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Introduction

These are notes for a short seminar at the Centre de Recerca Matemàtica in
Bellaterra, Barcelona, delivered from September 20th to 23rd 2005 as part
of the activities organized during the Special year on Shimura varieties and
Arakelov Geometry. The goal of these notes is offering a rough introduction to
hermitian symmetric domains and Shimura varieties attached to a reductive
algebraic group over Q. Comments and warnings of mistakes and misprints
are welcome.
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Chapter 1

Hermitian symmetric domains

1.1 Lie groups and Lie algebras

Definition 1.1.1. A real Lie group is a C∞-real manifold G together with a
group structure

G×G
·−→ G , G

−1−→ G

defined by C∞-morphisms.

By a Theorem of Lie, a real Lie group always admits a structure of real
analytic manifold for which the group law is described by real analytic maps.

Similarly, we define a complex Lie group to be a complex analytical man-
ifold endowed with a group structure described by holomorphic maps.

A Lie subgroup H ⊂ G of a real Lie group is a real analytic submanifold
of G for which the group law of G inherits on H the structure of a Lie group.

Definition 1.1.2. Let k be a field of characteristic 6= 2. A Lie algebra g
over k is a k-vector space equipped with a bracket operation

[ , ] : g× g −→ g

such that [X, Y ] = −[Y,X] and [X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0 for
all X,Y, Z ∈ g.

Throughout these notes, we always mean that g has finite dimension over
k. A Lie subalgebra h of g is a vector subspace such that [h, h] ⊆ h.
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6 CHAPTER 1. HERMITIAN SYMMETRIC DOMAINS

If G is a real (or complex) Lie group, the tangent space g = Lie(G) =
Te(G) at the identity element e of G is naturally a real (complex) Lie algebra:

[ , ] : g× g −→ g
(X, Y ) 7→ (XY − YX )e,

where for any two tangent vectors X, Y ∈ g, we let X ,Y denote the unique
left G-invariant vector fields on G such that Xe = X and Ye = Y .

For a Lie group G, let G0 denote the connected component of e ∈ G.
Note that g = Lie(G) = Lie(G0).

Adjoint representations. Inner conjugation

G−→Aut(G), g 7→ cg(h) = ghg−1

induces the adjoint representation of G:

Ad : G −→ GL(g)
g 7→ de(cg)

and the adjoint representation of g:

ad = de(Ad) : g −→ End(g).

Let Z(G) = {g ∈ G : gh = hg for all h ∈ G} and z(g) = {X ∈ g : [X, Y] =
0 for all Y ∈ g} denote the centers of G and g, respectively. Each are a Lie
subgroup of G and a Lie subalgebra of g.

The group Ad(G) = G/Z(G) ⊆ GL(g) is called the adjoint group of G
and ad(g) = g/z(g) the adjoint algebra of g.

Proposition 1.1.3. Let G be a real Lie group and g = Lie(G) be its Lie
algebra. There is a one-to-one correspondence

{H ⊆ G connected Lie subgroup } ↔ {h ⊆ g Lie subalgebra }.

Let g be a real Lie algebra. The adjoint algebra ad(g) is naturally a
subalgebra of End(g) = Lie(GL(g)) and thus there exists a connected Lie
subgroup Int(g) ⊆ GL(g) such that Lie(Int(g)) = ad(g).

Definition 1.1.4. A real Lie algebra g is compact if Int(g) is.
A Lie subalgebra h of g is compactly embedded in g if the Lie subgroup

H = Intg(h) ⊂ GL(g) such that Lie(H) = adg(h) is compact.
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We have Int(g) = Ad(G)0 = (G/Z(G))0. Hence, if G is compact then g is
a compact Lie algebra. But there may exist non compact Lie groups G such
that G/Z(G) is compact, and thus so g is.

Simply connected Lie groups and the equivalence of categories.
Let g be a real Lie algebra. By the above construction we know that if
z(g) = {0} then g = ad(g) and we can realize g = Lie(Int(g)) as the Lie
algebra of a Lie group. What about if z(g) 6= {0}?

Besides, there might be plenty of connected Lie groups G such that
Lie(G) = g. Indeed, if G̃−→G is a topological covering of Lie groups, then
G and G̃ are locally isomorphic and thus they share the same Lie algebra.
Uniqueness is obtained when we consider the universal covering of G.

Theorem 1.1.5. There is an equivalence of categories between the category
of

Simply connected real Lie groups

and the category of

Real Lie algebras.

Semisimple Lie algebras. Let k be a field of characteristic 6= 2 and let
g be a Lie algebra over k.

An ideal of g is a vector subspace a ⊆ g such that [g, a] ⊆ a. The ideal is
abelian if [a, a] = {0}. Note that an ideal of g is also a subalgebra.

Definition 1.1.6. A Lie algebra g is simple if it is not abelian and it contains
no ideals a 6= {0}, g. It is semisimple if it contains no abelian ideals a 6= {0}.

Define the Killing form on g to be

Bg : g × g −→ k
(X, Y ) 7→ Tr(ad(X) · ad(Y )).

Theorem 1.1.7 (Cartan). Let k be a subfield of C.

(i) g is semisimple if and only if Bg is nondegenerate.

(ii) g is semisimple if and only if g ' g1⊕ ...⊕gr is the direct sum of simple
Lie algebras gi.
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In fact, if a is an ideal of a semisimple Lie algebra g, then g = a ⊕ a⊥,
where a⊥ = {X ∈ g : Bg(X, a) = 0}.

Definition 1.1.8. The Lie algebra g is reductive if for any ideal a ⊆ g there
exists an ideal b ⊆ g such that g ' a⊕ b.

Theorem 1.1.9. The Lie algebra g is reductive if and only if g ' s ⊕ z,
where s is a semisimple Lie algebra and z is an abelian Lie algebra.

If g is reductive, in fact s = [g, g] is semisimple and g ' s⊕ z(g).

Theorem 1.1.10. Let k be a field of characteristic 0. Then g is reductive if
and only if all representations % : g−→End(V ) on a finite dimensional vector
space V over k are semisimple: if W ⊂ V is %(g)-invariant, there exists a
%(g)-invariant vector subspace W̃ ⊂ V such that V = W ⊕ W̃ .

We say that a connected real Lie group G is :

• a torus if it can be embedded as a subgroup of Dn = {diag(a1, ..., an)} ⊂
GLn(C), Dn ' C∗× n)... ×C∗ for some n.

• simple if it is not abelian and contains no normal connected Lie sub-
groups 6= {1}, G.

• semisimple if it contains no normal connected abelian Lie subgroups
6= {1}.

• reductive if the only normal connected abelian Lie subgroups are tori.

Warning. The definitions of simple and semisimple Lie group are those
naturally equivalent for the same definitions on Lie algebras. Note however
that the definition of reductive Lie group is more restrictive: the only com-
mutative algebraic subgroups that we allow in a reductive Lie group are tori.
For instance, G = R with the addition law is not a torus and thus also not
reductive, although Lie(R) = Lie(R∗) = R.

Examples:

1. SLn(R), g = sln(R) = {X ∈ Mn(R) : Tr(X) = 0} is simple.

2. GLn(R), g = Mn(R) = 〈1n〉 ⊕ sln(R) is reductive but not semisimple.
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3. SO(n) = {A ∈ SLn(R) : AtA = 1},
g = {X ∈ Mn(R) : X t + X = 0} is simple.

More generally, for any decomposition n = p + q, p, q ≥ 0:

SO(p, q) = {A ∈ SLn(R) : At

(
−1p 0
0 1q

)
A =

(
−1p 0
0 1q

)
} is simple.

When p, q > 0, SO(p, q) has two connected components.

4. SU(p, q) = {A ∈ SLn(C) : Āt

(
−1p 0
0 1q

)
A =

(
−1p 0
0 1q

)
} is simple.

It contains the Lie subgroup S(Up × Uq) = {A =

(
Ap 0
0 Aq

)
: Āt

pAp =

1p, Ā
t
qAq = 1q, det(ApAq) = 1}.

5. SO∗(2n) = {A ∈ SU(n, n) : At

(
0 1n

1n 0

)
A =

(
0 1n

1n 0

)
} is simple.

6. Spn(R) = {A ∈ GL2n(R) : At

(
0 1n

−1n 0

)
A =

(
0 1n

−1n 0

)
} is simple.

7. Sp(n) = Spn(C) ∩ U(2n) is simple.

1.2 Hermitian symmetric manifolds

A Riemannian real manifold is a C∞-manifold (M, %) equipped with a metric

% : T (M)⊗ T (M)−→R,

that is, a positive definite C∞-tensor field.
A hermitian complex manifold is a complex analytic manifold (M, %)

equipped with a hermitian metric

% : T (M)⊗ T (M)−→C,

that is, an analytic positive definite hermitian tensor field: C-linear on the
first variable, gp(u, v) = gp(v, u) for all u, v ∈ Tp(M) and g(u, u) > 0 for all
u ∈ Tp(M) \ {0}.

Or equivalently, an R-linear, symmetric, positive definite tensor field

%0 : T (M)⊗ T (M)−→R
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such that %0,p(iu, iv) = %0,p(u, v) for all u, v ∈ Tp(M). It induces

%(u, v) := %0(u, v) + i%0(u, iv).

Definition 1.2.1. A hermitian symmetric manifold is a connected hermitian
manifold (M, %) such that:

(i) M is homogenous: the group Aut(M, %) of holomorphic isometries acts
transitively on M .

(ii) M is symmetric: for all p ∈M there exists an involution sp ∈ Aut(M, %),
s2

p = 1, such that p is an isolated fixed point of sp.

Similarly one defines Riemannian symmetric manifolds. An important
remark is that for each point p ∈ M , the symmetry sp is always unique.
Locally, sp is the geodesic involution sp(γ(t)) = γ(−t), where γ denotes any
geodesic on M with γ(0) = p.

Examples.

(a) M = H1 = {z ∈ C : Im (z) > 0} with the hermitian metric %0 = dxdy
y2 .

