes integral values in U , the linear map V → V
∗
C

takes U into U∗ and therefore induces a homomorphism X → X̂ which
is symmetric. In this way, we identify the Neron-Severi group NS(X)

with the group of symmetric homomorphisms from X to X̂ i.e. λ :
X → X̂ such that λ̂ = λ.

Let (λ, α) as in the theorem and θ ∈ H0(X,L(λ, α)) be a global
section of L(λ, α). Pulled back to V , θ becomes a holomorphic function
on V which satisfies the equation

θ(z + u) = eu(z)θ(z) = α(u)eπλ(z,u)+ 1
2
πλ(u,u)θ(z).

Such function is called a theta-function with respect to the hermitian
form λ and the multiplicator α. The Hermitian form λ needs to be
positive definite for L(λ, α) to have a lot of sections, see [13, §3]

Theorem 1.1.4. The line bundle L(λ, α) is ample if and only if the
Hermitian form H is positive definite. In that case,

dim H0(X,L(λ, α)) =
√

det(E).
5



Consider the case where H is degenerate. Let W be the kernel of H
or of E i.e.

W = {x ∈ V |E(x, y) = 0,∀y ∈ V }.
Since E is integral on U × U , W ∩ U is a lattice of W . In particular,
W/W ∩ U is compact. For any x ∈ X, u ∈ W ∩ U , we have

|θ(x+ u)| = |θ(x)|
for all n ∈ N, θ ∈ H0(X,L(λ, α)⊗d). By the maximum principle, it
follows that θ is constant on the cosets of X modulo W and therefore
L(λ, α) is not ample. Similar argument shows that if H is not positive
definite, L(H,α) can not be ample, see [13, p.26].

If the Hermitian form H is positive definite, then the equality

dim H0(X,L(λ, α)) =
√

det(E)

holds. In [13, p.27], Mumford shows how to construct a basis, well-
defined up to a scalar, of the vector space H0(X,L(λ, α)) after choosing
a sublattice U ′ ⊂ U of rank n which is Lagrangian with respect to the
symplectic form E and such that U ′ = U ∩RU ′. Based on the equality
dim H0(X,L(λ, α)⊗d) =

√
det(E), one can prove L(λ, α)⊗3 gives rise to

a projective embedding of X for any positive definite Hermitian form
λ. See Theorem 2.2.3 for a more complete statement. �

Definition 1.1.5. (1) An abelian variety is a complex torus that
can be embedded into a projective space.

(2) A polarization of an abelian variety X = V/U is an alternating
form λ :

∧2 U → Z which is the Chern class of an ample line
bundle.

With a suitable choice of a basis of U , λ can be represented by a
matrix

E =

(
0 D
−D 0

)
whereD is a diagonal matrixD = (d1, . . . , dn) where d1, . . . , dn are non-
negative integers such that d1|d2| . . . |dn. The form E is non-degenerate
if these integers are zero. We call D = (d1, . . . , dn) type of the polar-
ization E. A polarization is called principal if its type is (1, . . . , 1).

Corollary 1.1.6 (Riemann). A complex torus X = V/U can be em-
bedded as a closed complex submanifold into a projective space if and
only if the exists a positive definite hermitian form λ on V such that
the restriction ImH on U is a 2-form with integral values.

Let us rewrite Riemann’s theorem in term of matrices. We choose a
C-basis e1, . . . , en for V and a Z-basis u1, . . . , u2n of U . Let Π be the
n × 2n-matrix Π = (λji) with ui =

∑n
j=1 λjiej for all i = 1, . . . , 2n.

Π is called the period matrix. Since λ1, . . . , λ2n form a R-basis of V ,
the matrix 2n × 2n-matrix

(
Π
Π

)
is invertible. The alternating form
6



E :
∧2 U → Z is represented by an alternating matrix, also denoted

by E is the Z-basis u1, . . . , u2n. The form λ : V × V → C given by
λ(x, y) = E(ix, y) + iE(x, y) is hermitian if and only if ΠE−1 tΠ = 0.
H is positive definite if and only if the symmetric matrix iΠE−1 tΠ > 0
is positive definite.

Corollary 1.1.7. The complex torus X = V/U with period matrix Π
is an abelian variety if and only if there is a nondegenerate alternating
integral 2n× 2n matrix E such that

(1) ΠE−1 tΠ = 0,
(2) iΠE−1 tΠ > 0.

1.2. Quotient of the Siegel upper half space. Let X be an abelian
variety of dimension n over C and let E be a polarization of X of type
D = (d1, . . . , dn). There exists a basis u1, . . . , un, v1, . . . , vn of H1(X,Z)
with respect to which the matrix of E takes the form

E =

(
0 D
−D 0

)
A datum (X,E, (u•, v•)) is called polarized abelian variety of type D
with symplectic basis. We want to describe the moduli of polarized
abelian variety of type D with symplectic basis.

The Lie algebra V of X is a n-dimensional C-vector space with U =
H1(X,Z) as a lattice. Choose a C-basis e1, . . . , en of V . The vectors
e1, . . . , en, ie1, . . . , ien form a R-basis of V . The isomorphism ΠR :
U ⊗ R → V is given by an invertible real 2n× 2n-matrix

ΠR =

(
Π11 Π12

Π21 Π22

)
The complex n × 2n-matrix Π = (Π1,Π2) is related to ΠR by the
relations Π1 = Π11 + iΠ21 and Π2 = Π12 + iΠ22.

Lemma 1.2.1. The set of polarized abelian variety of type D with
symplectic basis is canonically in bijection with the set of GLC(V ) orbits
of isomorphisms of real vector spaces ΠR : U ⊗ R → V such that for
all x, y ∈ V , we have E(Π−1

R ix,Π−1
R iy) = E(Π−1

R x,Π−1
R y) and that the

symmetric form E(Π−1
R ix,Π−1

R y) is positive definite.

There are at least two methods to describe this quotient. The first
one is more concrete but the second one is more suitable for general-
ization.

In each GLC(V ) orbit, there exists a unique ΠR such that Π−1
R ei =

1
di
vi for i = 1, . . . , n. Thus, the matrix ΠR has thus the form

ΠR =

(
Π11 D
Π21 0

)
7



and Π has the form Π = (Z,D) with where

Z = Π11 + iΠ21 ∈Mn(C)

satisfying tZ = Z and im(Z) > 0.

Proposition 1.2.2. There is a canonical bijection from the set of po-
larized abelian varieties of type D with symplectic basis to the Siegel
upper half-space

Hn = {Z ∈Mn(C)| tZ = Z, im(Z) > 0}.

On the other hand, an isomorphism ΠR : U ⊗ R → V defines a
cocharacter h : C× → GL(U ⊗ R) by transporting the complex struc-
ture of V on U ⊗ R. It follows from the relation E(Π−1

R ix,Π−1
R iy) =

E(Π−1
R x,Π−1

R y) that the restriction of h to the unit circle S1 defines a
homomorphism h1 : S1 → SpR(U,E). Moreover, the GLC(V )-orbit of
ΠR : U ⊗ R → V is well determined by the induced homomorphism
h1 : S1 → SpR(U,E).

Proposition 1.2.3. There is a canonical bijection from the set of po-
larized abelian varieties of type D with symplectic basis to the set of
homomorphism of real algebraic groups h1 : S1 → SpR(U,E) such that
the following conditions are satisfied

(1) the complexification h1,C : Gm → Sp(U ⊗ C) gives rises to a
decomposition into direct sum of n-dimensional vector subspaces

U ⊗ C = (U ⊗ C)+ ⊕ (U ⊗ C)−

of eigenvalues +1 and −1;
(2) the symmetric form E(h1(i)x, y) is positive definite.

This set is a homogenous space under the action of Sp(U ⊗ R) acting
by inner automorphisms.

Let SpD be Z-algebraic group of automorphism of the symplectic
form E of type D. The discrete group SpD(Z) acts simply transitively
on the set of symplectic basis of U ⊗Q.

Proposition 1.2.4. There is a canonical bijection between the set of
isomorphism classes of polarized abelian variety of type D and the quo-
tient SpD(Z)\Hn.

According to H. Cartan, there is a way to give an analytical structure
to this quotient and then to prove that this quotient has indeed a
structure of quasi-projective normal variety over C.

1.3. Torsion points and level structures. Let X = V/U be an
abelian variety of dimension n. For every integer N , The group of
N -torsion points X[N ] = {x ∈ X|Nx = 0} can be identified with
the finite group N−1U/U that is isomorphic to (Z/NZ)2n. Let E be
a polarization of X of type D = (d1, . . . , dn) with (dn, N) = 1. The
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alternating form E :
∧2 U → Z can be extended to a non-degenerating

symplectic form on U ⊗Q. The Weil pairing

(α, β) 7→ exp(2iπE(α, β))

is a symplectic non-degenerate form

eN : X[N ]×X[N ] → µN

where µN is the group of N -th roots of unity, provided N be relatively
prime with dn. Let choose a primitive N-th root of unity so that the
Weil pairing takes values in Z/NZ.

Definition 1.3.1. Let N be an integer relatively prime to dn. A prin-
cipal N-level structure of an abelian variety X with a polarization E is
an isomorphisme from the symplectic module X[N ] with the standard
symplectic module (Z/NZ)2n given by the matrix

J =

(
0 In
−In 0

)
where In is the identity n× n-matrix.

Let Γ1(N) be the subgroup of SpD(Z) of the automorphisms of (U,E)
with trivial induced action on U/NU .

Proposition 1.3.2. There is a natural bijection between the set of
isomorphism classes of polarized abelian variety of type D equipped
with a principal N-level structure and the quotient A0

n,N = ΓA(N)\Hn.

For N ≥ 3, the group Γ1(N) does not contains torsion and act
freely on Siegel half-space Hn. The quotient A0

n,N is therefore a smooth
complex analytic space.

2. Moduli space of polarized abelian schemes

2.1. Polarization of abelian schemes.

Definition 2.1.1. An abelian scheme over a scheme S is a smooth
proper group scheme with connected fiber. As a group scheme, X is
equipped with the following structures

(1) an unit section eX : S → X
(2) a multiplication morphism X ×S X → X
(3) an inverse morphism X → X

such that the usual axioms for abstract groups hold.

Recall the following classical rigidity lemma.

Lemma 2.1.2. Let X and X ′ two abelian schemes over S and α :
X → X ′ a morphism that sends unit section of X on the unit section
of X ′. Then α is a homomorphism.
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Proof. We will summarize the proof when S is a point. Consider the
map β : X ×X → X ′ given by

β(x1, x2) = α(x1x2)α(x1)
−1α(x2)

−1.

We have β(eX , x) = eX′ for all x ∈ X. For any affine neighborhood
U ′ of eX′ in X ′, there exists an affine neighborhood U of eX such that
β(U ×X) ⊂ U ′. For every u ∈ U , β maps the proper scheme u×X in
to the affine U ′. It follows that the β restricted to u ×X is constant.
Since β(ueX) = eX′ , β(u, x) = eX′ for any x ∈ X. It follows that
β(u, x) = eX′ for any u, x ∈ X since X is irreducible. �

Let us mention to useful consequences of the rigidity lemma. Firstly,
the abelian scheme is necessarily commutative since the inverse mor-
phism X → X is a homomorphism. Secondly, given the unit section,
a smooth proper scheme can have at most one structure of abelian
schemes. It suffices to apply the rigidity lemma for the identity of X.

An isogeny α : X → X ′ is a surjective homomorphism whose kernel
ker(α) is a finite group scheme over S. Let d be a positive integer. Let
S be a scheme whose all residual characteristic is relatively prime to d.
Let α : X → X ′ be a isogeny of degree d and K(α) be the kernel of α.
For every geometric point s ∈ S, K(α)s is a discrete group isomorphic
to Z/d1Z×· · ·×Z/dnZ with d1| · · · |dn and d1 . . . dn = d. The function
that maps a point s ∈ |S| to the type of K(α)s for any geometric point
s over s is a locally constant function. So it makes sense to talk about
the type of an isogeny of degree prime to all residual characteristic.

Let X/S be an abelian scheme. Consider the functor PicX/S from
the category of S-schemes to the category of abelian groups which
associates to every S-scheme T the group of isomorphism classes of
(L, ι) où L is an invertible sheaf on X ×S T and ι is a trivialization
e∗XL ' OT along the unit section. See [2, p.234] for the following
theorem.

Theorem 2.1.3. Let X be a projective abelian scheme over S. Then
the functor PicX/S is representable by a smooth separated S-scheme
which is locally of finite presentation over S.

The smooth scheme PicX/S equipped with the unit section corre-
sponding to the trivial line bundle OX admits a neutral component
Pic0

X/S which is an abelian scheme over S.

Definition 2.1.4. Let X/S be a projective abelian scheme. The dual

abelian scheme X̂/S is the neutral component Pic0(X/S) of the Pi-
card functor PicX/S. We call Poincaré sheaf P the restriction of the

universal invertible sheaf on X ×S PicX/S to X ×S X̂.

For every abelian scheme X/S with dual abelian scheme X̂/S, the

dual abelian scheme of X̂/S is X/S. For every homomorphism α :

X → X ′, we have a homomorphism α̂ : X̂ ′ → X̂. If α is an isogeny,
10



the same is true for α̂. A homomorphism α : X → X̂ is said symmetric
if the equality α = α̂ holds.

Lemma 2.1.5. Let α : X → Y be an isogeny and let α̂ : Ŷ → X be
the dual isogeny. There is a canonical perfect pairing

ker(α)× ker(α̂) → Gm.

Proof. Let ŷ ∈ ker(α̂) and let Lŷ be the corresponding line bundle on
Y with a trivialization along the unit section. Pulling it back to X,
we get the trivial line bundle equipped with a trivialization on ker(α).
This trivialization gives rises to a homomorphism ker(α) → Gm which
defines the desired pairing. It is not difficult to check that this pairing
is perfect, see [13, p.143]. �

Let L ∈ PicX/S be an invertible sheaf over X with trivialized neutral
fibre Le = 1. For any point x ∈ X over s ∈ S, let Tx : Xs → Xs be the
translation by x. The invertible sheaf T ∗xL⊗L−1 ⊗L−1

x has trivialized
neutral fibre

(T ∗xL⊗ L−1 ⊗ L−1
x )e = Lx ⊗ L−1

e ⊗ L−1
x = 1.

so that L defines a morphism λL : X → PicX/S. Since the fibres of X

are connected, λL factors through the dual abelian scheme X̂ and gives
rise to a morphism

λL : X → X̂.

Since λL send the unit section of X on the unit section of X̂ so that
λL is necessarily a homomorphism. Let denote K(L) the kernel of λL.

Lemma 2.1.6. For every line bundle L on X with a trivialization
along the unit section, the homomorphism λL : X → X̂ is symmetric.
If moreover, L = x̂∗P for a section x̂ : S → X̂, then λL = 0.

Proof. By construction, the homomorphism λL : X → X̂ represents the
line bundle m∗L⊗ p∗1L−1⊗ p∗2L−1 on X×X where m is the multiplica-
tion and p1, p2 are projections, equipped with the obvious trivialization
along the unit section. The homomorphism λL is symmetric as this line
bundle.

If L = OX with the obvious trivialization along the unit section, it
is immediate that λL = 0. Now for any L = x̂∗P , L can be deformed
continuously to the trivial line bundle and it follows that λL = 0. In
order to make the argument rigorous, one can form a family over X̂
and apply the rigidity lemma. �

Definition 2.1.7. A line bundle L over an abelian scheme X equipped
with a trivialization along the unit section is called non-degenerated if
λL : X → X̂ is an isogeny.

11



In the case where the base S is Spec(C) and X = V/U , L is non
degenerate if and only if the associated Hermitian form on V is non-
degenerate.

Let L be a non-degenerate line bundle on X with a trivialization
along the unit section. The canonical pairing K(L) × K(L) → Gm,S

is then symplectic. Assume S connected with residual characteristic
prime to the degree of λL, there exists d1| . . . |ds such that for ev-
ery geometric point s ∈ S, the abelian group K(L)s is isomorphic
to (Z/d1Z × · · · × Z/dnZ)2. We call D = (d1, . . . , dn) the type of the
polarization λ

Definition 2.1.8. Let X/S be an abelian scheme. A polarization of

X/S is a symmetric isogeny λ : X → X̂ which locally for the étale
topology of S, is of the form λL for some ample line bundle L of X/S.

In order to make this definition workable, we will need to recall
basic facts about cohomology of line bundles on abelian varieties. See
corollary 2.2.4 in the next paragraph.

2.2. Cohomology of line bundles on abelian varieties. We are
going to recollect known fact about cohomology of line bundles on
abelian varieties. For the proofs, see [13, p.150]. Let X be an abelian
variety over a field k. Let denote

χ(L) =
∑
i∈Z

dimk Hi(X,L)

the Euler characteristic of L.

Theorem 2.2.1 (Riemann-Roch theorem). For all line bundle L on
X, if L = OX(D) for a divisor D, we have

χ(L) =
(Dg)

g!

where (Dg) is the g-fold self-intersection number of D.

Theorem 2.2.2 (Mumford’s vanishing theorem). Let L be a line bun-
dle on X such that K(L) is finite. There exists a unique integer
i = i(L) with 0 ≤ i ≤ n = dim(X) such that Hj(X,L) = 0 for j 6= i
and Hi(X,L) 6= 0. Moreover, L is ample if and only if i(L) = 0. For
every m ≥ 1, i(L⊗m) = i(L).

Assume S = Spec(C), X = V/U with V = Lie(X) and U a lattice
in V . Then the Chern class of L corresponds to a Hermitian for H and
the integer i(L) is the number of negative eigenvalues of H.

Theorem 2.2.3. For any ample line bundle L on an abelian variety
X, then L⊗2 is base-point free and L⊗m is very ample if m ≥ 3.
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Since L is ample, i(L) = 0 and consequently, H0(X,L) = χ(L) > 0.
There exists an effective divisor D such that L ' OX(D). Since λL :

X → X̂ is a homomorphism, the divisor T ∗x (D) + T ∗−x(D) is linearly
equivalent to 2D and T ∗x (D)+T ∗y (D)+T ∗−x−y(D) is linearly equivalent
to 3D. By moving x, y ∈ X we get a lot of divisors linearly equivalent
and to 2D and to 3D. The proof is based on this fact and on the
formula for the dimension of H0(X,L⊗m). For the detailed proof, see
[13, p.163]. �

Corollary 2.2.4. Let X → S an abelian scheme over a connected base
and let L be an invertible sheaf on X such that K(L) is a finite group
scheme over S. If there exists a point s ∈ S such that Ks is ample on
Xs then L is relatively ample for X/S.

Proof. Since Ls is ample, H0(Xs, Ls) 6= 0 and Hi(Xs, Ls) = 0 for every
i 6= 0. For t varying in s, the function t 7→ dim Hi(Xt, Lt) is upper
semi-continuous and the function t 7→ χ(Xt, Lt) is constant. The only
way for the Mumford’s vanishing theorem to be satisfied is for all t ∈ S,
H0(Xt, Lt) 6= 0 and Hi(Xt, Lt) = 0 for all i 6= 0. It follows that Lt is
ample. If Lt is ample, L is relatively ample on X over a neighborhood
of t in S. �

2.3. An application of G.I.T. Let fix two positive integer n ≥ 1,
N ≥ 3 and a type D = (d1, . . . , dn) with d1| . . . |dn. Let A the functor
which associates to a scheme S the groupoid of polarized S-abelian
schemes of type D : for every S, A(S) is the groupoid of (X,λ, η)
where

(1) X is an abelian scheme over S ;

(2) λ : X → X̂ is a polarization of type D ;
(3) η is a symplectic similitude (Z/NZ)2n ' X[N ] .

Theorem 2.3.1. The functor A defined above is representable by a
smooth quasi-projective scheme.

Proof. Let X be an abelian scheme over S and X̂ its dual abelian
scheme. Let P be the Poincaré line bundle over X×S X̂ equipped with
a trivialization over the neutral section eX ×S idX̂ : X̂ → X ×S X̂ of
X. Let L∆(λ) be the line bundle over X obtained by pulling back the
Poincaré line bundle P

L∆(λ) = (idX , λ)∗P

by the composite homomorphism

(idX , λ) = (idX × λ) ◦∆ : X → X ×S X → X ×S X̂

where ∆ : X → X ×S X is the diagonal. The line bundle L∆(λ) gives

rise to a symmetric homomorphism λL∆(λ) : X → X̂.

Lemma 2.3.2. The equality λL∆(λ) = 2λ holds.
13



Proof. Locally for étale topology, we can assume λ = λL for some line
bundle over X which is relatively ample. Then

L∆(λ) = ∆∗(idX × λ)∗P = ∆∗(µ∗L⊗ pr1L
−1 ⊗ pr2L

−1).

It follows that

L∆(λ) = (2)∗L⊗ L−2

where (2) : X → X is the multiplication by 2. As for every N ∈ N,
λ(N)∗L = N2λL, in particular λ(2)∗L = 4λL, and thus we obtain the
desired equality λL∆(λ) = 2λ. �

Since locally over S, λ = λL where L is a relatively ample line bundle,
L∆(λ) is a relatively ample line bundle, L∆(λ)⊗3 is very ample. It follow
that its higher direct images by π : X → S vanish

Riπ∗L
∆(λ)⊗3 = 0 for all i ≥ 1

and M = π∗L(λ) is a vector bundle of rank

m+ 1 := 6nd

over S.

Definition 2.3.3. A linear rigidification of a polarized abelian scheme
(X,λ) is an isomorphism

α : PmS → PS(M)

where M = π∗L(λ). In other words, a linear rigidification of a polar-
ized abelian scheme (X,λ) is a trivialization of the PGL(m+ 1)-torsor
associated to the vector bundle M of rank m+ 1.

Let H be the functor that associates to any scheme S the groupoid of
triples (X,λ, η, α) where (X,λ, η) is an polarized abelian scheme over
S of type D and where α is a linear rigidification. Forgetting α, we get
a morphism

H → A
which is a PGL(m+ 1)-torsor.

The line bundle L∆(λ)⊗3 provides a projective embedding

X ↪→ PS(M).

Using the linear rigidification α, we can embed X into the standard
projective space

X ↪→ PmS .
For every r ∈ N, the higher direct images vanish

Riπ∗L(λ)⊗r = 0 for all i > 0

and π∗L(λ)⊗r is a vector bundle of rank 6ndrn so that we have a mor-
phism of functor

f : Hn → HilbQ(t),1(Pm)
14



where HilbQ(t),1(Pm) is the Hilbert scheme of 1-pointed subschemes of
Pm with Hilbert polynomial Q(t) = 6ndtn : f sending (X,λ, α) to the
image of X in Pm which pointed by the unit of X.

Proposition 2.3.4. The morphism f identifies H with an open sub-
functor of HilbQ(t),1(Pm) which consist of pointed smooth subschemes
of Pm.

Proof. Since a smooth projective pointed variety X has at most one
abelian variety structure, the morphism f is injective. Following the-
orem 2.4.1 of the next paragraph, any smooth projective morphisme
f : X → S over a geometrically connected base S with a section
e : S → X has an abelian scheme structure if and only if one geometric
fiber Xs does. �

Since a polarized abelian varieties with principal N -level structure
have no trivial automorphisms, PGL(m + 1) acts freely on H. We
take A as the quotient of H by the free action of PGL(m + 1). The
construction of this quotient as a scheme requires nevertheless a quite
technical analysis of stability. If N is big enough then X[N ] ⊂ X ⊂ Pm
is not contained in any hyperplane, furthermore no more than N2n/m+
1 points from these N -torsion points can lie in the same hyperplane of
Pm. In that case, (A, λ, η, α) is a stable point. In the general case, we
can add level structure and then perform a quotient by a finite group.
See [14, p.138] for a complete discussion. �

2.4. Spreading abelian scheme structure. Let us now report on a
theorem of Grothendieck [14, theorem 6.14].

Theorem 2.4.1. Let S be a connected noetherian scheme. Let X →
S be a smooth projective morphism equipped with a section e : S →
X. Assume for one geometric point s = Spec(κ(s)), Xs is an abelian
variety over κ(s) with neutral point ε(s). Then X is an abelian scheme
over S with neutral section ε.

Let us consider first the infinitesimal version of this assertion.

Proposition 2.4.2. Let S = Spec(A) where A is an Artin local ring.
Let m be the maximal ideal of A and let I be an ideal of A such that
mI = 0. Let S0 = Spec(A/I). Let f : X → S be a proper smooth
scheme with a section e : S → X. Assume that X0 = X ×S S0 is an
abelian scheme with neutre section e0 = e|S0. Then X is an abelian
scheme with neutral section e.

Proof. Let k = A/m and X = X ⊗A k. Let µ0 : X0 ×S0 X0 be the
morphism µ0(x, y) = x− y and let µ : X ×k X → X be the restriction
of X0. The obstruction to extend µ0 to a morphism X ×S X → X is
an element

β ∈ H1(X ×X,µ∗TX ⊗k I)
15



where TX is the tangent bundle of X which is a trivial vector bundle
of fibre Lie(X). Thus, by Kunneth formula

H1(X×X,µ∗TX⊗k I) = (Lie(X)⊗kH1(X))⊕ (H1(X)⊗k Lie(X))⊗k I.

Consider g1, g2 : X0 → X0×S0X0 with g1(x) = (x, e) and g2(x) = (x, x).
The endomorphisms of X0, g1 ◦ µ0 = idX0 and g2 ◦ µ0 = (e ◦ f) have
obvious way to extend to X so that the obstruction classes β1 = g∗1β
and β2 = g∗2β must vanish. Since one can express β in function of β1

and β2 by Kunneth formula, β vanishes too.
The set of all extensions µ of µ0 is a principal homogenous space

under
H0(X ×k X,µ

∗TX ⊗k I)).

Among these extensions, there exists a unique µ such that µ(e, e) = e
which provides a group scheme structure on X/S. �

We can extend the abelian scheme structure to an infinitesimal neigh-
borhood of s. This structure can be algebrized and then descend to a
Zariski neightborhood since the abelian scheme structure is unique if
it exists. It remains to prove the following lemma due to Koizumi.