The group PSL2(R) acts on H1 by Moebius transformations:

z 7→
(

a b
c d

)
· z =

az + b

cz + d
.

The group PSL2(R) acts transitively by holomorphic isometries on H1

and a symmetry at i ∈ H1 is given by the matrix

(
0 −1
1 0

)
.

(b) M = P1(C) ⊂ R3 with the hermitian metric induced by %0 = dxdydz.
The group SO3(R) acts by rotations transitively on P1(C). These are
holomorphic isometries and for each p ∈ P1(C), there is an obvious
rotation which leaves p and −p fixed.

(c) M = C/Λ where Λ = Ze1 + Ze2 ⊂ C is a lattice, together with the
metric %0 = dxdy. The group C/Λ itself acts transitively by transla-
tions on M . For any point p ∈ M , the involution sp : q 7→ 2p − q is a
symmetry which has exactly four fixed points, p being one of them.
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For a point p in a C∞-manifold M and vector subspace E ⊆ Tp(M),
dim(E) = 2, recall Gauss’ sectional curvature Kp(E) of p along E. It may
be defined as

• Kp(E) = −gp(Rp(X,Y )X, Y ) where R is the (3, 1)-curvature tensor
field attached to the Riemannian connection ∇ on M and {X, Y } is an
orthonormal basis of E.

• Let E ∩M be the local submanifold of M around p obtained by ex-
ponentiation of geodesics γ such that γ(0) = p and γ̇(0) ∈ E. Let C
and c be the maximum and minimum of the curvatures of the signed
curves on E ∩M obtained by cutting the surface E ∩M with planes
through a normal line at p and define Kp(E) = C · c.
The curvature of a curve is 1/R, where R is the radius of the circle that
best approximates the curve. We give the sign + or − to the curvature
of the curve depending whether the curve bends towards the normal
line or not.

Definition 1.2.2. Let (M, %) be a hermitian symmetric manifold. If for all
points p ∈M and all vector subspaces E ⊆ Tp(M), dim(E) = 2, we have:

(a) Kp(E) < 0, we say that (M, %) is of noncompact type.

(b) Kp(E) > 0, we say that (M, %) is of compact type.

(c) Kp(E) = 0, we say that (M, %) is of euclidean type.

Theorem 1.2.3. Let (M, %) be a hermitian symmetric manifold. Then

(M, %) ' (M−, %−)× (M+, %+)× (M0, %0)

is isometric to the product of a hermitian symmetric space of noncompact
type, compact type and euclidean type.

The group of holomorphic isometries G = Aut(M, %) of a hermitian sym-
metric manifold is equipped with the compact-open topology for which a
basis of open subsets is given by

W (C, U) = {g ∈ G : g(C) ⊂ U},

where C ⊂M is a compact and U ⊂M is open.
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With this topology G admits a unique structure of real analytic Lie group
and for each point p ∈M , the isotropy group

Kp = {g ∈ G : g(p) = p}

is compact.
Moreover, if (M, %) is of noncompact type or compact type, there exists

an algebraic group G ⊂ GL(g) over R such that

G(R)0 = G0 = Hol(M)0 = Aut(MR, gR)0.

Example 1.2.4. For M = H1, g = dxdy
y2 , we have Aut(M, %) = Hol(M) =

PSL2(R), which is the set of real points of the algebraic group PSL2. However,
Aut(MR, gR) = PSL2(R) ∪ PSL2(R) · (z 7→ z̄−1).

We focus now on hermitian symmetric manifolds of noncompact type.
If D ⊂ Cn is a bounded open connected subset, there is canonical hermi-

tian metric gBgm on D, the so-called Bergman’s metric, which has negative
sectional curvatures. If Hol(D) acts transitively on D and each point p ∈ D
admits a symmetry (in fact, if one then all), then it turns (D, gBgm) into
a hermitian symmetric manifold of noncompact type. Conversely, any such
space is isometric to (D, gBgm) for some bounded domain of Cn.

Accordingly, hermitian symmetric manifolds of noncompact type are of-
ten called hermitian symmetric domains.

Let (M, %) be a hermitian symmetric domain, G = Aut(M, %) be the Lie
group of holomorphic isometries of M , G0 be the connected component of
e ∈ G and g = Lie(G).

Fix a point p ∈ M and let K = Kp be the (compact) isotropy group of
M at p.

The automorphism
σ : G −→ G

g 7→ spgsp

is an involution on G and we let g = g+⊕ g− be the decomposition of g into
±1-eigenspaces with respect to de(σ).

With the above notations we have the following fundamental result.

Theorem 1.2.5. Let (M, %) be a hermitian symmetric domain. Then
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(i) M is simply connected and G is semisimple and noncompact.

(ii) Z(G) ⊂ K is a finite group, and there is a diffeomorphism

π : G0/K
'−→ M

g 7→ g(p)

(iii) (Kσ)0 ⊆ K ⊆ Kσ := {g ∈ G : σ(g) = g} and Lie(K) = g+.

(iv) deπ : g−
'−→ Tp(M) and Id · exp : K × g−

'−→ G0.

(v) The complex structure Jp ∈ End(Tp(M)) belongs to z(Lie K). In par-
ticular, K has non discrete center Z(K).

In item (v) above, we regard Lie(K) as a subalgebra of End(Tp(M))
through the representation

K −→ GL(Tp(M))
k 7→ dp(gK 7→ kgK).

We say that hermitian symmetric domain (M, %) is irreducible if it is not
isometric to the product of non zero hermitian symmetric domains. If (M, %)
is a hermitian symmetric domain, then

(M, %) ' (M1, %1)× ...(Mr, %r),

where (Mi, %i) are irreducible.
If (M, %) is irreducible, then g = Lie(G) and g⊗C are simple Lie algebras

and Lie(K) is a maximal proper subalgebra of g.

Remark 1.2.6. Although a real Lie algebra g is semisimple if and only g⊗C
is, there exist simple real Lie algebras g such that g⊗C are not. Indeed, let
c/C be a simple complex Lie algebra and let g = cR be c regarded as a Lie
algebra. Then g is simple but g ⊗ C is not.
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1.3 Cartan’s classification

Cartan involutions.

Definition 1.3.1. Let g be a semisimple real Lie algebra. A Cartan involu-
tion on g is an automorphism s ∈ End(g) such that s 6= Id , s2 = Id and
the +1-eigenspace g+ ⊆ g is a compactly embedded subalgebra.

Definition 1.3.2. We call (g, s) a symmetric Lie algebra, and we say that
it is of compact or noncompact type depending whether g is compact or not.
We say that (g, s) is an irreducible hermitian noncompact symmetric Lie
algebra if

• g is non compact, g and g ⊗ C are simple

• g+ is a maximal proper subalgebra of g and z(g+) 6= {0}.

Next proposition can be found in [2, p. 292, 303, 385].

Proposition 1.3.3. Let g be a semisimple real Lie algebra. The Killing form
Bg on g is Ad(G)-invariant:

Bg(Ad(g)X,Ad(g)Y ) = Bg(X, Y ), for all g ∈ G, X, Y ∈ g.

Moreover, it is negative definite on g+ and positive definite on g−.

Symmetric domains versus symmetric Lie algebras.
If (M, %) is an irreducible hermitian symmetric domain, then Theorem

1.2.5 implies that (g, deσ) is an irreducible noncompact hermitian symmetric
Lie algebra, where g = Lie(G), G = Aut(M, %) and σ : G−→G, g 7→ spgsp.

Conversely, let (g, s) be an irreducible noncompact hermitian symmetric
Lie algebra. Let G̃ be the simply connected Lie group such that Lie(G̃) = g
(which can be obtained as the universal covering of Int(g)) and let σ ∈
Aut(G̃) be an involution of G̃ such that deσ = s. The existence of σ is
guaranteed by Theorem 1.1.5.

Let K̃ be the connected component of e in Kσ = {g ∈ G̃ : σ(g) = g}.
Since Lie(K̃) = g+, it follows from the prescribed properties of (g, s) that K̃ is
a maximal connected proper Lie subgroup of G̃. Moreover, AdG̃(K̃) ⊂ GL(g)
is compact.
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The coset space M = G̃/K̃ is naturally a real analytic manifold. Let
π : G̃−→M be the projection map and let p0 = π(e) ∈ M be the base
point. The Killing form Bg is positive definite on g− ' Tp0(M) and it is
G̃-invariant:

Bg(X, Y ) = Bg(deAd(g)X, deAd(g)Y ) for any g ∈ G̃.

By means of the transitive action of G̃ on M , it can be extended to a metric
% on M which turns (M, %) into a Riemannian manifold on which G̃ acts by
isometries.

The action of G̃ on M is obviously transitive and for each p ∈ M there
is a symmetry sp ∈ G̃ which leaves p fixed. Indeed, the symmetry at p0 is
sp0 : gK̃ 7→ σ(g)K̃ (and this is again an isometry because Bg is invariant
under automorphisms of G̃).

Recall now that Z(K̃) is a non discrete abelian (compact) Lie subgroup
of K̃. Hence Z(K̃)0 = S1 × ... × S1, where S1 = {z ∈ C : |z| = 1}. In fact,
we have the following lemma (see [3, Thm 1.9]).

Lemma 1.3.4. There exists a homomorphism

u : S1−→Z(K̃)

such that the isometry

cu(−1) : G̃/K̃ −→ G̃/K̃

gK̃ 7→ u(−1)gK̃ (= u(−1)gu(−1)−1K̃)

induced by conjugation by u(−1) fixes p0 and satisfies

dp0cu(−1) = − Id ∈ End Tp0(M).

Since the symmetry sp0 satisfies the same properties, by uniqueness we
have cu(−1) = sp0 and thus also ad(u(−1)) = s.