Lemma 2.4.3. Let S = Spec(A) where A is a discrete valuation ring
with generic point η. Let f : X → S be a proper and smooth morphism
with a section e : S → X. Assume that Aη is an abelian variety with
neutral point e(η). Then X is an abelian scheme with neutral section
η.

Proof. Suppose A is henselian. Since X → S is proper and smooth,
inertia group I acts trivially on Hi(Xη,Q`). By Grothendieck-Ogg-
Shafarevich’s criterion, there exists an abelian scheme A over S with
Aη = Xη and A is the Néron’s model of Aη. By the universal prop-
erty of Néron’s model there exist a morphism X → A extending the
isomorphism π : Xη ' Aη. Let L be a relatively ample invertible sheaf
on X/S. Choose a trivialization on the unit point of Xη = Aε. Then
L with the trivialization on the unit section extends uniquely on A
to a line bundle L′ since Pic(A/S) satisfies the valuative criterion for
properness. It follows that π∗L′s and Ls have the same Chern class. If
π have a fiber of positive dimension then the restriction to that fiber
of π∗L′s is trivial. In contrario, the restriction of Ls to that fiber is
still ample. This contradiction implies that all fiber of π have dimen-
sion zero. The finite birational morphism π : X → A is necessarily an
isomorphism according to Zariski’s main theorem. �

2.5. Smoothness. In order to prove that A is smooth, we will need to
review Grothendieck-Messing’s theory of deformation of abelian schemes.

Let S = Spec(R) be a thickening of S = Spec(R/I) with I2 = 0,
or more generally, locally nilpotent and equipped with a structure of
divided power. According to Grothendieck and Messing, we can attach
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to an abelian scheme A of dimension n over S a locally free OS-module
of rank 2n

H1
cris(A/S)S

such that

H1
cris(A/S)S ⊗OS

OS = H1
dR(A/S).

We can associate with every abelian scheme A/S such that A×SS = A
a sub-OS-module

ωA/S ⊂ H1
dR(A/S) = H1

cris(A)S

which is locally a direct factor of rank n and which satisfies

ωA/S ⊗OS
OS = ωA/S.

Theorem 2.5.1 (Grothendieck-Messing). The functor, defined as above,
from the category of abelian schemes A/S with A×S S = A to the cat-
egory sub-OS-modules ω ⊂ H1(A/S)S which are locally a direct factors
and which satisfy such that

ω ⊗OS
OS = ωA/S

is an equivalence of categories.

See [10, p.151] for the proof of this theorem.
Let S = Spec(R) be a thickening of S = Spec(R/I) with I2 = 0.

Let A be an abelian scheme over S and λ be a polarization of A of
type (d1, . . . , ds) with integer di relatively to residual characteristic of
S. The polarization λ induces an isogeny

ψλ : A→ A
∨

where A
∨

is the dual abelian scheme of A/S. Since the degree of
the isogeny is relatively prime to residual characteristic, it induces an
isomorphism

H1
cris(A

∨
/S)S → H1

cris(A/S)S

or a bilinear form ψλ on H1
cris(A/S)S which is a symplectic form. The

module of relative differential ωA/S is locally a direct factor of H1
cris(A/S)S

with is isotropic with respect to the symplectic form ψλ. It is known
that the Lagrangian grassmannian is smooth so that one can lift ωA/S
to a locally direct factor of H1

cris(A/S)S which is isotropic. According to
Grothendieck-Messing theorem, we got an a lifting of A to an abelian
scheme A/S with a polarization λ that lifts λ. �

2.6. Adelic description and Hecke operators. Let X and X ′ be
abelian varieties over a base S. A homomorphism α : X → X ′ is an
isogeny if one of the following conditions is satisfied

• α is surjective and ker(α) is a finite group scheme over S ;
17



• there exists α′ : X ′ → X such that α′ ◦ α is the multiplication
by N in X and α ◦α′ is the multiplication by N in X ′ for some
positive integer N

A quasi-isogeny is an equivalence class of pair (α,N) formed by a
isogeny α : X → X ′ and a positive integer N , (α,N) ∼ (α′, N ′) if
and only if N ′α = Nα′. Obviously, we think of the equivalence classe
(α,N) as N−1α.

Fix n,N,D as in 2.4. There is another description of the category A
which is less intuitive but more convenient when we have to deal with
level structures.

Let U be a free Z-module of rank 2n and let E be an alternating
form U × U → MU with value in some rank one free Z-module MU .
Assume that the type of E is D. Let G be the group of symplectic
similitudes of (U,MU) which associates to any ring R the groupe G(R)
of pairs (g, c) ∈ GL(U ⊗R)×R× such that

E(gx, gy) = cE(x, y)

for every x, y ∈ U⊗R. Thus G is a group scheme defined over Z and is
reductive away from the prime ` dividing D. For every prime p, define
the compact open subgroup K` ⊂ G(Q`)

• if ` 6 |N , then KN,` = G(Z`) ;
• if `|N , then K` is the kernel of the homomorphism G(Z`) →
G(Z`/NZ`).

Let fix a prime p not dividing N nor D. Let Z(p) be the localization
of Z obtained by inverting all prime ` different from p.

Consider the schemes S whose residual characteristic are 0 or p.
Consider the groupoid A′(S) defined as follows

(1) objets of A′ are triples (X,λ, η̃) where
• X is an abelian scheme over S;
• λ : X → X̂ is a Z(p) multiple of a polarization of degree

prime to p, such that such that for every prime `, for every
s ∈ S the symplectic form induced by λ on H1(Xs,Q`) is
similar to U ⊗Q`;

• for every prime ` 6= p, η̃` is a K`-orbit of symplectic simili-
tudes from H1(Xs,Q`) to U ⊗Q` which is invariant under
π1(S, s). We assume that for almost all prime `, this K`-
orbit corresponds to the auto-dual lattice H1(Xs,Z`).

(2) a homomorphism α ∈ HomA′((X,λ, η), (X
′, λ′, η′)) is a quasi-

isogeny α : X → X ′ such that α∗(λ′) and λ differs by a scalar
in Q× and α∗(η′) = η.

Consider the functor A → A′ which associates to (X,λ, η) ∈ A(S)
the triple (X,λ, η̃) ∈ A′(S) where the η̃` are defined as follows. Let s be
a geometric point of S. Let ` be a prime not dividing N and D. Giving
a symplectic similitude from H1(Xs,Q`) to U⊗Q` up to action of K` is
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equivalent to give an auto-dual lattice of H1(Xs,Q`). The K`-orbit is
stable under π1(S, s) if and only the auto-dual lattice is invariant under
π1(S, s). We pick the obvious choice H1(Xs,Z`) as auto-dual lattice of
H1(Xs,Q`) which is invariant under π1(S, s). If ` divides D, we want a
π1(S, s)-invariant lattice such that the restriction of the Weil symplectic
pairing is of typeD. Again, H1(Xs,Z`) fulfills this property. If ` divides
N , Given a symplectic similitude from H1(Xs,Q`) to U⊗Q` up to action
of K` is equivalent to given an auto-dual lattice of H1(Xs,Q`) and a
rigidification of the pro-`-part of N torsions points of Xs. But this is
provided by the level structure η` in the moduli problem A.

Proposition 2.6.1. The above functor is an equivalence of categories.

Proof. As defined, it is obviously faithful. It is fully faithful be-
cause a quasi-isogeny α : X → X ′ which induces an isomorphism
α∗ : H1(X

′,Z`) → H1(X,Z`), is necessarily an isomorphism of abelian
schemes. By assumption α carry λ on a rational multiple λ′. But both
λ and λ′ are polarizations of same type, α must carry λ on λ′. This
prove that the functor is fully faithful.

The essential surjectivity derives from the fact that we can modify an
abelian schemes X equipped with level structure η̃, by a quasi-isogeny
α : X → X ′ so that the isomorphisme

U ⊗Q` ' H1(X,Qp) ' H1(X
′,Q`)

identifies U ⊗ Zp with H1(X
′,Zp). There is a unique way to choose a

rigidification η of X ′[N ] in compatible way with η̃p for p|N . Since the
in symplectic form E on U is of the type (D,D) the polarization λ on
X ′ is also of this type. �

Let us now describe the points of A′ with value in C. Consider an
objet of (X,λ, η̃) ∈ A′(C) equipped with a symplectic basis of H1(X,Z).
In this case, since λ is a Z(p)-multiple of a polarization of X, it is given
by an element of

h±n = {Z ∈Mn(C)| tZ = Z,±im(Z) > 0}

For all ` 6= p, η̃` defines an element of G(Qp)/Kp. At p, the integral
Tate module H1(X,Z`) defines an element of G(Qp)/G(Zp). It follows
that

An,N = G(Q)\[h±n ×G(Af )/KN ].

The advantage of the prime description of the moduli problem is
that we can replace the principal compact open subgroups KN by any
compact open subgroup K =

∏
Kp ∈ G(Af ) such that Kp = G(Zp)

for almost all p. In the general case, the proof of the representability
is reduced to the principal case.
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3. Shimura varieties of PEL type

3.1. Endomorphism of abelian varieties. Let X be an abelian va-
riety of dimension n over an algebraically closed field k. Let End(X)
the ring of endomorphisms of X and EndQ(X) = End(X) ⊗ Q. If
k = C, X = V/U then we have two faithful representations

ρa : End(X) → EndC(V ) and ρr : End(X) → EndZ(U).

It follows that End(X) is a torsion free abelian group of finite type.
Over arbitrary field k, we need to introduce Tate modules. Let ` be
a prime different from characteristic of k then for every m, the kernel
X[`m] of the multiplication in X is isomorphic to (Z/`mZ)2n.

Definition 3.1.1. The Tate module T`(X) is the limit

T`(X) = limX[`n]

of the inverse system given by the multiplication by ` : X[`n+1] → X[`n].
As Z`-module, T`(X) = Z2n

` . We note V` = T` ⊗Z`
Q`.

We can identify Tate module T`(X) with first étale homology H1(X,Z`)
which is by definition is the dual of H1(X,Z`). Similarly, V`(X) =
H1(X,Q`).

Theorem 3.1.2. For any abelian varieties X,Y over k, Hom(X, Y ) is
a finitely generated abelian group, and the natural map

Hom(X, Y )⊗ Z` → HomZ`
(T`(X), T`(Y ))

is injective.

See [13, p.176] for the proof.

Definition 3.1.3. An abelian variety is called simple if it does not
admit strict abelian subvariety.

Proposition 3.1.4. If X is a simple abelian variety, EndQ(X) is a
division algebra.

Proof. Let f : X → X be a non-zero endomorphism of X. The identity
component of its kernel is a strict abelian subvariety of X which must
be zero. Thus the whole kernel of f must be a finite group and the
image of f must be X for dimensional reason. It follows that f is an
isogeny and therefore invertible in EndQ(X) and therefore EndQ(X) is
a division algebra. �

Theorem 3.1.5 (Poincaré). Every abelian variety X is isogenous to a
product of simple abelian varieties.

Proof. Let Y be an abelian subvariety of X. We want to prove the
existence of a quasi-supplement of Y in X that is a subabelian variety
Z of X such that the homomorphism Y ×Z → X is an isogeny. Let X̂
be the dual abelian variety and π̂ : X̂ → Ŷ be the dual homomorphism

20



to the inclusion Y ⊂ X. Let L be an ample line bundle over X and
λL : X → X̂ the isogeny attached to L. By restriction to Y , we get a
homomorphism π̂ ◦ λE|Y : Y → Ŷ which is surjective since L|Y is still
an ample line bundle. Therefore the kernel Z of the homomorphism
π̂ ◦ λE : X → Ŷ is a quasi-complement of Y in X. �

AssumeX to be isogenous to
∏

iX
mi
i where theXi are mutually non-

isogenous abelian varieties and mi ∈ N. Then EndQ(X) =
∏

iMmi
(Di)

where Mmi
(Di) is the algebra of mi ×mi-matrices over the skew-field

Di = EndQ(Xi).

Corollary 3.1.6. EndQ(X) is a finite-dimensional semi-simple algebra
over Q.

Proof. If X is isogenous to Xd1
1 × · · ·Xdr

r then

EndQ(X) = Md1(D1)× · · ·Mdr(Dr)

where Di = EndQ(Xi) are division algebras finite-dimensional over Q.
�

We have a function

deg : End(X) → N

defined by the following rule : deg(f) is the degree of the isogeny f if f
is an isogeny and deg(f) = 0 if f is not an isogeny. Using the formula
deg(mf) = m2ndeg(f) for all f ∈ End(X), m ∈ Z and n = dim(X),
we can extend this function to EndQ(X)

deg : EndQ → Q+.

For every prime ` 6= char(k), we have a representation of the endo-
morphism algebra

ρ` : EndQ(X) → End(V`).

These representations for different ` are related by the function degree.

Theorem 3.1.7. For every f ∈ EndQ(X), we have

deg(f) = det ρ`(f) and deg(n.1X − f) = P (n)

where P (t) = det(t − ρ`(f)) is the characteristic polynomial of ρ`(f).
In particular, tr(ρ`(f)) is a rational number which is independent of `.

Letλ : X → X̂ be a polarization of X. One attach to λ an involution
on the semi-simple Q-algebra EndQ(X). 1

1Oue convention is that an involution of a non-commutative ring satisfies the
relation (xy)∗ = y∗x∗.
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Definition 3.1.8. The Rosati involution on EndQ(X) associated with
λ is the involution defined by the following formula

f 7→ f ∗ = λ−1f̂λ

for every f ∈ EndQ(X).