Also, J0 = decu(i) ∈ End Tp0(M) is an endomorphism such that J2
0 = − Id

and de(ck)J0 = J0de(ck) for all k ∈ K̃.
It follows that there can be constructed a unique G̃-invariant almost com-

plex structure J on M such that Jp0 = J0 for which % is hermitian. In fact,
J is integrable and (M, %) is therefore an irreducible hermitian symmetric
domain.
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Remark 1.3.5. And now the lemma can be reformulated to ensure the
stronger statement that dp0cu(z) = z · Id ∈ End Tp0(M) for all z ∈ S1. It
implies that in the representation Ad(u) ⊗ C : S1−→GL(g ⊗ C), the only
characters ξ ∈ Hom(S1, C∗) ' Z that occur are 1, z and z−1.

We have thus established a one-to-one correspondence between

Irreducible hermitian symmetric domains

and

Irreducible noncompact hermitian symmetric Lie algebras.

If we start with (M, %), Theorem 1.2.5 produces G = Aut(M, %)0, K = Kp

and σ ∈ Aut(G) so that (g = Lie(G), s = de(σ)) is an irreducible noncom-
pact hermitian symmetric Lie algebra. Starting now with the resulting pair
(g, s), we have attached to it a simply connected Lie group G̃ and a compact
subgroup K̃. The automorphism group G of M does not need to be simply
connected, but we do have that G̃/K̃ is the universal covering of G/K (see
[1, p. 178]). Since M is simply connected by Theorem 1.2.5, we deduce that
G̃/K̃ ' G/K = M .

Classification of simple Lie algebras.
For a real symmetric Lie algebra (g0, s), let g0 = g+

0 ⊕ g−0 be the decom-
position into ±1-eigenspaces with respect to s. Define the dual symmetric
Lie algebra (g∗0, s

∗) to be the subalgebra g∗0 = g+
0 ⊕ ig−0 of the complex Lie

algebra g := g0 ⊗ C, and s∗ : X+ + iX− 7→ X+ − iX−.

Theorem 1.3.6. (i) If g/C is a semisimple Lie algebra, there exists a
compact real Lie algebra g0 such that g = g0 ⊗ C. Any two compact
real forms of g are isomorphic and there is a one-to-one correspondence
between

{ Semisimple Lie algebras g/C}/ '

and
{ Compact Lie algebras g0/R}/ '

which preserves simplicity.

(ii) If (g0, s) is a symmetric simple Lie algebra of compact type, then its dual
symmetric Lie algebra (g∗0, s

∗) is of noncompact type, and conversely.
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Remark that in general it is not true that g0 is simple over R if and only
if g = g0 ⊗C is simple over C. This holds however true for compact real Lie
algebras (see [1, p. 308]).

Combining the two statements of the above theorem we obtain that in
order to classify symmetric Lie algebras of noncompact type and irreducible
hermitian symmetric domains, we can proceed as follows:

1. Classify the isomorphism classes of simple Lie algebras g over C.

2. Find a compact real form g0 for them and classify all possible Cartan
involutions s on them: (g∗0, s

∗) will recover all symmetric Lie algebras
of noncompact type up to isomorphism.

3. Compute z(g∗+0 ).

Theorem 1.3.7 (Cartan). Let (M, g) be an irreducible hermitian symmet-
ric domain. Then M is isometric to either

Label Compact form Domain dim

AIII SU(n) SU(p, q)/S(Up × Uq) 2pq

BDI(q = 2) SO(n + 2) SO0(n, 2)/SO(n)× SO(2) 2n

CI Sp(n) Spn(R)/U(n) n(n + 1)

DIII SO(2n) SO∗(2n)/U(n) n(n− 1)

or to the exceptional cases EIII of dimension 32 or EV II of dimension 54.

• The compact real simple algebra of SO(n) admits two Cartan involu-
tions when n is even. These give raise to two different noncompact
forms. A similar phenomenon happens for the compact group SU(n):
for each decomposition n = p + q with p, q > 0 there is Cartan invo-
lution on SU(n) which gives raise to each of the non-compact forms of
the third column.

• There are several coincidences among the above Lie groups. More pre-
cisely: AIII(p = q = 1) ' CI(n = 1), BDI(p = 3, q = 2) ' CI(n = 2),
AIII(p = q = 2) ' BDI(p = 4, q = 2), AIII(p = 3, q = 1) ' DIII(n =
3) and BDI(p = 6, q = 2) ' DIII(n = 4).
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• The Siegel space is Hn = {Z ∈ Mn(C) : Z = Zt, Im(Z) > 0} =
Spn(R)/U(n).



Chapter 2

Locally symmetric varieties

The aim of this chapter is considering quotients D(Γ) := Γ\D of hermitian
symmetric domains D by discrete subgroups Γ ⊂ Aut(D)0 and studying
under what conditions the coset space D(Γ) is the set of complex points of
an algebraic variety defined over a number field.

The starting point is the following proposition.

Proposition 2.0.8. Let D be a hermitian symmetric domain and let G =
Aut(D) be the group of holomorphic isometries of D. Let Γ ⊂ G0 be a
discrete torsion-free subgroup. There is a unique complex analytic structure
on D(Γ) for which π : D � D(Γ) is a local isomorphism.

A map of complex analytic varieties D(Γ)−→V is analytic if and only if
the composition D � D(Γ)−→V is.

Proof. With the quotient topology, D(Γ) is a separated space1.
For any p ∈ D, Γp = {γ ∈ Γ : γ · p = p} ⊂ Kp is a discrete subgroup of

a compact group, hence finite. If Γ is torsion-free, Γp = {1} for all p ∈ D.
There exists p ∈ Up such that γUp ∩ Up = ∅ for all γ ∈ Γ \ {1} so that
π|Up : Up−→ π(Up) is a homeomorphism, producing a complex analytic atlas
on D(Γ). 2

Assume Γ is torsion-free. Since D is simply connected, it is the universal
covering of the complex manifold D(Γ). For any p ∈ D we have

Γ
'−→ π1(D(Γ), π(p))

g 7→ [π(c)]

1For any p, q ∈ D not in the same orbit under Γ, we can find open subsets p ∈ Up,
q ∈ Uq ⊂ D such that γUp ∩ Uq = ∅ for all γ ∈ Γ.

19
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where c is any path on D joining p and g · p.

2.1 Algebraic groups

Let k denote a field of characteristic 0 and k̄ a fixed algebraic closure of k.

Definition 2.1.1. An algebraic group over a field k is an algebraic variety
G over k together with a group structure

G×G
·−→ G , G

−1−→ G

defined by algebraic morphisms defined over k.

Examples of algebraic groups over a field k are

• Gm = Speck[X, Y ]/(XY − 1) is the multiplicative group such that for
any k-algebra A, Gm(A) = A∗.

• Ga = Speck[X] is the additive group such that for any k-algebra A,
Gm(A) = A.

• Mn, GLn, SLn, SOn, Spn, ...

• Elliptic curves and abelian varieties over k.

The Lie algebra of G is g = Lie(G) = Te(G), and it is a Lie algebra over
k.

All examples of algebraic groups we will consider are affine. We will not
consider abelian varieties, for instance.

The notion of torus, semisimple group and reductive group are similarly
defined as in the previous chapter for Lie groups. That is:

Definition 2.1.2. A connected algebraic group G over k is

• a torus if G ⊗ k̄ ' Gm× n)... ×Gm for some n. The minimal field
extension K/k for which G⊗K ' Gm× ...×Gm is called the splitting
field of G.

• semisimple if it contains no smooth connected normal commutative
algebraic subgroups 6= {1}.
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• reductive if it contains no smooth connected normal commutative
algebraic subgroups other than tori.

Note for instance that abelian varieties or Ga are not reductive algebraic
groups.

A typical example of a non split torus is constructed as follows. Let K/k
be a finite Galois extension and T = ResK/k(Gm). This is an algebraic group
over k of dimension n = [K : k] characterized by T (A) = (A⊗k K)∗ for any
k-algebra A. In particular T (k) = K∗ and T (K) = (K∗)n. It is split over K.

For a reductive algebraic group G over k, let T stand for the largest
commutative quotient of G. Since T is connected, it is a torus. We define
the derived group Gder of G to be the kernel of ν. The Lie algebra of Gder is
Lie(Gder) = [g, g] and according to Theorem 1.1.9 it is a semisimple group.

Let Z denote the centre of G. Since g = [g, g] ⊕ z(g), we have that
Lie(Z) = Lie(T ). In fact Z/Z ′ ' T , where Z ′ := Z ∩ Gder is a finite group.
We thus have exact sequences

1 −→ Gder −→ G
ν−→ T −→ 1

1 −→ Z −→ G
ad−→ Gad −→ 1

1 −→ Z ′ −→ Z −→ T −→ 1.

When G = GLn, these are

1 −→ SLn −→ GLn
det−→ Gm −→ 1

1 −→ Gm −→ GLn
ad−→ PGLn −→ 1

1 −→ µn −→ Gm
x 7→xn

−→ Gm −→ 1.

2.2 Arithmetic and congruence groups

Two subgroups S1, S2 ⊂ S of a group S are commensurable if S1 ∩ S2 has
finite index both in S1 and S2.

Definition 2.2.1. Let G be an algebraic group over Q. A subgroup Γ ⊂
G(Q) is arithmetic if it is commensurable with G(Q) ∩ GLn(Z) for some
embedding G ↪→ GLn.

A congruence subgroup of G(Q) is a subgroup Γ ⊂ G(Q) which for some
embedding G ↪→ GLn contains

Γ(N) = G(Q) ∩ {g ∈ GLn(Z) : g ≡ Idn mod N}

as a subgroup of finite index.



22 CHAPTER 2. LOCALLY SYMMETRIC VARIETIES

For a reductive group there always exist an embedding G↪→GLn and
it can be shown that the above definitions do not depend on the chosen
embedding G ↪→ GLn.2

Let

Af =
∏̂

Q` = {(a`) : a` ∈ Q`, a` ∈ Z` for almost all `}

be the ring of finite adeles of Q. It is a topological ring when we regard it as
a subring of

∏
Q` with the product topology, in which a basis of (compact)

open subsets of 0 are {K(N) =
∏

K`(N)}N≥1, where K`(N) = Z` if ` - N ;
K`(N) = `r`Z` if r` = ord`(N) ≥ 1.

For an algebraic group G over Q, let G(Af ) =
∏̂

G(Q`).
3 If G↪→GLn is

an embedding, a basis of (compact) open neighbourhoods of 1 is given by
K(N) =

∏
K` where

K` =

{
G(Z`) if ` - N

{g ∈ G(Z`) : g ≡ Idn mod `r`} if r` = ord`(N) ≥ 1.

The topology does not depend of the choice of the embedding.4 For

instance Ga '
(

1 ∗
0 1

)
⊂ GL2 and Gm = GL1.

Proposition 2.2.2. Let G be a reductive group over Q. For any compact
open subgroup K ⊂ G(Af ), K ∩G(Q) is a congruence subgroup of G(Q).5

Proof. Let G ↪→ GLn be an embedding. Then K(N) is a compact open
subgroup of G(Af ) and

K(N) ∩G(Q) = Γ(N).

2Congruence groups are arithmetic and the classical congruence problem asks whether
any arithmetic group Γ ⊂ G(Q) is congruence. By definition we know that Γ is commen-
surable with Γ(1) but we do not know whether Γ(N) ⊂ Γ for some N . The answer is yes if
G is simply connected (that is, if any isogeny G′→G from a connected algebraic group G′

is the identity) and G 6' SL2. Otherwise, SL2 and non simply connected reductive groups
have many non-congruence arithmetic subgroups. See [4].

3In order to talk about G(Z`), this definition implies the choice of a model of G over
Z. However, any two such models will become isomorphic over Z[ 1d ] for some d ≥ 1. Since
there are finitely many primes ` | d, there is no ambiguity in our definition.

4It does always exist for reductive groups.
5And every congruence subgroup arises in this way.
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If K is a compact open subgroup of G(Af ), there exists N ≥ 1 such that
K ⊇ K(N) and Γ := K ∩ G(Q) ⊇ Γ(N). Thus Γ/Γ(N) ⊂ K/K(N) is a
discrete subgroup of a compact group: the index of Γ(N) in Γ is finite and
Γ is congruence. 2

Definition 2.2.3. If G is an arbitrary connected real Lie group, we still
define arithmetic subgroups of G as follows. A subgroup Γ ⊂ G is arithmetic
if there exists

• An algebraic group G over Q.

• An arithmetic subgroup Γ̃ ⊂ G(Q)

• A surjective morphism π : G(R)0−→G with compact kernel

such that π(Γ̃) = Γ.

2.3 The theorem of Baily-Borel

Let D be a hermitian symmetric domain and G = Aut(D) be the (semisim-
ple) real Lie group of holomorphic isometries of D. Let Γ ⊂ G0 be an
arithmetic torsion-free subgroup. This means that there exists an algebraic
group G over Q, an arithmetic subgroup Γ̃ ⊂ G(Q) and a surjective morphism
π : G(R)0−→G with compact kernel such that π(Γ̃) = Γ.

Theorem 2.3.1. (i) [Baily-Borel] Then D(Γ) has a canonical realization
as a smooth Zariski-open subset of a projective algebraic variety D(Γ)∗.
If G(Q) contains no unipotent elements6, then D(Γ) is compact.

(ii) [Borel] Let V be a nonsingular quasi-projective variety over C. Then
every holomorphic map of complex analytic manifolds

f : V (C)−→D(Γ)(C)

is regular algebraic.

• For D = H1 the proof of (i) works as follows.

6An unipotent element is an element γ ∈ G(Q) such that %(γ) − 1 is nilpotent for all
representations % : G ↪→ GL(V ) of G.
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1. Let D∗ = H1 ∪ P1(Q) with a suitable topology.

2. Let Γ ⊂ SL2(Q) be an arithmetic subgroup (commensurable with
SL2(Z)). It acts on H∗

1 by Moebius transformations on H1 and by
linear projective transformations on P1(Q) so that D(Γ)∗ = Γ\H∗

1

is a compact complex surface.

3. Modular forms (i.e. regular differentials) of large weight enough
produce an embedding of D(Γ)∗ into a projective space.

4. Chow’s theorem asserts that D(Γ)∗ is naturally a projective vari-
ety and D(Γ) = D(Γ)∗ \ (Γ\P1(Q)), the complementary of a finite
set of points.

• For arbitrary D, the proof of (i) follows the same pattern.

1. D∗ = D
⋃
∪Bi, where Bi are so-called rational boundary compo-

nents, endowed with the Satake topology.

2. Automorphic forms of large weight embed D(Γ)∗ = Γ\D∗ into a
projective space, so that D(Γ) ⊂ D(Γ)∗ is a Zariski-open subvari-
ety.

Remark 2.3.2. 1. If PGL2 is not a quotient of the algebraic group
G over Q, then the components of D(Γ)∗ \D(Γ) have codimension
≥ 2.7

2. If Γ is an arithmetic group with torsion, Proposition 2.0.8 does
not apply and D(Γ) is even not a complex manifold. However,
there exists a subgroup Γ0 ⊂ Γ of finite index in Γ which is torsion
free. Thus D(Γ0) is by Baily-Borel a smooth algebraic variety and
we can construct D(Γ) = D(Γ0)/(Γ/Γ0). By Hilbert’s theorem on
invariant algebras under finite groups, D(Γ) still has the structure
of an algebraic variety, with quotient singularities at those points
p ∈ D(Γ) for which the stabilizer Γp is not trivial. Hence the

7The example SL2(Z)\H1 is explained as follows: the boundary is a nonempty set
of finite points, thus of codimension 1. We already expected this since SL2(Z) con-
tains unipotent elements. But PGL2 is not a quotient of SL2 over Q! That’s true, but
PGL2(R)0 = SL2(R) and we can also choose G = PGL2 instead of SL2. With this choice
we also have H1 = PGL2(R)0/K and now the remark makes sense. Since the natural
inclusion G = PSL2−→PGL2 is an isomorphism on the connected components of 1 of the
real points, SL2(Z) is an arithmetic subgroup of PGL2(Q).
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singularities of D(Γ)∗ are found at these points in D(Γ) and at
the boundary D(Γ)∗ \D(Γ).

• The proof of (ii) works as follows. Let D1 = {z ∈ C : |z| < 1} and
D∗1 = D1 \ 0.

1. Big Picard Theorem: If a holomorphic function f : D∗1 −→C has
an essential singularity at 0, it takes all values of C except possibly
one. (thus, if there are two values not in the image, f has a pole
at 0).

2. Any holomorphic f : D∗1 −→P1(C) \ {p1, p2, p3} extends to an
holomorphic function f : D1−→P1(C).

3. Borel’s extension of big Picard’s Theorem: every holomorphic map
D∗r1 ×Ds

1 ↪→D(Γ) extends to a holomorphic map Dr+s
1 ↪→D(Γ)∗.

4. Hironaka: V ⊂ V ∗ where V ∗ is (possible singular) projective and
V ∗ \ V is a divisor with normal crossings: locally for the complex
topology, V ↪→V ∗ is of the form D∗r1 ×Ds

1 ↪→Dr+s
1 .

5. By Borel’s lemma, f : V (C) ↪→D(Γ) extends to a holomorphic
map V ∗(C) ↪→D(Γ)∗.

6. Chow: any holomorphic map between projective varieties is alge-
braic.

Corollary 2.3.3. (i) The structure of an algebraic variety on D(Γ) is
unique.

(ii) For any other compactification D(Γ) ↪→D(Γ)† with D(Γ)† a projective
variety and D(Γ)† \ D(Γ) a divisor with normal crossings, there is a
unique regular map D(Γ)†−→D(Γ)∗ commuting with D(Γ) ↪→D(Γ)∗.

Proof: As for (i), let V be a complex algebraic variety such that D(Γ) '
V (C) as complex manifolds. By Borel’s theorem, this is an algebraic isomor-
phism. Statement (ii) follows similarly from the proof of Borel’s theorem,
considering V = D(Γ) ⊂ V ∗ = D(Γ)† and the map f = Id : D(Γ)−→D(Γ),
which extends to D(Γ)†−→D(Γ)∗. 2

For this reason, D(Γ) ↪→D(Γ)∗ is often called the minimal compactifi-
cation on D(Γ). Other names are the Satake-Baily-Borel or Baily-Borel
compactification.
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Examples:

1. D = H1, Aut(H1) = SL2(R), G = SL2 is a semisimple group over Q,

Γ = SL2(Z), D(Γ)
'→ A1

C is an algebraic variety over C. It is not

projective:

(
1 1
0 1

)
∈ Γ is unipotent.

2. D = Hn, Aut(Hn) = Spn(R), G = Spn is a semisimple group over
Q, Γ = Spn(Z). Hence Spn(Z)\Hn is the set of complex points of a
(non-projective) algebraic variety. We will see later that it is a moduli
space defined over Q.

3. Let F be a totally real field, n = [F : Q]. Let B = F ⊕ Fi⊕ Fj ⊕ Fk,
i2 = a, j2 = b ∈ F ∗, ij = −ji = k be a quaternion algebra over F .

Let v1, ..., vn : F ↪→R be the real archimedean places of B and write
B ⊗Q R = B ⊗F F ⊗Q R =

⊕
v(B ⊗F Rv) = M2(R) r... M2(R)

⊕
H⊕ s...

⊕H, n = r + s.

Let n : B∗−→F ∗ be the reduced norm, which coincides with det on
any matrix representation. Let B1 = {b ∈ B∗ : n(b) = 1}, which
may be regarded as an algebraic group over F because it is given by a
polynomial equation in F [x1, x2, x3, x4]. Let GB = ResF/QB1, which as
algebraic group over Q such that G(K) = (B⊗Q K)1 for any extension
field K/Q. In particular, GB(R) = SL2(R)× r... ×SL2(R)×H1× s... ×H1.

Let O be a ring of integers of B: a subring of B of rank 4 over the
ring of integers OF of F . Let O1 ⊂ B1 the subgroup of elements of
reduced norm 1. This is a discrete subgroup of GB(R) and according
to Definition 2.2.3, it is an arithmetic subgroup of G = SL2(R)× r...
×SL2(R) because the kernel of GB(R) � G is compact. Note that
Aut(D), where we let

D = H1× r... ×H1.