The polarization λ : X → X̂ induces an alternating form X[`m] ×
X[`m] → µ`m for every m. By passing to the limit on m, we get a
symplectic form

E : V`(X)× V`(X) → Q`(1).

By definition f ∗ is the adjoint of f for this symplectic form

E(fx, y) = E(x, f ∗y).

Theorem 3.1.9. The Rosati involution is positive. For every f ∈
EndQ(X), tr(ρλ(ff

∗)) is a positive rational number.

Proof. Let λ = λL for some ample line bundle L. One can prove the
formula

trρ`(ff
∗) =

2n(Ln−1.f ∗(L))

(Ln)
.

Since L is ample, the cup-products (Ln−1.f ∗(L)) (resp. Ln) is the
number of intersection of an effective divisor f ∗(L) (resp. L) with
n − 1 generic hyperplans of |L|. Since L is ample, these intersection
numbers are positive integers. �

Let X be abelian variety equipped with a polarization λ. The semi-
simple Q-algebra B = EndQ(X) is equipped with

(1) a complex representation ρa and a rational representation ρr
satisfying ρr ⊗Q C = ρa ⊕ ρa.

(2) an involution b 7→ b∗ such that for all b ∈ B − {0}, we have
trρr(bb

∗) > 0.

Suppose that B is a simple algebra of center F . Then F is a number
field equipped with a positive involution b 7→ b∗ restricted from B.
There are three possibilities

(1) the involution is trivial on F then F is a totally real number
field (involution of first kind). In this case, B⊗Q R is a product
of Mn(R) or is a product of Mn(H) where H is the algebra of
Hamiltonian quaternions equipped with their respective posi-
tive involutions (case C and D).

(2) the involution is non trivial on F , its fixed points forms a totally
real number field F0 and F is a totally imaginary quadratic
extension of F0 (involution of second kind). In this case, B⊗Q R
is a product of Mn(C) equipped with its positive involution
(case A).
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3.2. Positive definite Hermitian form. LetB be a finite-dimensional
semisimple algebra over R with an involution. A Hermitian form on
a B-module V is a symmetric form V × V → R such that (bv, w) =
(v, b∗w). It is positively definite if (v, v) > 0 for all v ∈ V .

Lemma 3.2.1. The following assertions are equivalent

(1) There exists a faithful B-module V such that tr(xx∗, V ) > 0 for
all x ∈ B − {0}.

(2) The above is true for every faithful B-module V
(3) trB/R(xx∗) > 0 for all nonzero x ∈ B.

3.3. Skew-Hermitian modules. Summing up what has been said in
the last two sections, the endomorphisms of a polarized abelian variety,
after tensoring with Q is a finite-dimensional semi-simple Q-algebra
equipped with a positive involution. For every prime ` 6= char(k),
this algebra has a representation on the Tate module V`(X) which is
equipped with a symplectic form. We are going now to look at this
structure in more axiomatic way.

Let k be a field. Let B be a finite-dimensional semisimple k-algebra
equipped with an involution ∗. Let β1, . . . , βr be a basis of B as k-
vector space. For any finite-dimensional B-module V we can define a
polynomial detV ∈ k[x1, . . . , xr] by the formula

detV = det(x1β1 + · · ·xrβr, V ⊗k k[x1, . . . , xr])

Lemma 3.3.1. Two finite-dimensional B-modules V and U are iso-
morphic if and only if detV = detU .

Proof. If k is an algebraically closed field, B is a product of matrix
algebras over k. The lemma follows from the classification of modules
over a matrix algebra. Now let k be an arbitrary field and k its algebraic
closure. Automorphism of a B-module is of the form GLm(F ) where
F is the center of B, has trivial Galois cohomology. This allows us to
descend from the algebraically closure of k to k. �

Definition 3.3.2. A skew-Hermitian B-module is a B-module U which
is equipped with a symplectic form

U × U →MU

with value in a 1-dimensional k-vector space MU such that (bx, y) =
(x, b∗y) for any x, y ∈ V .

The group G(U) of automorphism of a skew-Hermitian B-module U
is pair (g, c) where g ∈ GLB(U) and c ∈ Gm,k such that (gx, gy) =
c(x, y) for any x, y ∈ U .

If k is an algebraically closed field, two skew-Hermitian modules V
and U are isomorphic if and only if detV = detU . In general, the
set of skew-Hermitian modules V with detV = detU is classified by
H1(k,G(U)).
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Let k = R, B is a finite-dimensional semi-simple algebra over R
equipped with an involution and U is a skew-Hermitian B-module.
Let h : C → EndB(UR) such that (h(z)v, w) = (v, h((z)w) and such
that the symmetric bilinear form (v, h(i)w) is positive definite.

Lemma 3.3.3. Let h, h′ : C → EndB(UR) be two such homomor-
phisms. Suppose that the two B ⊗R C-modules U induced by h and h’
are isomorphic, then h and h′ are conjugate by an element of G(R).

Let B be is a finite-dimensional simple Q-algebra equipped with an
involution and let UQ be skew-Hermitian module UQ × UQ → MUQ .
An integral structure is an order OB of B and a free abelian group U
equipped with multiplication by OB and an alternating form U ×U →
MU of which the generic fibre is the skew Hermitian module UQ.

3.4. Shimura varieties of type PEL. Let fix a prime p. We will
describe the PEL moduli problem over a discrete valuation ring with
residual characteristic p under the assumption that the PEL datum is
unramified at p.

Definition 3.4.1. A rational PE-structure (polarization and endomor-
phism) is a collection of data as follows

(1) B is a finite-dimensional simple Q-algebra, assume that BQp is
a product of matrix algebra over unramified extensions of Qp;

(2) ∗ is a positive involution of B;
(3) UQ is skew-Hermitian B-module;
(4) h : C → EndB(UR) such that (h(z)v, w) = (v, h(z)w) and such

that the symmetric bilinear form (v, h(i)w) is positive definite.

The homomorphism h induces a decomposition UQ ⊗Q C = U1 ⊕ U2

where h(z) acts on U1 by z and on U2 by z. Let choose a basis β1, . . . , βr
of the Z-module OB which is free of finite rank. Let X1, . . . , Xt be
indeterminates. The determinant polynomial

detΛ1 = det(x1β1 + · · ·+ xrβr, V1 ⊗ C[x1, . . . , xr])

is a homogenous polynomial of degree dimC U1. The subfield of C gen-
erated by the coefficients of the polynomial f(X1, . . . , Xt) is a number
field which is independent of the choice of the basis α1, . . . , αt. The
above number field E is called the reflex field of the PE-structure. It is
equivalent to define E as the definition field of the isomorphism class
of the BC-module U1.

Definition 3.4.2. An integral PE structure consists in a rational PE
structure equipped with the following extra data

(5) OB is a order of B stable under ∗ which is maximal at p.
(6) U is an OB-integral structure of the skew-Hermitian module UQ.
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Suppose that β1, . . . , br is a Z-basis of OB, then the coefficients of
the determinant polynomial detU1 lie in O = OE ⊗Z Z(p).

Let fix an integer N ≥ 3. Consider the moduli problem B of abelian
schemes with PE-structure and with principal N -level structure. The
functor B associates to any O-scheme S the category B(S) whose ob-
jects are

(A, λ, ι, η)

where

(1) A is an abelian scheme over S

(2) λ : A→ Â is a polarization
(3) ι : OB → End(A) such that the Rosati involution induced by λ

restricts to the involution ∗ of OB and such that

det(β1X1 + · · · βrxr,Lie(A)) = detU1

such that for all prime ` 6= p such that for all geometric point
s of S, T`(As) equipped with the action of OB and with the
alternating form induced by λ is similar to U ⊗ Z`.

(4) η is a similitude from A[N ] equipped with the symplectic form
and the action of OB and U/NU that can be lifted to an iso-
morphism H1(A,Ap

f ) with U ⊗Z Ap
f .

Theorem 3.4.3. The functor which associates to a E-scheme S to the
set of isomorphism classes B(S) is smooth representable by a quasi-
projective scheme over OE ⊗ Z(p).

Proof. For ` 6= p, the isomorphism class of the skew-Hermitian module
Tλ(As) is locally constant with respect to s so that we can forget the
condition on this isomorphism class in representability problem.

By forgetting endomorphisms, we have a morphism B → A. It is
equivalent to have ι and to have actions of β1, . . . , βr satisfying certain
conditions. Therefore, it suffices to prove that B → A is representable
by a projective morphism for what it is enough to prove the following
lemma.

Lemma 3.4.4. Let A be a projective abelian scheme over a locally
noetherian scheme S. Then the functor that associate to any S-scheme
T the set End(AT ) is representable by a disjoint union of of projective
scheme over S.

Proof. A graph of an endomorphism b of A is a closed subscheme of of
A×S A so that the functor of endomorphisms for a subfunctor of some
Hilbert scheme. Let’s check that this subfunctor is representable by a
locally closed subscheme of the Hilbert scheme.

Let Z ⊂ A ×S A a closed subscheme flat over a connected base S.
Let’s check that the condition s ∈ S such that Zs is a graph is an open
condition. Suppose that pA : Zs → As is an isomorphisme over a point
s ∈ S. By flatness, the relative dimension of Z over S is equal to that of
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A. For every s ∈ S, every a ∈ A, the intersection Zs∩{a}×As is either
of dimension bigger than 0 either consists in exactly one point since the
intersection number is constant under deformation. This implies that
the morphisme p1 : Z → A is birationnal projective morphism. There
is an open subset U of A over which p1 : Z → A is an isomorphism.
Since π : A → S is proper, πA(A − U) is closed. Its complement
S−πA(A−U) which is open, is the set of s ∈ S over which p1 : Zs → As
is an isomorphism.

Let Z ⊂ A ×S A be a graph of a morphism f : A → A. f is a
homomorphism if and only if f sends the unit on the unit so that the
condition s ∈ S such that fs is a homomorphism is a closed condition.
So the functor which attach to a S-scheme T the set EndT (AT ) is
representable by a locally closed subscheme of a Hilbert scheme.

In order to prove that this subfunctor is represented by a closed
subscheme of the Hilbert scheme, it is enough to verify the valuative
criterion.

Let S = Spec(R) be the spectrum of a discrete valuation ring with
generic point η. Let A ba a S-abelian scheme and fη : Aη → Aη be
an endomorphism. Then fη can be extended in a unique way to an
endomorphism f : A→ A by Weil’s extension lemma. �

Theorem 3.4.5 (Weil). Let G be a smooth group scheme over S. Let
X be smooth scheme over S and U ⊂ X is a open subscheme whose
complement Y = X − U has codimension ≥ 2. Then and morphism
f : U → G can be extended to X. In particular, if G is an abelian
scheme, we can always extend.

3.5. Adelic description. Let G be the Q-reductive group defined as
the automorphism group of the skew-Hermitian module UQ. For every
Q-algebra R, let

G(R) = {(g, c) ∈ GLB(U)(R)×R×|(gx, gy) = c(x, y)}.
For all ` 6= p we have a compact open subgroup K` ⊂ G(Q`) which
consists in g ∈ G(Q`) such that g(U ⊗ Z`) = (U ⊗ Z`) and which
satisfies an extra condition in the case `|N that the action induced by
g on (U ⊗ Z`)/N(U ⊗ Z`) is trivial .

Lemma 3.5.1. There exists a unique smooth group scheme GK`
over

Z` such that GK`
⊗Z`

Q` = G⊗Q Q` and GK`
(Z`) = K`.

Consider the functor B′ which associates to any E-scheme the cate-
gory B′(S) : objects of this category are

(A, λ, ι, η̃)

where

(1) A is a S-abelian schemes over S,

(2) λ : A→ Â is a Z(p)-multiple of a polarization,
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(3) ι : OB → End(A) such that the Rosati involution induced by λ
restricts to the involution ∗ of OB and such that

det(α1X1 + · · ·αtXt,Lie(A)) = f(X1, . . . , Xt)

(4) fix a geometric point s of S, for every prime ` 6= p, η̃` is a K`-
orbit of isomorphisms from V`(As) to Λ ⊗ Q` compatible with
symplectic forms and action of OB and stable under the action
of π1(S, s)

Morphisms of from (A, λ, ι, η̃) to (A′, λ, ι, η̃) is a quasi-isogeny α : A→
A′ of degree prime to p carrying λ to a scalar (in Q×) multiple of λ′

and carrying η̃ on η̃′.

Proposition 3.5.2. The obvious functor B → B′ is an equivalence of
categories.

The proof is the same as in the Siegel case. �

3.6. Complex points. An isomorphism class of objet (A, λ, ι, η̃) ∈
B′(C) gives rises to

(1) a skew-Hermitian B-module H1(A,Q),
(2) for every prime `, a Q`-similitude H1(A,Q`) ' U ⊗Q` as skew-

Hermitian B ⊗Q`-modules, defined up to the action of K`.