By the theorem of Baily-Borel D(Γ) this is a quasi-projective algebraic
variety.

• If B ' M2(F ), there are unipotent elements in Γ and D(Γ) is not
compact.
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If F = Q, Γ ⊂ SL2(Z) and X = D(Γ)∗ = D(Γ)∪{∞1, ...,∞h} is a
modular curve. Prominent examples are the congruence subgroups
Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z), giving raise to the modular
curves X(N) � X1(N) � X0(N) � X(1) = P1

C.

If F 6= Q, D(Γ)∗ is called a Hilbert(-Blumenthal) modular variety,
a singular projective variety of dimension n = [F : Q]. The dif-
ference with the case F = Q is that now PGL2 is not a quotient
of GB over Q and we can apply Remark 2.3.2: the singular locus,
which is contained in D(Γ)∗ \D(Γ) has codimension ≥ 2.

• If B 6' M2(F ), there are no unipotent elements in Γ and D(Γ) =
D(Γ)∗ is already a projective variety of dimension r. It is smooth
unless Γ has torsion. Prominent examples are Shimura curves
XD attached to a maximal order O in the quaternion algebra B
over Q of discriminant D = p1 · · · p2d, and their covers X(D, N) �
X1(D, N) � X0(D, N) � XD, for any integer N ≥ 1, (D, N) = 1.
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Chapter 3

Shimura varieties

3.1 Connected Shimura varieties

Definition 3.1.1. A connected Shimura datum is a pair (G, D = {h})
where

• G is a semisimple algebraic group over Q.

• h : S1−→Gad
R is a homomorphism such that

SV1: Only the characters 1, z and z−1 = z̄ occur in the adjoint repre-
sentation of S1 on V = Lie(Gad)C,1

SV2: Ad(h(−1)) is a Cartan involution on Lie Gad
R ,

SV3: There exists no factor H of Gad over Q such that H(R) is compact.

• D = {g · h · g−1}g∈Gad(R)0 ⊂ Hom(S1, Gad
R ).

Let (G, D) be a connected Shimura datum. Write

Gad(R) ∼ G1 × ...×Gr ×H1 × ...×Hs

as a product2 of simple real Lie groups, and label them so that Gi are non-
compact and Hj are compact.

1That is, V = V 0⊕V +⊕V − in such a way that for any z ∈ S1 we have Ad h(z)·v0 = v0,
Ad h(z) · v+ = z · v+, Ad h(z) · v− = z−1 · v− for any v0 ∈ V 0, v+ ∈ V +, v− ∈ V −.

2This is an isomorphism up to a finite group, and the factors Gi, Hj correspond to the
decomposition of g into simple Lie algebras.

29
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By SV3 we have that r ≥ 1: otherwise G(R) would be compact.
If we write h = (h1, ..., hr+s), we know by SV2 that si = Ad(hi(−1)) 6= Id

for the factors Gi.
3

For i = 1, ..., r, let Ki = Ksi
⊂ Gi,0 and Di = Gi,0/Ki be the irreducible4

hermitian symmetric domain attached to (Gi, si).
The Di are indeed hermitian thanks to the existence of hi satisfying

SV 1, 2: hi(S
1) lies in the compact group Ki because the elements obviously

commute with h(−1).
Moreover, hi(S

1) is contained5 in the centre of Ki and thus there is an
integrable complex structure J on Di (cf. the discussion in p. 12, 13).

The domain Di is naturally identified with the Gi,0-conjugacy class Di =
{ghig

−1 : g ∈ Gi,0} ⊂ Hom(S1, Gad
i ) of hi. The one-to-one correspondence is

Di = Gi,0/Ki
'−→ Di

g 7→ ghig
−1

This allows us to regard D =
∏

Di as a product of irreducible hermitian
domains and there is a natural surjective map

Gad(R)0−→ Aut(D)0

whose kernel is H1,0 × ...×Hs,0, which is compact.
Let Γ ⊂ Gad(Q)0 be6 an arithmetic subgroup of Gad. It follows from

Definition 2.2.3 that the image Γ̄ of Γ in Aut(D) is again an arithmetic
group.

Moreover, since the kernel of Γ−→Γ̄ is finite (being discrete in a compact
group), if Γ is torsion-free we then have that Γ ' Γ̄ and Γ\D ' Γ̄\D is a
smooth algebraic variety. If Γ′ ⊂ Γ, we obtain regular maps D(Γ′)−→D(Γ)
of algebraic varieties (by Borel’s Theorem 2.3.1).

3This implies in particular that all three characters 1, z, z−1 do actually occur in the
representation of S1, because if only 1 appeared, Gi would be compact. By the way, the
converse is also true (see Milne 1.17(a)): for Hj , sj = Id.

4Di are irreducibles. See my comment in p.11 previous to Remark 1.2.5 or Milne’s
Lemma 4.7.

5If k ∈ Ki, we need to show that hk := khk−1h−1 = 1 ∈ Hom(S1, Gad
i ), where we

already know that hk(−1) = 1. But then hk factors through S1
2

→ S1 and the only
possible characters that may occur are z2Z. Since we only allow 1, z and z−1, we obtain
that hk = 1.

6By Gad(Q)0 we mean Gad(Q) ∩Gad(R)0.
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Also, any g ∈ Gad(Q)0 defines a holomorphic map g : D−→D and in-
duces a regular morphism between algebraic varieties

g : D(Γ)−→D(gΓg−1).

Let π : G−→Gad denote the natural projection of algebraic groups.

Definition 3.1.2. Let (G, D) be a connected Shimura data. The connected
Shimura variety Sh0(G, D) is the inverse system of locally symmetric varieties
D(Γ), where Γ runs over the congruence subgroups of G(Q)0 such that7 the
image in Gad(Q)0 is torsion-free.

For a given such congruence subgroup Γ, we also denote Sh0
Γ(G, D) =

D(Γ). For a compact open subgroup K ⊂ G(Af ), Proposition 2.2.2 shows
that Γ = K ∩G(Q)0 is congruence and we also set Sh0

K(G, D) = D(Γ).

Many examples are already obtained by those mentioned at the end of
Chapter II.

Remark 3.1.3. Let Γ̃ ⊂ Gad(Q)0 be an arithmetic subgroup. As it shown
in Milne’s easy Lemma 4.12, π−1(Γ̃) ⊂ G(Q)0 is congruence if and only if Γ̃
contains the image π(Γ) of a congruence subgroup Γ ⊂ G(Q)0. But usually
the map π : G(Q)0→Gad(Q)0 is not surjective, and the family

{π(Γ) : Γ ⊂ G(Q)0 congruence} ⊂ {Γ̃ ⊂ Gad(Q)0 : Γ̃ ⊇ π(Γ), Γ congruence}

is smaller than the latter. A more general family of varieties is thus obtained
when considering this second family of groups.

A semisimple group G over a field k is said to be simply connected if any
isogeny G′→G with G connected is an isomorphism. With this definition,
SL2 is simply connected, whereas PGL2 is not simply connected because it
admits the isogeny GL2 →PGL2.

The Strong Approximation Theorem asserts that if G is a semisimple,
simply connected algebraic group over Q of non compact type, then G(Q) is
dense in G(Af ).

8

7By G(Q)0 we mean those elements of G(Q) that map to Gad(Q)0.
8For instance, G = Gm and PGL2 are not simply connected, and it can be checked

that Q∗ ⊂ A∗
f is not dense, nor it is PGL2(Q) in PGL2(Af ).
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Proposition 3.1.4. Let (G, D) be a connected Shimura datum with G simply
connected. Let K be a compact open subgroup of G(Af ) and let Γ = K∩G(Q).
There is a homeomorphism

Γ\D '−→ G(Q)\D ×G(Af )/K
x 7→ (x, 1)

In the proposition, G(Q) acts on D × G(Af ) on the left, and K acts on
G(Af ) on the right (and trivially on D): for (x, {g`}) ∈ D×G(Af ) the action
described by g ∈ G(Q), k ∈ K is

g · (x, {g`}) · k = (gx, g{g`}k).

Proof. Since G(Q) is dense in G(Af ) and K is open, G(Af ) = G(Q) ·K.9

Thus every element in G(Q)\D×G(Af )/K is represented by (x, 1) for some
x ∈ D and this shows that our map is surjective. For x, x′ ∈ D, we have
[x, 1] = [x′, 1] if and only if there exists g ∈ G(Q)∩K = Γ such that gx = x′:
our map is a bijection of sets.

Since G(Af )/K is discrete because K is open, the map D−→D×(G(Af )/K),
x 7→ (x, [1]) is a homeomorphism between D and its image, which is open in
D ×G(Af )/K. From this a routine exercise shows that the quotient map

Γ\D−→G(Q)\(D × (G(Af )/K))

is bi-continuous. 2

Remark 3.1.5. As K runs among compact open subgroups of G(Af ), the
inverse limit of Sh0

K(G, D) is G(Q)\D×G(Af ), something which contains D
and may be regarded as a kind of completion of it. We will not prove this.

3.2 Shimura varieties

Alternative definition of connected Shimura datum.
The exact sequence of real Lie groups

1→R∗ t7→t−1

−→ C∗ z 7→z/z̄−→ S1→ 1

9If {g`} ∈ G(Af ), for any open set {g`} ∈ U there exists g ∈ G(Q) such that g ∈ U .
For U = {g`} ·K this implies that {g`} = g · k for some k ∈ K.
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arises from the exact sequence of algebraic groups

1→Gm
w−→ S−→U1→ 1,

where S = ResC/RGm and U1 denotes simply the quotient of tori S/Gm.
A connected Shimura datum can be alternatively defined to be a pair

(G, D = {h}), where G and D are as in Definition 3.1.1 except that

h : SR−→Gad
R

is a homomorphism of real algebraic groups satisfying the conditions

SV1: Only the characters 1, z/z̄ and z̄/z occur in the representation of SR
on Lie(Gad)C,

SV2: Ad(h(i)) is a Cartan involution on Lie Gad
R ,

SV3: There exists no factor H of Gad over Q such that H(R) is compact.

Following this approach, we define (non-connected) Shimura varieties.

Definition 3.2.1. A Shimura datum is a pair (G, D = {h}) where

• G is a reductive algebraic group over Q.

• h : SR−→GR is a homomorphism of algebraic groups over R such that

SV1: Only the characters 1, z/z̄ and z̄/z occur in the representation of
SR on Lie(Gad)C,

SV2: Ad(h(i)) is a Cartan involution on Lie Gad
R ,

SV3: There exists no factor H of Gad over Q such that H(R) is compact.

• D = {g · h · g−1}g∈GR ⊂ Hom(S1, GR).

Note that we extend the definition to arbitrary reductive algebraic groups
over Q. Another remarkable difference in our definition is that D is the
conjugation class of h under the possibly non-connected10 real Lie group GR.

10A theorem of Cartan asserts that if G is reductive, G(R) has finitely many connected
components for the real topology. In fact, a more powerful theorem of Whitney proves
that the set of real points of an algebraic variety over R has finitely many connected
components.
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Proposition 3.2.2. Let (G, D) be a Shimura datum. Let D0 be a connected
component of D and K ⊂ G(Af ) be a compact open subgroup. Then

• The set G(Q)0\G(Af )/K is finite. Let C be a set of representatives of
the double coset.

• There is an homeomorphism⋃
c∈C Γc\D0

'−→ G(Q)\D ×G(Af )/K
x 7→ (x, cx),

where Γc = c ·K · c−1 ∩G(Q)0 and cx denotes the connected component
to which x belongs.

Proof. In order to prove the first item, it suffices to show that
G(Q)\G(Af )/K is finite, because G(Q)0\G(Q) ↪→ Gad(R)0\Gad(R) is al-
ready finite. If G is semisimple and simply connected, we already showed
that G(Q)\G(Af )/K is finite: we actually saw that the cardinality is 1. We
will not explain here why the finiteness statement is also true in the general
case (cf. [3, p. 48, 50]).

The second item follows similarly as in Proposition 3.1.4. 2

Example 3.2.3. • G = GL2,

h : SR→ GL2,R, a + bi 7→
(

a b
−b a

)
,

D = {hg := ghg−1}g∈GL2(R)

∼=−→ C \ R = H+
1 ∪H−

1 ,
g 7→ Fixed point p of hg(C∗) on C such that h(z) acts on the tangent
space of p as z/z̄ (and not as z̄/z).11

• B quaternion algebra over a totally real number field F , G = ResF/Q(B∗),

h(a + bi) = (

(
a b
−b a

)
, r...,

(
a b
−b a

)
, 1, ..., 1), D = H±

1 × r... ×H±
1 .

11The pair (GL2,H±
1 ) satisfies the conditions SV1, SV2, SV3. As for SV1, had :

C∗−→PGL2(R) factors through the circle unit U1 by means of the map

u : U1→PGL2(R)0 = PSL2(R), a + bi 7→ ±
√

a + bi = ±(x + yi) 7→
(

x y
−y x

)
.

The action of had(C∗) ⊂ PSL2(R) on the Lie algebra sl2(R) = so2(R) ⊕ Ti(H1) is trivial
on the first factor, and acts on the second through the character z/z̄ = a+bi

a−bi , because

d(τ 7→ aτ+b
−bτ+a )|i = a(−bτ+a)+b(aτ+b)

(−bτa)2 |i
= a2+b2

(a−bi)2 = z/z̄. Hence the only characters that

occur in Lie(G(C)ad) are 1, z/z̄ and z̄/z.
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• G = T a torus over Q, h : S−→T any morphism.
Since T ad = {1}, conditions SV1, 2, 3 hold trivially true.
D = {x}, a single point.
For any compact open subgroup K ⊂ G(Af ),

ShK(T, x) = T (Q)\{x} × T (Af )/K ' T (Q)\T (Af )/K,

a finite set of points by Proposition 3.2.2 -note that T (Q)0 = T (Q).

Definition 3.2.4. Let (G, D) be a Shimura data. The Shimura variety
Sh(G, D) is the inverse system ShK(G, D) = G(Q)\D × G(Af )/K, where
K runs among compact open subgroups of G(Af ) such that the image of all
congruence subgroups Γc = cKc−1 ∩ G(Q)0 ⊂ G(Q) in Gad(Q) are torsion
free.

The Shimura variety Sh(G, D) comes equipped with a right action of
G(Af ). Indeed, if g = {g`} ∈ G(Af ), there is a natural morphism12

Tg : ShK(D, G) −→ Shg−1Kg(D, G)
(x, a) 7→ (x, ag)

Remark 3.2.5. Write C = {c1, ..., ch}. Any element of ShK(D, G) can be
written as (x, ci) for some x ∈ D, 1 ≤ i ≤ h. An element g ∈ G(Af ) induces
a permutation i 7→ g(i) on {1, ..., h} as follows: since G(Af ) =

⋃
G(Q)0ciK,

cig = γcg(i)k for some γ ∈ G(Q)0 and k ∈ K. We then have that Tg maps
the connected component Γci

\D to Γcg(i)
\D. More precisely, Tg(x, ci) =

(x, cig) = (x, γcg(i)k) = γ(γ−1x, cg(i))k ≡ (γ−1x, cg(i)).

The weight homomorphism and additional axioms.
Recall that exact sequence of tori

1→Gm
w−→ S−→U1→ 1.

Let (G, D) be a Shimura datum. An element of D is a homomorphism
h : SR−→GR that factors through U1. When we restrict h to Gm,R = R∗,
h(r) must act trivially on Lie(GR)⊗ C for any r ∈ R∗, because it lies in the
kernel of the above exact sequence. Since the only elements of G(R) which

12It is an easy exercise that these maps are well defined.
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act trivially by the adjoint representation are those lying in the center, we
obtain that h(r) ∈ Z(R).

Hence h|Gm does not depend of the choice of h ∈ D and we can define the
weight homomorphism of (G, D) to be

ω : Gm,R −→ GR
r 7→ 1/h(r)

Note that both Gm,R and GR are the sets of real points of algebraic groups
over Q. Since ω is a morphism of algebraic groups, it must actually be defined
over some finite extension of Q. Together with the axioms SV1, SV2 and
SV3, sometimes the Shimura datum satisfies some or all of the following
further axioms:

SV4: The weight homomorphism ω is rational, that is, it is defined over Q,

SV5: The group Z(Q) is discrete in Z(Af ),

SV6: The torus Z0 is split over a CM-field, that is, over a totally imaginary
quadratic extension of a totally real number field.

3.3 The Siegel modular variety

Let (V, Ψ) be a symplectic space over Q of dimension 2n, for some n ≥ 1.
That is, a vector space over Q equipped with an alternating non-degenerate

bilinear form Ψ : V × V
Ψ−→ Q.

Define G = GSp(V, Ψ) ⊂ GL(V ) to be the algebraic group of transfor-
mations of V preserving Ψ up to scalar, so that

G(Q) = {g ∈ GL(V ) : Ψ(gu, gv) = ν(g)Ψ(u, v)}

for all u, v ∈ V and some ν(g) ∈ Q∗.13 Define S = Sp(V, Ψ) by the exact
sequence

1→S→G
ν→ Gm.

The center of G is Gm, Gad = S/{±1} and Gder = S.

13One checks that automatically ν defines a homomorphism ν : G→Gm.
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A symplectic complex structure J on (V (R), Ψ) is an endomorphism J ∈
S(R) such that J 6= Id, J2 = −Id. For a given J , the bilinear form

ΨJ : V (R)× V (R) −→ R
(u, v) 7→ Ψ(u, Jv)

is symmetric. We say that J is positive (negative) if ΨJ is positive (negative)
definite.

Let D = D+ ∪D− be the set of positive or negative symplectic complex
structures on V (R). The group G(R) acts on D by (g, J) 7→ gJg−1. The
stabilizer of D+ in G(R) is its identity’s connected component G(R)0 = {g ∈
G(R) : ν(g) > 0}. One easily shows also that G(R) acts transitively on D,
and S(R) acts transitively on D+.

Attached to any J ∈ D there is the morphism14

hJ : C∗ −→ G(R)
z = a + bi 7→ a + bJ.

Since hgJg−1 = ghJg−1 for any g ∈ G(R), there is a natural identification

D ↔ {G(R)− Conjugation class of hJ : C∗→G(R)}.

Lemma 3.3.1. The Shimura datum (G, D) satisfies the axioms SV1, SV2
and SV3.

Proof. SV1: Only the characters 1, z/z̄ and z̄/z occur in the represen-
tation of SR on Lie(Gad)C :
Write V (C) = V + ⊕ V − as a direct sum of ±i-eigenspaces under the action
of J . Then hJ(z) acts on V + as multiplication by z, and it acts on V − as
multiplication by z̄. Thus15

End(V (C)) ' End(V +)⊕ Hom(V +, V −)⊕ Hom(V −, V +)⊕ End(V −)
ad(hJ(z)) 7→ (1, z/z̄, z̄/z, 1).

14Indeed, a + bJ ∈ G(R), with ν(a + bJ) = a2 + b2 = |z|2.
15In order to check this, the exercise is a generalization from PSL2 (as in example

3.2.3) to the algebraic group of symplectic similitudes of a vector space of arbitrary even

dimension. Indeed, the matrix expression of hJ(z) in n× n-blocks is
(

z 0
0 z̄

)
, which is a

complex form of
(

a b
−b a

)
.
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SV2: Ad(h(i)) is a Cartan involution on Lie Gad
R : It is an involution because

ad(h(i)) : Gad(R)→Gad(R), g 7→ JgJ−1 and J2 = −Id. It is Cartan
because the subgroup of fixed elements in G(R) is {g ∈ G(R) : Jg = gJ} =
{g ∈ G(R) : ΨJ(gu, gv) = Ψ(u, v)} for all u, v ∈ V (R). Since ΨJ is positive
definite, the subgroup is compact.