For ` 6= p, this is required in the moduli problem. For the prime p,
for every b ∈ B, tr(b,H1(A,Qp)) = tr(b,Λ⊗Q) because both are equal
with tr(b,H1(A,Q`)) for any ` 6= p. It follows that the skew-Hermitian
modules tr(b,H1(A,Qp)) and tr(b,Λ ⊗ Qp) are isomorphic after base
change to a finite extension of Qp and therefore the isomorphism class
of the skew-Hermitian module defines an element of ξp ∈ H1(Qp, G).
Now, in the groupöıd B′(C) the arrows are given by prime to p isogeny,
H1(A,Zp) is a well-defined self-dual lattice stable by multiplication by
OB. It follows that the class ξp ∈ H1(Qp, G) mentioned above comes
from a class in H1(Zp, GZp) where GZp is the reductive group scheme
over Zp which extend GQp . In the case G so GZp has connected fibres,
this implies the vanishing of ξp. Kottwitz gave a further argument in
the case where G is not connected.

The first datum gives rise to a class

ξ ∈ H1(Q, G)

and the second datum implies that the images of ξ in H1(Q`, G) van-
ishes. We have

ξ ∈ ker1(Q, G) = ker(H1(Q, G) →
∏
`

H1(Q`, G)).

According to Borel and Serre, ker1(Q, G) is a finite set. For every
ξ ∈ ker1(Q, G), fix a skew-Hermitian B-module V (ξ) whose class in
ker1(Q, G) is ξ and fix a Q`-similitude V (ξ) ⊗Q` with V ⊗Q` as skew-
Hermitian B ⊗Q`-module and also a similitude over R.
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Let denote B(ξ)(C) be the subset of B(ξ)(C) of (A, λ, ι, η̃) such that
H1(A,Q) is isomorphic to V (ξ). Let (A, λ, ι, η) ∈ B(ξ)(C) and let β be
an isomorphism of skew-Hermitian B-modules from H1(A,Q) to V (ξ).
The set of quintuple (A, λ, ι, η, β) can be described as follows

(1) Then η̃ defines an element η̃ ∈ G(Af )/K.
(2) The complex structure on Lie(A) = V ⊗Q R defines a homomor-

phism h : C → EndB(VR) such that h(z) is the adjoint operator
of h(z) for the symplectic form on VR. Since ±λ is a polariza-
tion, (v, h(i)w) is positive or negative definite. Moreover the
isomorphism B ⊗ C-module V is specified by the determinant
condition on the tangent space. It follows that h lies in a G(R)-
conjugacy classe X∞.

Therefore the set of quintuples is X∞×G(Af )/K. Two different triv-
ializations β and β′ differs by an automorphism of the skew-Hermitian
B-module V (ξ). This group is the inner form G(ξ) of G obtained by the
image of ξ ∈ H1(Q, G) in H1(Q, Gad). In conclusion we get

B(ξ)(C) = G(ξ)(Q)\[X∞ ×G(Af )/K]

and

B(C) =
⊔

ξ∈ker1(Q,G)

B(ξ)(C).

4. Shimura varieties

4.1. Review on Hodge structures. See [Deligne, Travaux de Grif-
fiths]. Let Q be a subring of R : we think specifically about the cases
Q = Z,Q or R. A Q-Hodge structure will be called respectively inte-
gral, rational or real Hodge structure.

Definition 4.1.1. A Q-Hodge structure is a projective Q-module V
equipped with a bigraduation of VC = V ⊗Q C

VC =
⊕
p,q

Hp,q

such that Hp,q and Hq,p are complex conjugate i.e. the semi-linear
automorphism σ of VC = V ⊗Q C given by v ⊗ z 7→ v ⊗ z, satisfies the
relation σ(Hp,q) = Hq,p for every p, q ∈ Z.

The integers hp,q = dimC(Hp,q) are called Hodge numbers. We have
hp,q = hq,p. If there exists an integer n such that Hp,q = 0 unless
p + q = n then the Hodge structure is said to be pure of weight n.
When the Hodge structure is pure of weight n, the Hodge filtration
F pV =

⊕
r≥p V

rs determines the Hodge structure by the relation V pq =

F pV ∩ F qV .
Let S = ResC/RGm be the real algebraic torus defined as the Weil

restriction from C to R of Gm,C. We have a norm homomorphism
28



C× → R× whose kernel is the unit circle S1. Similarly, we have an
exact sequence of real tori

1 → S1 → S → Gm,R → 1.

We have an inclusion R× ⊂ C× whose cokernel can be represented
by the homomorphism C× → S1 given by z 7→ z/z. We have the
corresponding exact sequence of real tori

1 → Gm,R → S → S1 → 1.

The inclusion w : Gm,R → S is called the weight homomorphism.

Lemma 4.1.2. Let G = GL(V ) the linear group defined over Q. A
Hodge structure on V is equivalent to a homomorphism h : S → GR =
G ⊗Q R. The Hodge structure is pure of weight n if the restriction
of x to Gm,R ⊂ S factors through the center Gm,R = Z(GR) and the
homomorphism Gm,R → Z(GR) is given by t 7→ tn.

Proof. A bi-graduation VC =
⊕

p,q V
p,q is the same as a homomorphism

hC : G2
m,C → GC. The complex conjugation of VC exchange the factors

V p,q and V q,p if and only if hC descends to a homomorphism of real
algebraic groups h : S → GR. �

Definition 4.1.3. A polarization of a Hodge structure (VQ, V
p,q) of

weight n, is a bilinear form ΨK on VK such that the induced form Ψ
on VR is invariant under h(S1) and such that the form Ψ(x, h(i)y) is
symmetric and positive definite.

It follows from the identity h(i)2 = (−1)n that the bilinear form
Ψ(x, y) is symmetric if n is even and alternate if n is odd :

Ψ(x, y) = (−1)nΨ(x, h(i)2y) = (−1)nΨ(h(i)y, h(i)x) = (−1)nΨ(y, x).

Example. An abelian varieties induces a typical Hodge structure.
Let X = V/U be an abelian variety. Let G be GL(U ⊗Q) as algebraic
group defined over Q. The complex structure V on the real vector
space U ⊗ R = V induces a homomorphism of real algebraic groups

φ : S → GR

so that U is equipped with a structure of integral Hodge structure of
weight −1. A polarization of X is symplectic form E on V , taking in-
tegral values on U such that E(ix, iy) = E(x, y) and such that E(x, iy)
is a positive definite symmetric form.

Let V be a projective Q-module of finite rank. A Hodge structure
on V induces Hodge structures on tensor products V ⊗m⊗ (V ∗)⊗n. Let
fix a finite set of tensors (si)

si ∈ V ⊗mi ⊗ (V ∗)⊗ni .

Let G ⊂ GL(V ) be the stabilizer of these tensors.
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Lemma 4.1.4. There is a bijection between the Hodge structures on V
for which the tensors si are of type (0, 0) and the set of homomorphism
S → GR.

Proof. A homomorphism h : S → GL(V )R factors through GR if and
only if the image h(S) fix all tensors si. This is equivalent to say that
these tensors are of type (0, 0) for the induced Hodge structures. �

There is a related notion of Mumford-Tate group. Let G be a Q-
group and φ : S1 → GR a The Mumford-Tate group of X is the smallest
algebraic subgroup Hg(φ) of G, defined over Q such that φ : S1 → GR
factors through Hg(φ). Originally, Mumford called Hg(φ) the Hodge
group.

Definition 4.1.5. Let G be an algebraic group over Q. Let φ : S1 →
GR be a homomorphism of real algebraic groups. The Mumford-Tate
group of (G, φ) is the smallest algebraic subgroup H = Hg(φ) of G
defined over Q such that φ factors through HR.

Let Q[G] be the ring of algebraic functions over G and R[G] =
Q[G] ⊗Q R. The group S1 acts on R[G] through the homomorphism
φ. Let R[G]φ=1 be the subring of functions fixed by φ(S1) and consider
the subring

Q[G] ∩ R[G]φ=1

of Q[G]. For every v ∈ Q[G]∩R[G]φ=1, letGv be the stabilizer subgroup
of G at v. Since Gv is defined over Q and φ factors through Gv,R, we
have the inclusion H ⊂ Gv. In particular, v ∈ Q[G]H . It follows that

Q[G] ∩ R[G]φ=1 = Q[G]H .

This property does not however characterize H. In general, for any
subgroup H of G, we have an obvious inclusion

H ⊂ H ′ =
⋂

v∈Q[G]H

Gv.

which might be strict. If H = H ′ then we say that H is an observable
subgroup of G. To prove that this is indeed the case for the Mumford-
Tate group of an abelian variety, we will need the following general
lemma.

Lemma 4.1.6. Let H be a reductive subgroup of a reductive group G
then H is observable.

Proof. Assume the base field k = C. According to Chevalley, see
[Borel], for every subgroup H of G, there exists a representation ρ :
G → GL(V ) and a vector v ∈ V such that H is the stabilizer of the
line kv. Since H is reductive, there exists a complement U of kv in
V . Let kv∗ ⊂ V ∗ be the line orthogonal to U with some generator v∗.
Then H is the stabilizer of the vector v ⊗ v∗ ∈ V ⊗ V ∗.
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Let G = GL(UQ) and φ : S1 → GR be a homomorphism such that
φ(i) induces a Cartan involution on GR. Let C be the smallest tensor
subcategory stable by subquotient of the category of Hodge structure
that contains (UQ, φ). There is the forgetful functor FibC : C → VectQ.

Lemma 4.1.7. H is the automorphism group of the functor Fib.

Proof. Let V be a representation of G defined over Q equipped with the
Hodge structure defined by φ. Let U be a subvector space of V com-
patible with the Hodge structure. Then H must stabilize U . It follows
that H acts naturally on FibC i.e. we have a natural homomorphism
H → Aut⊗(FibC). �

Proposition 4.1.8. The Mumford-Tate group of a polarizable Hodge
structure is a reductive group.

Proof. Since we are working over a fields of characteristic zero, H is
reductive if and only if the category of representations of H is semi-
simple. Using the Cartan involution, we can exhibit a positive definite
bilinear form on V . This implies that every subquotient of V ⊗m ⊗
(V ∗)⊗n is a subobject. �

4.2. Variation of Hodge structures. Let S be a complex analytic
variety. The letter Q denote a ring contained in R which could be Z,Q
or R.

Definition 4.2.1. A variation of Hodge structures (VHS) on S of
weight n consists in the following data

(1) a local system projective Q-modules V
(2) a decreasing filtration F pV on the vector bundle V = V ⊗Q

OS such that the Griffiths transversality is satisfied i.e. for all
integer i

∇(F pV) ⊂ F p−1V ⊗ Ω1
S

where ∇ : V → V ⊗ Ω1
S is the connection v ⊗ f 7→ v ⊗ df for

which V ⊗Q C is the local system of horizontal sections
(3) for every s ∈ S, the filtration induces on Vs a pure Hodge struc-

ture of weight n.

There are obvious notion of the dual VHS and tensor product of
VHS. The Leibnitz formula ∇(v ⊗ v′) = ∇(v) ⊗ v′ + v ⊗∇(v′) assure
that Griffiths transversality is satisfied for the tensor product.

Typical examples of polarized VHS are provided by cohomology of
smooth projective morphism. Let f : X → S be a smooth projective
morphism over a complex analytic variety S. Then Hn = Rnf∗Q is
a local system of Q-vector spaces. Since Hn ⊗Q OS is equal to de
Rham cohomology Hn

dR = Rnf∗Ω
•
X/S where Ω•

X/S is the relative de

Rham complex. Since the spectral sequence degenerates on E2, the
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abutments Hn
dR are equipped with a decreasing filtration by subvector

bundle F p(Hn
dR) with

(F p/F p+1)Hn
dR = Rqf∗Ω

p
X/S

with p+ q = n. The connexion ∇ satisfies the Griffiths’ transversality.
By Hodge’s decomposition, we have instead a direct sum

Hn
dR(Xs) =

⊕
pq

Hp,q

with Hp,q = Hq(Xs,Ω
p
Xs

) and Hp,q = Hq,p so that all axioms of VHS
are satisfied.

If we choose a projective embedding, X → PdS, the line bundleOPd(1)
defines a class

c ∈ H0(S,R2f∗Q).

By hard Lefschetz theorem, the cup product by cd−n induces an iso-
morphism

Rnf∗Q → R2d−nf∗Q defined by α 7→ cd−n ∧ α
so that by Poincaré duality we get a polarization on Rnf∗Q.

4.3. Reductive Shimura datum. The torus S = ResC/RGm plays a
particular role in the formalism of Shimura varieties shaped by Deligne
in [4], [5].

Definition 4.3.1. A Shimura datum is a pair (G,X) consisting of a
reductive group G over Q and a G(R)-conjugacy class X of homomor-
phisms h : S → GR satisfying the following properties

(SD1) For h ∈ X, only the characters z/z, 1, z/z occur in the repre-
sentation of S on Lie(G);

(SD2) adh(i) is a Cartan involution of Gad i.e. if the real Lie group
{g ∈ G(C) | ad(h(i))σ(g) = g} is compact.

The action S, restricted to Gm,R is trivial on Lie(G) so that h : S →
GR sends Gm,R into the center ZR of GR. The induced homomorphism
w = h|Gm,R : Gm,R → ZR is independent of the choice of h ∈ X. We
call w the weight homomorphism.