SV3: There exists no factor H of Gad over Q such that H(R) is compact:
Indeed, Gad is simple over Q and Gad(R) itself is not compact (a factor of it
is Siegel’s upper half space Hn). 2

We define the Siegel modular variety attached to (V, Ψ) to be the Shimura
variety Sh(G, D) associated to the Shimura datum (G, D).

3.3.1 Modular interpretation

Let (V, Ψ) be a symplectic space over Q of dimension 2n, for some n ≥ 1 as
before. Let (G, D) be the Shimura datum attached to (V, Ψ) and K ⊂ G(Af )
a compact open subgroup. Let ShK(G, D) be the Shimura variety attached
to (G, D) and K.

Let A/C be a complex abelian variety of dimension n. There exists a
lattice Λ ⊂ T0(A) of rank 2n over Z such that A(C) ' T0(A)/Λ. Under this
isomorphism, there is a natural identification H1(A, Z) = Λ.

The isomorphism V (R) ' Λ ⊗ R ' T0(A) induces a complex structure
J on the real vector space V (R).

Definition 3.3.2. A polarization on A is a non-degenerate alternating form
s : Λ × Λ−→Z such that s(Ju, Jv) = Ψ(u, v) for all u, v ∈ V (R) and
sJ(u, v) := s(u, Jv) is positive definite.

Let V (Af ) = Λ⊗Z Af ' A2n
f . Let Vf (A) = H1(A, Af ) ' Λ⊗Af the Tate

module of A.
Let AV0 be the category of abelian varieties up to isogeny and let MK(G, D) =

{A, s, η ·K} be the set of triples where

• A is a complex abelian variety of dimension n, A(C) = V (R)/Λ,

• s is an alternating form on H1(A, Z) such that s or −s is a polarization
on A,

• η : V (Af )
'−→ Vf (A) such that η∗(Ψ) = a · s for some a ∈ A∗

f .
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Two triples (A, s, η ·K), (A′, s′, η′ ·K) are isomorphic if there is an isogeny
f : A→A′ such that f ∗(s′) = q · s, q ∈ Q∗ and f ∗(η′K) = ηK.

Theorem 3.3.3. The Shimura variety ShK(G, D) is the coarse moduli space
over C that classifies triples in MK(G, D) up to isomorphism. In particular,
there is a canonical bijection of sets

MK(G, D)/ ' ↔ G(Q)\D ×G(Af )/K.

3.4 Shimura varieties of Hodge type

3.4.1 Hodge structures

A Hodge estructure is a real vector space V together with a decomposition
of V (C) into complex vector subspaces

V (C) = ⊕V p,q, (p, q) ∈ Z× Z : V̄ p,q = V q,p.

The type of the Hodge structure is the set of pairs (p, q) for which V p,q 6=
{0}. The weight decomposition of a Hodge structure is the decomposition

V = ⊕n∈ZVn

where Vn is the real vector subspace of V such that Vn(C) = ⊕p+q=nV
p,q. If

V = Vn, the Hodge structure is said to be of weight n.
A rational Hodge structure is a vector space V over Q together with a

Hodge structure for V (R) such that Vn is defined over Q for any n ∈ Z.

Example 3.4.1. • Let V be a real vector space. To give a complex
structure J on V is equivalent to give a Hodge structure V (C) = V −1,0⊕
V 0,−1 of type (−1, 0), (0,−1) on V .

• Let Q(r) denote the rational Hodge structure V = Q, V (C) = C−r,−r,
the unique possible rational Hodge structure on Q of weight −2r.

• Let X be a non-singular projective variety. Let V = Hn(X, Q), a vector
space over Q. Then V admits the following Hodge structure of weight
n: V (C) = ⊕p+q=nH

q(X, Ωp).

A morphism of Hodge structures t : V = ⊕(p,q)V
p,q−→W = ⊕(p,q)W

p,q is
a linear map t : V →W such that t(V p,q) ⊆ W p,q.
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3.4.2 Shimura varieties of Hodge type and its modular
interpretation

Definition 3.4.2. A Shimura datum (G, D) is of Hodge type if there exists a
symplectic vector space (V, Ψ) over Q and a monomorphism G ↪→ GSp(V, Ψ)
such that D maps to D(V,Ψ). The Shimura variety Sh(G, D) is then called of
Hodge type.

Recall the character ν : GSp(V, Ψ)−→Gm. We shall still denote ν : G ↪→
GSp(V, Ψ)−→Gm. For any r ∈ Z, denote (also) by Q(r) the vector space Q
with the action (g, q) 7→ ν(g)r · q.

Proposition 3.4.3. Let (G, D) be a Shimura datum of Hodge type, (G, D) ↪→
GSp(V, Ψ) where V is a vector space over Q of dimension 2n. Then there
exist non-zero multilinear maps

ti : V× 2ri)... ×V −→Q(ri), i = 1, ..., k

such that for any field extension k/Q,

G(k) = {g ∈ GLk(V ) : ti(gv1, ..., gv2ri
) = ν(g)ri · ti(v1, ..., v2ri

)}

for all vj ∈ V (k), i = 1, ..., k.

That is, we demand to g to be equivariant with respect to the actions of
G on V and Q(ri), respectively.

If J ∈ D is a complex structure on V (R), it induces a Hodge structure of
weight −1 on V (R). For any r ≥ 1, there is a natural16 Hodge structure of
weight −r on V (R)⊗r. The map ti : V ⊗2ri→Q(ri) is a morphism of Hodge
structures of weight −2ri.

Let K ⊂ G(Af ) be a compact open subset. Let MK(G, D) be the set of
triples (A, {si}i=0,...,k , η ·K) where

• A is a complex abelian variety of dimension n,

• s0 is an alternating form on H1(A, Z) such that s0 or −s0 is a polariza-
tion on A,

16V (R)⊗r = V (R)−r,0 ⊕ V (R)−r+1,−1 ⊕ ...⊕ V (R)0,−r.
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• si ∈ H2ri(A, Q) ' Hom(∧2riΛ, Q) such that V ⊗2ri→∧2ri V →Q(ri) is
a morphism of Hodge structures,17 for i = 1, ..., k,

• η : V (Af )
'−→ Vf (A) such that η∗(Ψ) = a · s for some a ∈ A∗

f , and
η∗(ti) = si for i = 1, ..., k,

satisfying the following condition:
There exists an isomorphism α : H1(A, Q) ' V of vector spaces over Q

such that α∗(Ψ) = q · s for some q ∈ Q∗, α∗(ti) = si for i = 1, ..., k, and
α∗(J) ∈ D(V,Ψ).

18

Theorem 3.4.4. The Shimura variety ShK(G, D) is the coarse moduli space
over C that classifies triples in MK(G, D) up to isomorphism. In particular,
there is a canonical bijection of sets

MK(G, D)/ ' ↔ G(Q)\D ×G(Af )/K.

3.4.3 Shimura varieties of PEL type

Let (B, ∗) be a simple algebra over Q together with a positive involution
∗ : B→B: an anti-involution such that TrB⊗QR/R(b∗·b) > 0 for all b ∈ B\{0}.
Let F denote the center of B and F0 = {b ∈ F : b∗ = b}.

Assume that for every embedding ϕ : F0 ↪→ Q̄, (B⊗F0 Q̄, ∗) is isomorphic
to a product of algebras with involution either of the form

(A) Mn(Q̄)×Mn(Q̄), (b1, b2)
∗ = (bt

2, b
t
1),

or of the form
(C) Mn(Q̄), b∗ = bt,

but not a mixture of them.

17The map s : V ⊗2r→Q(r) is a morphism of Hodge structures if and only if
s((V ⊗2r)p,q) = 0 for all pairs (p, q) 6= (−r,−r), because the type of Q(r) is {(−r,−r)}. In
other words: if we write H = H2r(A, Q) ' ∧2rV , H is endowed with a Hodge structure of
weight 2r (see Example 3.4.1) and we require that s ∈ H2r(A, Q)∩H(C)r,r ⊂ H2r(A, C).
The Hodge conjecture for abelian varieties asserts that all elements in this intersection are
the cohomology classes of algebraic cycles on A with coefficients in Q. This is known for
r = 1.

18J is the complex structure on H1(A, R) induced by the isomorphism with T0(A). We
require that α∗(J) is a symplectic complex structure on (V,Ψ) such that Ψα∗(J) is positive
or negative definite.
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Let (V, Ψ) be a (B, ∗)-module: a vector space over Q together with an
action B ⊂ End(V ) and a non-degenerate alternating bilinear form

Ψ : V × V →Q, Ψ(bu, v) = Ψ(u, b∗v), u, v ∈ V, b ∈ B.

Let G ⊂ GL(V ) be the algebraic group over Q such that for any field
extension k/Q:

G(k) = {g ∈ AutB(V ⊗ k) : Ψ(gu, gv) = µ(g)Ψ(u, v)}

for all u, v ∈ V ⊗ k and some µ(g) ∈ k∗.
Let G′ = {g ∈ G : µ(g) = 1, det(g) = 1} ⊂ G.

Proposition 3.4.5. The algebraic group G is reductive and G′ is semisimple
and simply connected.19

In fact, we have

G′
Q̄ ' SLd

m if B is of type A;

G′
Q̄ ' Spd

m if B is of type C;

where m = dimF (V )/
√

[B : F ] and d = [F0 : Q].

Proposition 3.4.6. There exists a (unique) G(R)-conjugacy class D of ho-
momorphisms h : S−→GR such that each h induces a symplectic complex
structure J = h(i) on V (R) such that ΨJ is positive or negative definite.

The Shimura datum (G, D) satisfies the axioms SV1, SV2, SV3.

The corresponding Shimura varieties Sh(G, D) are called of PEL-type (A
or C).

Let b1, ..., bk be a set of generators of B as a Q-algebra and let

tbi
: V × V −→ Q

(u, v) 7→ Ψ(u, bv).

Then (G, D) is the Shimura datum of Hodge type associated to (V, Ψ, {tbi
}).