Base change to C, we have S ⊗R C = Gm × Gm where the factors
are ordered in the way that S(R) → S(C) is the map z 7→ (z, z).
Let µ : Gm,C → SC the homomorphism defined by z → (z, 1). If
h : S → GL(V ) is a Hodge structure then µh = hC ◦ µ : GC → GL(VC)
determines its Hodge filtration.

Siegel case. Abelian variety A = V/U is equipped with a polarization
E which is a non-degenerate symplectic form on UQ = U⊗Q. Let GSp
the group of symplectic similitudes

GSp(UQ, E) = {(g, c) ∈ GL(UQ)×Gm,Q|E(gx, gy) = cE(x, y)}.
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The scalar c is called the similitude factor. Base changed to R, we
get the group of symplectic similitudes of the real symplectic space
(UR, E). The complex vector space structure on V = UR induces a
homomorphism

h : S → GSp(UR, E).

In this case, X is the set of complex structures on UR such that
E(h(i)x, h(i)y) = E(x, y) and E(x, h(i)y) is a positive definite sym-
metric form.

PEL case. Suppose B is a simple Q-algebra of center F equipped
with a positive involution ∗. Let F0 ⊂ F be the fixed field by ∗. Let G
be the group of symplectic similitudes of a skew-Hermitian B-module
V

G = {(g, c) ∈ GLB(V )×Gm,Q|(gx, gy) = c(x, y)}.
Let G1 be the subgroup of G defined by

G1(R) = {x ∈ (C ⊗Q R|xx∗ = 1}

for any Q-algebra R. We have an exact sequence

1 → G1 → G→ Gm → 1.

The group G1 is a scalar restriction of a group G0 defined over F0.
Since simple R-algebra with positive involution must be Mn(C),

Mn(R) or Mn(H) with their standard involutions there will be three
cases to be considered.

(1) Case (A) : If [F : F0] = 2, then F0 is a totally real field and F
is a totally imaginary extension. Over R, B ⊗Q R is product of
[F0 : Q] copies of Mn(C). G1 = ResF0/QG0 where G0 is an inner
form of the quasi-split unitary group attached to the quadratic
extension F/F0.

(2) Case (C) : If F = F0 then F is a totally real field. and B⊗R is
isomorphic to a product of [F0 : Q] copies of Mn(R) equipped
with their positive involution. In this case, G1 = ResF0/QG0

where G0 is an inner form of a quasi-split symplectic group
over F0.

(3) Case (D) : B⊗R is isomorphic to a product of [F0 : Q] copies of
Mn(H) equipped with positive involutions. The simplest case
is B = H, V is a skew-Hermitian quaternionic vector space.
In this case, G1 = ResF0/QG0 where G0 is an even orthogonal
group.

Tori case. In the case where G = T is a torus over Q, both conditions
(SD1) and (SD2) are obvious since the adjoint representation is trivial.
The conjugacy class of h : S → TR contains just one element since T is
commutative.
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Deligne proved the following statement in [5, prop. 1.1.14] which
provides a justification for to the not so natural notion of Shimura
datum.

Proposition 4.3.2. Let (G,X) be a Shimura datum. Then X has a
unique structure of a complex manifold such that for every representa-
tion ρ : G → GL(V ), (V, ρ ◦ h)h∈X is a variation of Hodge structure
which is polarizable.

Proof. Let ρ : G → GL(V ) be a faithful representation of G. Since
wh ⊂ ZG, the weight filtration of Vh is independent of h. Since the
weight graduation is fixed, the Hodge structure is determined by the
Hodge filtration. It follows that the morphism to the Grassmannian

ω : X → Gr(VC)

which sends h on the Hodge filtration attached to h, is injective. We
need to prove that this morphism identifies X with the complex sub-
variety of Gr(VC). It suffices to prove that

dω : ThX → Tω(h)Gr(VC)

identifies ThX with a complex vector subspace of Gr(VC).
Let g be the Lie algebra of G and ad : G → GL(g) the adjoint

representation. Let Gh be the centralizer of h, and gh its Lie algebra.
We have gh = gR ∩ g0,0 for the Hodge structure on g induced by h. It
follows that the tangent space to the real analytic variety X at h is

ThX = gR/g
0,0
C ∩ gR.

Let W be a pure Hodge structure of weight 0. Consider the R-linear
morphisme

WR/WR ∩W 0,0
C → WC/F

0WC

which is injective. Since both vector spaces have the same dimension
over R, it is also surjective. It follows that WR/WR ∩W 0,0

C admits a
canonical complex structure.

Since the above isomorphism is functorial on the pure Hodge struc-
tures of weight 0, we have a commutative diagram

gR/g
0,0
C ∩ gR

��

// End(VR)/End(VR) ∩ End(VC)0,0

��
gC/F

0gC // End(VC)/F 0End(VC)

which proves that the image of ThX = gR/g
0,0
C in Tω(h)Gr(VC) =

End(VC)/F 0End(VC) is a complex subvector space.
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The Griffiths transversality of V⊗OX follows from the same diagram.
There is a commutative triangle of vector bundles

TX

))TTTTTTTTTTTTTTTTTT // End(V ⊗OX)

��
End(V ⊗OX)/F 0End(V ⊗OX)

where the horizontal arrow is the derivation in V ⊗OX . The Griffiths
transversality of V ⊗ OX is satisfied if and only if the image of the
derivation is contained in F−1End(V ⊗OX). But this follows from the
fact that

gC = F−1gC

and the map TX → End(V ⊗ OX)/F 0End(V ⊗ OX) factors through
(gC ⊗OX)/F 0(gC ⊗OX). �

4.4. Dynkin classification. Let (G,X) be a SD-datum. Over C, we
have a conjugacy class of cocharacter

µad : Gm,C → Gad
C .

The complex adjoint semi-simple group Gad is isomorphism to a prod-
uct of complex adjoint simple groups Gad =

∏
iGi. The simple complex

adjoint groups are classified by their Dynkin diagrams. The axiom SD1
implies that µad induces an action of Gm,C on gi of which the set of
weights is {−1, 0, 1}. Such cocharacters are called minuscules. Minus-
cule coweights are some of the fundamental coweights and therefore can
be specified by special nodes in the Dynkin diagram. Every Dynkin
diagram have at least one special node except three of them those that
are named F4, G2, E8. We can classify DS-data over the complex
numbers with helps of Dynkin diagram.

4.5. Semi-simple Shimura datum.

Definition 4.5.1. A semi-simple Shimura datum is a pair (G,X+)
consisting of a semi-simple algebraic group G over Q and a G(R)+-
conjugacy class of homomorphism h1 : S1 → GR satisfying the axioms
(SD1) and (SD2). Here G(R)+ denotes the neutral component of G(R)
for the real topology.

Let (G,X) be a reductive Shimura datum. Let Gad be the adjoint
group of G. Every h ∈ X induces a homomorphism h1 : S1 → Gad. The
Gad(R)+-conjugacy class X+ of h1 is isomorphic with the connected
component of h in X.

The spaces X+ are exactly the so-called Hermitian symmetric do-
mains with symmetry group G(R)+.

Theorem 4.5.2 (Baily-Borel). Let Γ be a torsion free arithmetic sub-
group of G(R)+. The quotient Γ\X+ has a canonical realization as
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Zariski open subset of a complex projective algebraic variety. In par-
ticular, it has a canonical structure of complex algebraic variety.

These quotients Γ\X+ as complex algebraic variety, are called con-
nected Shimura variety. The terminology is a bit confusing, because
they are not Shimura varieties which are connected but the connected
components of Shimura varieties.

4.6. Shimura varieties. Let (G,X) be a Shimura datum. For a com-
pact open subgroup K of G(Af ), consider the double coset space

ShK(G,X) = G(Q)\[X ×G(Af )/K]

in which G(Q) acts on X and G(Af ) on the left and K acts on G(Af )
on the right.

Lemma 4.6.1. Let G(Q)+ = G(Q) ∩ G(R)+. Let X+ be a connected
component of X. Then there is a homeomorphism

G(Q)\[X ×G(Af )/K] =
⊔
ξ∈Ξ

Γξ\X+

where ξ runs over a finite set Ξ of representatives of G(Q)+\G(Af )/K
and Γξ = ξKξ−1 ∩G(Q).

Proof. Consider the map⊔
ξ∈Ξ

Γξ\X+ → G(Q)+\[X+ ×G(Af )/K]

sending the class of x ∈ X+ on the class of (x, ξ) ∈ X × G(Af ) which
is bijective by the very definition of the finite set Ξ and of the discrete
groups Γξ.

It follows from the theorem of real approximation that the map

G(Q)+\[X+ ×G(Af )/K] → G(Q)\[X ×G(Af )/K]

is a bijection.

Lemma 4.6.2 (Real approximation). For any connected group G over
Q, G(Q) is dense in G(R).

See [16, p.415]. �

Remarks.

(1) The group G(Af ) acts on the inverse limit G(Q)\[X × G(Af ].
On Shimura varieties of finite level, there is an action of Hecke
algebras by correspondences.

(2) In order to have an arithmetic significance, Shimura varieties
must have models over a number field. According to the the-
ory of canonical model, there exists a number field called the
reflex field E depending only on the SD-datum over which the
Shimura variety has a model which can be characterized by
certain properties.
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(3) The connected components of Shimura varieties have canonical
models over abelian extensions of the reflex E which depend
not only on the SD-datum but also on the level structure.

(4) Strictly speaking, the moduli of abelian varieties with PEL is
not a Shimura varieties but a disjoint union of Shimura varieties.
The union is taken over the set ker1(Q, G). For each class ξ ∈
ker1(Q, G), we have a Q-group G(ξ) which is isomorphic to G
over Qp and over R but which might not be isomorphic to G
over Q.

(5) The Langlands correspondence has been proved in many partic-
ular cases by studing the commuting action of Hecke operators
and of Galois groups of the reflex field on the cohomology of
Shimura varieties.

5. CM tori and canonical model

5.1. PEL moduli attached to a CM torus. Let F be a totally
imaginary quadratic extension of a totally real number field F0 of degree
f0 over Q. We have [F : Q] = 2f0. Such a field F is called a CM field.
Let τF denote the non-trivial element of Gal(F/F0). This involution
acts on the set HomQ(F,Q) of cardinal 2f0.

Definition 5.1.1. A CM-type of F is a subset Φ ∈ HomQ(F,Q) of
cardinal f0 such that

Φ ∩ τ(Φ) = ∅ and Φ ∪ τ(Φ) = HomQ(F,Q).

A CM type is a pair (F,Φ) constituting of a CM field F and a CM type
Φ of F .

Let (F,Φ) be a CM type. The absolute Galois group Gal(Q/Q) acts
on HomQ(F,Q). Let E be the fixed field of the open subgroup

Gal(Q/E) = {σ ∈ Gal(Q/Q)|σ(Φ) = Φ}.
For every b ∈ F , ∑

φ∈Φ

φ(b) ∈ E

and conversely E can be characterized as the subfield of Q generated
by the sums

∑
φ∈Φ φ(b) for b ∈ F .

LetOF be an order of F . Let ∆ be the finite set of primes whereOF is
ramified over Z. By construction, the scheme ZF = Spec(OF [p−1]p∈∆)
is a finite étale over Spec(Z) − ∆. By construction the reflex field E
is also unramified away from ∆ and let ZE = Spec(OF [p−1]p∈∆). Then
we have a canonical isomorphism

ZF × ZE = (ZF0 × ZE)Φ t (ZF0 × ZE)τ(Φ)

where (ZF0 ×ZE)Φ and (ZF0 ×ZE)τ(Φ) are two copies of (ZF0 ×ZE)τ(Φ)

with ZF0 = Spec(OF0 [p
−1]p∈∆).
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To complete the PE-structure, we will take U to be the Q-vector
space F . The Hermitian form on U with be give by

(b1, b2) = trF/Q(cb1τ(b2))

for some element c ∈ F such that τ(c) = −c. The reductive group G
associated to this PE-structure is a Q-torus T equipped with a cochar-
acter h : S → T which can be made explicite as follows.

Let T̃ = ResF/QGm. The CM-type Φ induces an isomorphism R-
algebras and of tori

F ⊗R C =
∏
φ∈Φ

C and T̃ (R) =
∏
φ∈Φ

C×.

According to this identification, h̃ : S → T̃R is the diagonal homomor-
phism

C× →
∏
φ∈Φ

C×.

The complex conjugation τ induces an involution τ on T̃ . The norm
NF/F0 given by x 7→ xτ(x) induces a homomorphism ResF/QGm →
ResF0/QGm.

The torus T is defined as the pullback of the diagonal subtorus Gm ⊂
ResF0/QGm. In particular

T (Q) = {x ∈ F×|xτ(x) ∈ Q×}.

The character h̃ : S → T̃R factors through T and defines a character
h : S → T . As usual h defines a character

µ : Gm,C → TC

defines at level of points

C× →
∏

φ∈Hom(F,Q)

C×

is identity on the component φ ∈ Φ and is trivial on the component
φ ∈ τ(Φ). The reflex field E is the field of definition of µ.

Let p /∈ ∆ an unramified prime of OF . Choose an open compact
subgroup Kp ∈ T (Ap

f ) and take Kp = T (Zp).
We consider the functor Sh(T, hΦ) which associates to a ZE-scheme

S the set of isomorphism classes of

(A, λ, ι, η)

where

• A is an abelian scheme of relative dimension f0 over S ;
• ι : OF → End(A) an action of F on A such that for every b ∈ F ,

for every geometric point s of S

tr(b,Lie(As)) =
∑
φ∈Φ

φ(a);
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• λ is a polarization of A whose Rosati involution induces on F
the complex conjugation τ ;

• η is a level structure.

Proposition 5.1.2. Sh(T, hΦ) is a finite étale scheme over ZE.

Proof. Since Sh(T, hΦ) is quasi-projective over ZE, it suffices to check
the valuative criterion for properness and the unique lifting property
of étale morphism.

Let S = Spec(R) be a spectrum of a discrete valuation ring with
generic point Spec(K) and with closed point Spec(k). Pick a point
xK ∈ Sh(T, hΦ)(K) with

xK = (AK , ιK , λK , ηK).

The Galois group Gal(K/K) acts on the F ⊗ Q`-module H1(A ⊗K

K,Q`). It follows that Gal(K/K) acts semisimply. After replacing
K by a finite extension K ′, R by its normalization R′ in K ′, AK ac-
quires a good reduction i.e. there exists an abelian scheme over R′

such that whose generic fiber is AK′ . The endomorphisms extend by
Weil’s extension theorem. The polarization needs a little more care.
The symmetric homomorphism λK : AK → ÂK extends to a symmetric
homomorphism λ : A → Â. After finite étale base change of S, there
exists an invertible sheaf L on A such that λ = λL. By assumption
LK is an ample invertible sheaf over AK . λ is an isogeny, L is non
degenerate on generic and on special fibre. Mumford’s vanishing theo-
rem implies that H0(XK , LK) 6= 0. By upper semi-continuity property,
H0(Xs, Ls) 6= 0. But since Ls is non-degenerate, Mumford’vanishing
theorem says that Ls is ample.

This proves that Sh(T, hΦ) is proper. Let S = Spec(R) where R is a
local artinian OE-algebra with residual field k and S = Spec(R) with
R = R/I, I2 = 0. Let denote s = Spec(k) the closed point of S and S.
Let x ∈ Sh(T, hΦ)(S) with x = (A, ι, λ, η). We have the exact sequence

0 → ωA → H1
dR(A) → Lie(Â) → 0

with compatible action of OF ⊗Z OE. As OZF×ZE
-module, ωAs is sup-

ported by (ZF0 × ZE)Φ) and Lie(Â) is supported by ZF0 × ZEτ(Φ) so
that the above exact sequence splits. This extends to a canonical split
of the cristalline cohomology H1

cris(A/S)S. According to Grothendieck-
Messing, this splitting induces a lift of the abelian scheme A/S to an
abelian scheme A/S. The additional structures λ, ι, η by functoriality
of Grothendieck-Messing’s theory. �

5.2. Description of its special fibre. We will keep the notations
of the previous paragraph. Let pick a place v of the reflex field E
which does not lie over the finite set ∆ of primes where OF is ramified.
OE is unramified ovec Z at the place v. We want to describe the set
ShK(T, hΦ)(Fp) equipped with the operator of Frobenius Frobv.
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Theorem 5.2.1. There is a natural bijection

ShK(T, hΦ)(Fp) =
⊔
α

T (Q)\Y p × Yp

where

(1) α runs over the set of isogeny classes compatible with action of
OE(p)

(2) Y p = T (Ap
f )/K

p

(3) Yp = T (Qp)/T (Zp)
(4) for every λ ∈ T (Ap

f ) we have λ(xp, xp) = (λxp, xp)
(5) the Frobenius Frobv acts by the formula

(xp, xp) 7→ (xp,NEv/Qp(µ(p−1))xp)

Proof. Let x0 = (A0, λ0, ι0, η0) ∈ ShK(T, hΦ)(Fp). Let X be the set

pair (x, ρ) where x = (A, λ, ι, η) ∈ ShK(T, hΦ)(Fp) and

ρ : A0 → A

is a quasi-isogeny which is compatible with the actions of OF and
transform λ0 onto a rational multiple of λ.

We will need to prove the following two assumptions :

(1) X = Y p×Yp with the prescribed action of Hecke operators and
of Frobenius ;

(2) the group of quasi-isogenies of A0 compatible with ι0 and trans-
forms λ0 into a rational multiple, is T (Q).

Quasi-isogeny of degree relatively prime to p. Let Y p the subset of
X where we impose the degree of the quasi-isogeny to be relatively
prime to p. Consider the prime description of the moduli problem.
A point (A, λ, ι, η̃) is a abelian variety up to isogeny, λ is a rational
multiple of a polarization, ι is the multiplication by OF on A and
η̃` is an isomorphism from H1(A,Q`) and U` compatible with ι and
transform λ on a rational multiple of symplectic form on U`, given
modulo a open compact subgroup K`. By this description, an isogeny
of degree prime to p compatible with ι and preserving the Q-line of
the polarization, is given by an element g ∈ T (Ap

f ). The polarization g
defines an isomorphism in the category B′ if and only if gη̃ = η̃′. Thus

Y p = T (Ap
f )/K

p

with obvious action of Hecke operators and trivial action of Frobv.

Quasi-isogeny of degree power of p. Let Yp the subset of X where we
impose the degree of the quasi-isogeny to be a power of p. We will use
covariant Dieudonné theory to describe the set Yp with action of the
Frobenius operator.

Let W (Fp) be the ring of Witt vectors with coefficients in Fp. Let L

be the field of fractions ofW (Fp) and we will writeOL instead ofW (Fp).
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The Frobenius automorphism σ : x 7→ xp of Fp induces by functoriality
an automorphism σ on the Witt vectors. For every abelian variety A
over Fp, H1

cris(A/OL) is a free OL-module of rank 2n equipped with
an operator Φ which is σ-linear. Let D(A) = Hcris

1 (A/OL) denotes
the dual OL-module of H1

cris(A/OL), where Φ acts in σ−1-linear way.
Furthermore, there is a canonical isomorphism

Lie(A) = D(A)/ΦD(A).

Let L be the field of fractions of OL. A quasi-isogeny ρ : A0 → A
induces an isomorphism D(A0) ⊗Fp

L ' D(A) ⊗Fp
L compatible with

the multiplication by OF and preserving the Q-line of the polariza-
tions. The following proposition is an immediate consequence of the
Dieudonné theory.

Proposition 5.2.2. Let H = D(A0) ⊗Fp
L. The above construction

defines a bijection between Yp and the set of lattices D ⊂ H such that

(1) pD ⊂ ΦD ⊂ D,
(2) stable under the action of OB and which satisfies the relation

tr(b,D/V D) =
∑

φ∈Φ φ(b) for all b ∈ OB,

(3) D is autodual up to a scalar in Q×
p .

Moreover, the Frobenius operator on Yp that transforms the quasi-isogeny
ρ : A0 → A on the quasi-isogeny Φ ◦ ρ : A0 → A → σ∗A acts on the
above set of lattices by sending D on Φ−1D.

Since Sh(T, hΦ) is étale, there exists an unique lifting

x̃ ∈ Sh(T, hΦ)(OL)

of x0 = (A0, λ0, ι0, η0) ∈ Sh(T, hΦ)(Fp). By assumption,

D(A0) = HdR
1 (Ã)

is a free OF ⊗OL-module of rank 1 equipped with a pairing given by an
element c ∈ (O×

Fp
)τ=−1. The σ−1-linear operator Φ on H = D(A0)⊗Fp

L
is of the form

Φ = t(1⊗ σ−1)

for an element t ∈ T (L).

Lemma 5.2.3. The element t lies in the coset µ(p)T (OL).

Proof. H is a free OF ⊗ L-module of rank 1 where

OF ⊗ L =
∏

ψ∈Hom(OF ,Fp)

L

is a product of 2f0 copies of L. By ignoring the autoduality condition,
t can be represented by an element

t = (tψ) ∈
∏

ψ∈Hom(OF ,Fp)

L×
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It follows from the assumption

pD0 ⊂ ΦD0 ⊂ D0

that for all ψ ∈ Hom(OF ,Fp) we have

0 ≤ valp(tψ) ≤ 1.

Remember that the CM type induces a decomposition Hom(OF ,Fp) =
Ψ t τ(Ψ) and that

tr(b,D0/ΦD0) =
∑
ψ∈Ψ

ψ(b)

for all b ∈ OF . It follows that

valp(tψ) =

{
0 if ψ /∈ Ψ
1 if ψ ∈ Ψ

By the definition of µ, it follows that t ∈ µ(p)T (OL). �

Description of Yp continued. A lattice D stable under the action of OF

and autodual up to a scalar, can be uniquely written under the form

D = mD0

for m ∈ T (L)/T (OL). The condition pD ⊂ ΦD ⊂ D and the trace
condition on the tangent space is equivalent to m−1tσ(m) ∈ µ(p)T (OL)
and thus m lies in the groups of σ-fixed points in T (L)/T (O)L.

m ∈ [T (L)/T (OL)]〈σ〉

Now there is a bijection between the cosets m ∈ T (L)/T (OL) fixed by
σ and the cosets T (Qp)/T (Zp) by considering the exact sequence

1 → T (Zp) → T (Qp) → [T (L)/T (OL]〈σ〉 → H1(〈σ〉, T (OL))

where the last cohomology group vanishes by Lang’s theorem. It follows
that

Yp = T (Qp)/T (Zp)

and Φ acts on it as µ(p).
In H, Frobv(1⊗ σr) acts as Φ−r so that

Frobv(1⊗ σr) = (µ(p)(1⊗ σ−1))−r

= µ(p−1)σ(µ(p−1)) . . . σr−1(µ(p−1))(1⊗ σr).

thus the Frobenius Frobv acts on Y p × Yp by the formula

(xp, xp) 7→ (xp,NEv/Qp(µ(p−1))xp).

Auto-isogenies. For every prime ` 6= p, H1(A0,Q`) is a free F ⊗Q Q`-
module of rank one. It follows that

EndQ(A0, ι0)⊗Q Q` = F ⊗Q Q`.

It follows that EndQ(A0, ι0) = F . The auto-isogenies of A0 form the
group F× and those who transports the polarization λ0 on a rational
multiple of λ0 form by definition the subgroup T (Q) ⊂ F×. �
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5.3. Shimura-Taniyama formula. Let (F,Φ) be a CM-type. Let
OF be an order of F which is maximal almost everywhere. Let p be
a prime where OF is unramified. We can either consider moduli space
of polarized abelian schemes with CM-multiplication of CM-type as in
previous paragraphs or consider moduli space of abelian schemes with
CM-multiplication of CM-type. Everything works in the same way
for properness, étaleness, and the description of points but we loose
the obvious projective morphism to Siegel moduli space. But since we
know a posteriori that there are only finite number of points, this lost
is not a serious one.

Let (A, ι) be an abelian scheme over a number field K which is un-
ramified at p equipped with big enough level structure. K must con-
tains the reflex field E but might be bigger. Let q be a place of K over
p, and OK,q be the localization of OK at q, let q be the cardinal of the
residue field of q. By étaleness of the moduli space, A can be extended
to an abelian scheme over Spec(OK,q) equipped with multiplication by
OF .

Let πq be the relative Frobenius of Av. Since EndQ(Av) = F , πq

defines an element of F .

Theorem 5.3.1 (Shimura-Taniyama formula). For all prime v of F ,
we have

valv(πq)

valv(q)
=
|Φ ∩Hv|
|Hv|

.

Proof. As in the description of Frobenius operator in Yp, we have

πq = Φ−r

where q = pr. It is elementary exercice to relate the Shimura-Taniyama
formula to the group theoretical description of Φ. �

5.4. Shimura varieties of tori. Let T be a torus defined Q and
h : S → TR a homomorphism. Let µ : Gm → C be the associated
cocharater. Let E be the number field of definition of µ. Choose an
open compact subgroup K ⊂ T (Af ). The Shimura variety attached to
these data is

T (Q)\T (Af )/K

since X∞ has just one element. This finite set is the set of C-point of a
finite étale scheme over Spec(E). We need to define how the absolute
Galois group Gal(E) acts on this set.

The Galois group Gal(E) will act through its maximal abelian quo-
tient Galab(E). For almost all prime v of E, we will define how the
Frobenius πv at v acts.

A prime p is said unramified if T can be extended to a torus T over
Zp and of Kp = T (Zp). Let v be a place of E over an unramified prime
p, p is an uniformizing element of OE,v. The cocharacter µ : Gm → T
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is defined over OE,v so that µ(p−1) is well defined element of T (Ev).
We ask that the πv acts on T (Q)\T (Af )/K as the element

NEv/Qp(µ(p−1)) ∈ T (Qp).

By class field theory, this rule defines an action of Galab(E) on the
finite set T (F )\T (Af )/K.

5.5. Canonical model. Let (G, h) be a Shimura-Deligne datum. Let
µ : Gm,C → GC be the attached cocharater. Let E be the field of
definition of the conjugacy class of µ and is called the reflex field of
(G, h).

Let (G1, h1) and (G2, h2) be two Shimura-Deligne data and let ρ :
G1 → G2 be an injective homomorphism of reductive Q-group which
sens the conjugacy class h1 into the conjugacy class h2. Let E1 and E2

be the reflex fields of (G1, h1) and (G2, h2). Since the conjugacy class
of m2 = ρ ◦ µ1 is defined over E1, we have the inclusion E2 ⊂ E1.

Definition 5.5.1. A canonical model of Sh(G, h) is an algebraic vari-
ety defined over E such that for all SD-datum (G1, h1) where G1 is a
torus and any injective homomorphism (G1, h1) → (G, h) the morphism

Sh(G1, h1) → Sh(G, h)

is defined over E1 where E1 is the reflex field of (G1, h1) and the E1-
structure of Sh(G1, h1) was defined in the last paragraph.

Theorem 5.5.2 (Deligne). There exists at most one canonical model
up to unique isomorphism.

Theorem 5.2.1 proves more or less that the moduli space give rises
to a canonical model for symplectic group. It follows that PEL moduli
space also gives rise to canonical model. The same for Shimura varieties
of Hodge type and abelian type. Some other crucial cases were obtained
by Shih afterward. The general case, the existence of the canonical
model is proved by Borovoi and Milne.

Theorem 5.5.3 (Borovoi, Milne). Canonical model exists.

5.6. Integral models. A natural integral model is provided with the
PEL moduli problem. More generally, in case of Shimura varieties of
Hodge type, Vasiu proves the existence of ”canonical” integral model.
In this case, integral model is nothing but the closure in the Siegel
moduli space. Vasiu proved that this closure has good properties in
particular the smoothness. A good place to begin with integral models
is the article by Moonen.

6. Points of Siegel varieties over finite fields

6.1. Abelian varieties over finite fields up to isogeny. Let k = Fq
be a finite fields of characteristic p with q = ps elements. Let A be a
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simple abelian variety defined over k and πA ∈ Endk(A) its geometric
Frobenius.

Theorem 6.1.1 (Weil). The subalgebra Q(πA) ⊂ Endk(A)Q is a finite
extension of Q such that for every inclusion φ : Q(πA) ↪→ C, we have
|φ(πA)| = q1/2.

Proof. Choose polarization and let τ be the associated Rosati involu-
tion. We have

(πAx, πAy) = q(x, y)

so that τ(πA)πA = q. For every complex embedding φ : End(A) → C, τ
corresponds to the complex conjugation. It follows that |φ(τA)| = q1/2.
�

Definition 6.1.2. An algebraic number satisfying the conclusion of the
above theorem, is called a Weil q-number.

Theorem 6.1.3 (Tate). The homomorphism

Endk(A) → EndπA
(V`(A))

is an isomorphism.

In the proof of Tate, the fact that there is a finite number of abelian
varieties over finite field with a polarization given type, plays a crucial
role. �

Theorem 6.1.4 (Honda-Tate). (1) The category M(k) of abelian
varieties over k with HomM(k)(A,B) = Hom(A,B) ⊗ Q is a
semi-simple category.

(2) The application A 7→ πA defines a bijection between the set of
isogeny classes of simple abelian varieties over Fq and the set
of Galois conjugacy classes of Weil q-numbers.

Corollary 6.1.5. Let A, B abelian varieties over Fq of dimension n.
They are isogenous if and only if the characteristic polynomials of πA
and H1(A,Q`) and πB on H1(A,Q`) are the same.

6.2. Conjugacy classes in reductive groups. Let k be a field and
G be a reductive group over k. Let T be a maximal torus of G, the
finite group W = N(T )/T acts on T . Let

T/W := Spec([k[T ]W ])

where k[T ] is the ring of regular functions on T i.e. T = Spec(k[T ])
and k[T ]W is the ring of W -invariants regular functions on T . The
following theorem is from [17].

Theorem 6.2.1 (Steinberg). There exists a G-invariant morphism

χ : G→ T/W

which induces a bijection between the set of semi-simple conjugacy
classes of G(k) and (T/W )(k) if k is an algebraically closed field.

45



If G = GL(n) , the map

[χ](k) : { semisimple conjugacy class of G(k)} → (T/W )(k)

is still a bijection for any field of characteristic zero. For arbitrary
reductive group, this map is neither injective nor surjective.

For a ∈ (T/W )(k), the obstruction to the existence of a (semi-simple)
k-point in χ−1(a) lies in some Galois cohomology group H2. In some
important cases this group always vanishes.

Proposition 6.2.2 (Kottwitz). If G is a quasi-split group with Gder

simply connected, then the [χ](k) is surjective.

For now, we will assume G be quasi-split and Gder simply connected.
In this case, the elements a ∈ (T/W )(k) are called stable conjugacy
classes. For every stable conjugacy class a ∈ (T/W )(k), there might
exist several semi-simple conjugacy of G(k) contained in χ−1(a).

Examples. If G = GL(n), (Tn/Wn)(k) is the set of monic polynomials
of degree n

a = tn + a1t
n−1 + · · ·+ a0

with a0 ∈ k× . If G = GSp(2n), (T/W )(k) is the set of pairs (P, c)
where P is a monic polynomial of degree 2n, c ∈ k× satisfying

a(t) = c−nt2na(c/t).

In particular, if a = t2n + a1t
2n−1 + · · · + a2n then a2n = cn. The

homomorphism GSp(2n) → GL(2n)×Gm induces a closed immersion

T/W ↪→ (T2n/W2n)×Gm.

Semi-simple elements of GSp(2n) are stably conjugate if and only if
they have the same characteristic polynomials and the same similitude
factors.

Let γ0, γ ∈ G(k) be semisimple elements such that χ(γ0) = χ(γ) =
a. Since γ0, γ are conjugate in G(k) there exists g ∈ G(k) such that
gγ0g

−1 = γ. It follows that for every ς ∈ Gal(k/k), ς(g)γ0ς(g)
−1 = γ

and thus
g−1ς(g) ∈ Gγ0(k).

The cocycle ς 7→ g−1ς(g) defines a class

inv(γ0, γ) ∈ H1(k,Gγ0)

with trivial image in H1(k,G). For γ0 ∈ χ−1(a) the set of semi-simple
conjugacy class stably conjugate to γ0 is in bijection with

ker(H1(k,Gγ0) → H1(k,G)).

It happens often that instead of an element γ ∈ G(k) stably conju-
gate to γ0, we have a G-torsor E over k with an automorphism γ such
that χ(γ) = a. We can attach to the pair (E , γ) a class in H1(G,Gγ0)
whose image in H1(k,G) is the class of E .
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Consider the simplest case where γ0 is semisimple and strongly regu-
lar. For G = GSp, (g, c) is semisimple and strongly regular if and only
if the characteristic polynomial of g is a separable polynomial. In this
case, T = Gγ0 is a maximal torus of G. Let T̂ be the complex dual

torus equipped with a finite action of Γ = Gal(k/k)

Lemma 6.2.3 (Tate-Nakayama). If k is a non-archimedian local field,

then H1(k, T ) is the group of characters T̂ Γ → C which have finite
order.

6.3. Kottwitz triple (γ0, γ, δ). Let A be the moduli space of abelian
schemes of dimension n with polarizations of type D and principal N -
level structure. Let U = Z2n equipped with an alternating form of type
D

U × U →MU

where MU is a rank one free Z-module. Let G = GSp(2n) be the group
of automorphism of the symplectic module U .

Let k = Fq a finite field with q = pr elements. Let (A, λ, η̃) ∈ A′(Fq).
Let A = A ⊗Fq k and πA ∈ End(A) its relative Frobenius endomor-

phism. Let a is the characteristic polynomial of πA on H1(A,Q`). This
polynomial satisfies has rational coefficients and satisfies

a(t) = q−nt2na(q/t)

so that (a, q) determines a stable conjugacy class a of GSp(Q). Weil’s
theorem implies that this is an elliptic class in G(R). Since GSp is
quasi-split and its derived group Sp is simply connected, there exists
γ0 ∈ G(Q) lying in stable class. The partition (A, λ, η̃) ∈ A′(Fq) in
stable conjugacy classes of G(Q) is the same as the partition by isogeny
classes of A ignoring the polarization.

Description of Y p. For any prime ` 6= p, ρ`(πA) is an automorphism of
the adelic Tate module H1(A,Ap

f ) preserving the symplectic form up
to a similitude factor q

(ρ`(πA)x, ρ`(πA)y) = q(x, y).

The rational Tate module H1(A,Ap
f ) with the Weil pairing is similar to

U ⊗ Ap
f so that πA defines a G(Ap

f )-conjugacy class of G(Ap
f ).

Y p = {η̃ ∈ G(Ap
f )/K

p|η̃−1γη̃ ∈ Kp}.

Note that for every prime ` 6= p, γ0 and γ` are stably conjugate. In the
case γ0 strongly regular semisimple, we have an invariant

α` : T̂ Γ` → C×

which is a character of finite order.
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Description of Yp. Recall that πA : A → A is the composite of an
isomorphism u : σr(A) → A and the r-th power of the Frobenius
Φr : A→ σr(A)

πA = u ◦ Φr.

On the covariant Dieudonné module D = Hcris
1 (A/OL), the operator

acts Φ in σ−1-linear way and u acts in σr-linear way. We can ex-
tend these action to H = D ⊗OL

L. Let G(H) be the group of auto-
similitudes of H and we form the semi-direct product G(H) o 〈σ〉.
The elements u,Φ and πA can be seen as commuting elements of this
semi-direct product.

Since u : σr(A) → A is an isomorphism, u fixes the lattice u(D) = D.
This implies that

Hr = {x ∈ H | u(x) = x}
is a Lr-vector space of dimension 2n over the field of fractions Lr of
W (Fpr) and equipped with a symplectic form. Autodual lattices in H
fixed by u must come from autodual lattices in Hr.

Since Φ ◦ u = u ◦Φ, Φ stabilizes Hr and its restriction to Hr induces
an σ−1-linear operator of which the inverse will be denoted by δ. We
have

Yp = {g ∈ G(Lr)/G(OLr) | g−1δσ(g) ∈ Kpµ(p−1)Kp}.

There exists an isomorphism H with U ⊗ L that transports πA on γ0

which carries Φ on an element bσ ∈ T (L) o 〈σ〉. Following Kottwitz,
the σ-conjugacy class of b in T (L) determines a character

αp : T̂ Γp → C×.

The set of σ-conjugacy classes in G(L) for any reductive group G is
described in [7].

Invariant at ∞. Over R, T is an elliptic maximal torus. The conjugacy
class of cocharacter µ induces a well-defined character

α∞ : T̂ Γ∞ → C×.

Let us state Kottwitz theorem in a particular case which is more or
less equivalent to theorem 5.2.1. The proof of the general case is much
more involved.

Proposition 6.3.1. Let (γ0, γ, δ) a triple with γ0 semisimple strongly
regular. Assume that the torus T = Gγ0 is unramified at p. There
exists a pair (A, λ) ∈ A(Fq) for a triple (γ0, γ, δ) if and only if∑

v

αv|T̂Γ = 0.

In that case there are ker1(Q, T ) isogeny classes of (A, λ) ∈ A(Fq)
which map to the triple (γ0, γ, δ).
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Let γ0 as in the statement and a ∈ Q[t] its characteristic polynomial
which is a monic polynomial of degree 2n satisfying the equation

a(t) = q−nt2na(q/t).

The algebra F = Q[t]/a is a product of CM-fields which are unramified
at p. The moduli space of polarized abelian varieties with multiplica-
tion by OF with a given CM type is finite and étale at p. A point
A ∈ A(Fq) mapping to (γ0, γ, δ) belong to one of these Shimura vari-
eties of dimension 0 by letting t acts as the Frobenius endomorphism
Frobq.

We can lift A to a point Ã with coefficients inW (Fq) by the étaleness.
By choosing a complex embedding of W (Fq), we obtain symplectic Q-

vector space by taking the first Betti homology H1(Ã⊗W (Fq)C,Q) which
is equipped with a non-degenerate symplectic form and multiplication
by OF . This defines a conjugation class of G(Q) within the stable
class defined by the polynomial a. For every prime ` 6= p, the `-adic
homology H1(A⊗Fq Fq,Q`) is a symplectic vector space equipped with
action of t = Frobq. This defines a conjugacy class γ` of G(Q`). By
comparision theorem, we have a canonical isomorphism

H1(Ã⊗W (Fq) C,Q)⊗Q Q` = H1(A⊗Fq Fq,Q`)

compatible with action of t so that the invariant α` = 0 for ` 6= p.
The compensation between αp ans α∞ is essentially the equality Φ =

µ(p)(1⊗ σ−1) occuring in the proof of Theorem 5.2.1. �

Kottwitz stated and proved more general statement for all γ0 and
for all PEL Shimura varieties of type (A) and (C). In particular, he
derived a formula for the number of points on A

A(Fq) =
∑

(γ0,γ,δ)

n(γ0, γ, δ)T (γ0, γ, δ)

where n(γ0, γ, δ) = 0 unless Kottwitz vanishing condition is satisfied.
In that case

n(γ0, γ, δ) = ker1(Q, I)
and

T (γ0, γ, δ) = vol(I(Q\I(Af ))Oγ(1Kp)TOδ(1Kpµ(p−1)Kp
)

where I is an inner form of Gγ0 .
It is expected that this formula can be compared to Arthur-Selberg

trace formula, see [8].
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