Let K ⊂ G(Af ) be a compact open subset. Let MK(G, D) be the set of
quadruples (A, ι, s, η ·K) where

19There is a remaining possible type for (B, ∗), which is usually called BD. In this case,
G is not connected, but its connected component is reductive. The group G′ is a special
orthogonal group.
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• A is a complex abelian variety,

• ι : B ↪→ End(A)⊗Q,

• s is an alternating form on H1(A, Z) such that s or −s is a polarization
on A,

• η : V (Af )
'−→ Vf (A) such that η∗(Ψ) = a · s for some a ∈ A∗

f .

satisfying the following condition:
There exists a B-linear isomorphism α : H1(A, Q) ' V of vector spaces

over Q such that α∗(Ψ) = q · s for some q ∈ Q∗.

Theorem 3.4.7. The Shimura variety ShK(G, D) is the coarse moduli space
over C that classifies quadruples in MK(G, D) up to isomorphism.
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Chapter 4

Canonical models of Shimura
varieties

4.1 The reciprocity map for abelian exten-

sions of number fields

Let E be a number field and let Eab be the maximal abelian extension of
E inside a fixed algebraic closure of E. Global class field theory provides a
continuous surjective homomorphism

recE : A∗
E � Gal (Eab/E)

which is called the Artin reciprocity map and it is such that for any finite
abelian extension E ′/E of E, we have a commutative diagram:

E∗\A∗
E

recE

� Gal (Eab/E)
↓ 	 ↓

E∗\A∗
E/N(A∗

E′)

recE′/E
'−→ Gal (E ′/E)

The identity component of A∗
E (and thus in particular the identity com-

ponent of
∏

v|∞ E∗
v) lies in the kernel of the reciprocity map recE

1.

Hence, if E is totally imaginary, recE factors through A∗
E,f .

1because Gal (Eab/E) is totally disconnected and 1 ∈ Gal (Eab/E) is its own connected
component.

45
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When E = Q, recQ factors through {±} × AQ,f and Qab =
⋃

N≥1 Q(ζN),

where ζN is a primitive N th-root of the unity.
There is a commutative diagram

Q∗\({±1} × A∗
Q,f )

recQ
� Gal (Qab/Q)

↓ 	 ↓

Q∗\A∗
Q/N(A∗

Q(ζN )) = (Z/NZ)∗
a7→{ζN 7→ζa−1

N }
'−→ Gal (Q(ζN)/Q)

4.2 Abelian varieties with complex multipli-

cation

A CM-field is a totally imaginary quadratic extension E of a totally real
number field F . Let [E : Q] = 2g for some g ≥ 1. Each of the g embeddings
F ↪→ R extends to two conjugate embeddings ϕ, ϕ̄ : E ↪→ C. A CM-type Φ
for E is a subset Φ = {ϕ1, ..., ϕg} ⊂ Hom(E, C) such that Hom(E, C) = ΦtΦ̄,
that is, a full set of representatives of embeddings E ↪→ C up to complex
conjugation.

An abelian variety of CM-type (E, Φ) is an abelian variety A/C of di-
mension g such that there exists a monomorphism

i : E ↪→ End0(A)

such that for any a ∈ E, we have Tr(a|T0(A)) =
∑

ϕ∈Φ ϕ(a).2

Definition 4.2.1. Let (E, Φ) be a CM-type. The reflex field of (E, Φ) is the
number field Ẽ characterized for any of the following equivalent conditions:

• Ẽ is the fixed field of {σ ∈ Gal (Q̄/Q) : Φσ = Φ}.

• Ẽ = Q(
∑

ϕ∈Φ ϕ(a) : a ∈ E).

2For any i : E ↪→ End0(A), there always exists a CM-type Φ for E such that A is of
CM-type (E,Φ). Indeed, write A = C/Λ. Then Λ⊗Q is an E-vector space of dimension 1.
We have that Λ⊗C is a 1-dimensional module over E⊗C ' ⊕ϕ∈Hom(E,C)Cϕ, where E acts
on Cϕ through ϕ. Since Λ⊗R = T0(A) and it is well known that Λ⊗C = T0(A)⊕T0(A),
we obtain that any a ∈ E acts on T0(A) as diag(ϕ1(a), ..., ϕg(a)) for some CM-type
Φ = {ϕi, ..., ϕg}.
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• It is the smallest subfield of Q̄ for which there exists an Ẽ-vector space
V together with a monomorphism E ↪→ EndẼ(V ) for which Tr(a) =∑

ϕ∈Φ ϕ(a) for all a ∈ E.

Observe that when E/Q is a Galois extension, then Ẽ ⊆ E by the second
definition.

As it follows from the third definition of Ẽ, if (A, i)/k is an abelian variety
of CM-type (E, Φ) defined over a number field k, then V = T0(A) is a k-
vector space for which Tr(a) =

∑
ϕ∈Φ ϕ(a) for all a ∈ E. Hence Ẽ ⊂ k for

any possible field of definition of A.
Note that in the definition above, V can also be regarded as an E-vector

space on which Ẽ acts. Under this point of view, for any a ∈ Ẽ we shall
denote TrE(a) and detE(a) for the trace and determinant of the E-linear
endomorphism a : V →V , v 7→ a · v.

Theorem 4.2.2 (Shimura-Taniyama). Let (A, i) be an abelian variety of
CM-type (E, Φ) and let σ ∈ Aut(C/Ẽ). For any idele s ∈ A∗

Ẽ,f
such that

recẼ(s) = σ|Ẽab, there exists a unique E-linear isogeny

α : A−→Aσ

such that
xσ = α (detAE,f

(s−1) · x), for all x ∈ Vf (A).

In particular, Theorem 4.2.2 asserts that the isogeny class of (A, i) is
defined over Ẽ.

4.3 The reflex field of a Shimura datum

Let (G, D) be a Shimura datum. For any subfield k ⊂ C, define

C(k) = G(k)\Homk(Gm, Gk),

that is, the set of co-characters of G defined over k up to inner conjugation
by elements in G(k).

The group Aut(C/k) naturally acts on C(k): cσ(a) := c(a)σ for any c ∈
C(k), a ∈ Gm(C∗) and σ ∈ Aut(C/k).

As an example, let x ∈ D and h : S−→GR be the associated morphism.
It induces

µx : C∗ → Gm,C = C∗ × C∗ −→ GC
z 7→ (z, 1) 7→ hC(z, 1)
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Note for any other point in D, the associated morphism is conjugated to
h and therefore µx ∈ C(C) is independent of the choice of x and we shall
denote the co-character as cD ∈ C(C). It can be seen that actually cD is
defined over a number field3.

Definition 4.3.1. The reflex field E(G, D) of the Shimura datum (G, D) is
the field of definition of cD as an element of C(Q̄), that is, the field fixed by
{σ ∈ Gal (Q̄/Q) : cσ

D ≡ cD ∈ C(Q̄)}.

Example 4.3.2. • (T, h) where T is a torus and h : S−→TR is any
morphism. Then E(T, h) is simply the field of definition of µh, because
it is the single element in its conjugacy class under T (C).

• Let (E, Φ), Φ = {ϕ1, ..., ϕg}, be a CM-type.
T = ResE/QGm, T (Q) = E∗, T (R) = (E ⊗Q R)∗ = C∗

ϕ1
× ...C∗

ϕg
.4

Define hΦ : S(R) = C∗→T (R), z 7→ (z, g..., z). Then

hΦ ⊗ C : S(C) = C∗ × C∗→T (C), z 7→ (z, g..., z, z̄, g..., z̄)

and

µh : C∗ → S(C) = C∗ × C∗ → T (C) = C∗
ϕ1
× ...C∗

ϕg
× C∗

ϕ̄1
× ...C∗

ϕ̄g

z 7→ (z, 1) 7→ (z, g..., z, 1, g..., 1).

Hence E(T, hΦ) is the field fixed by {σ ∈ Aut(Q̄/Q) : Φσ = Φ}, that
is, the reflex field Ẽ of (E, Φ) that we already defined.
At the level of Ẽ-rational points, we have µh : Ẽ∗→T (Ẽ) = (E⊗QẼ)∗.

• The Siegel modular variety. Let (V, Ψ) be a symplectic vector space
over Q of dimension 2n, G = GSp(V, Ψ), D = D+ ∪D− be the set of
positive or negative symplectic complex structures J on V (R).

Let V = W ⊕W̃ be a decomposition into totally isotropic vector spaces
over Q: Ψ(W, W ) = {0}, Ψ(W̃ , W̃ ) = {0}. Let W =< e1, ..., en >,
W̃ =< ẽ1, ..., ẽn > be symplectic basis and define J ∈ End(V ), J(ei) =
ẽi, J(ẽi) = −ei.

3See [3, Lemma 12.1].
4For any choice of g-inequivalent embeddings {ϕ1, ..., ϕg} we have an isomorphism

E ⊗Q R ' Cg, a⊗ r 7→ (ϕ1(a)r, ..., ϕg(a)r).
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We had hJ(a+bi) = a+bJ . Hence (hJ⊗C)(z1, z2) = (a1+b1J, a2−b2J)
and

chJ
: C∗ −→ GC ⊂ End(V (C)) = End(V + ⊕ V −)

z 7→ (hJ ⊗ C)(z, 1) =

(
z 0
0 1

)
,

where V +, V − are the ±i-eigenspaces under J .

Since the decomposition V = W⊕W̃ is defined over Q, the conjugation
class of chJ

remains invariant under the action of Aut(C/Q). Thus
E(G, D) = Q.

• Let (G, D) be the Shimura datum attached to a quaternion algebra B
over a totally real number field F .

h : S−→GR, h(a + bi) = (

(
a b
−b a

)
, r...,

(
a b
−b a

)
, 1, s..., 1).

Up to inner conjugation: hC(z1, z2) = (

(
z1 0
0 z2

)
, r...,

(
z1 0
0 z2

)
, 1, s..., 1).

µh : C∗ −→ GL2(C)× g=r+s... ×GL2(C)

z 7→ (z, 1) 7→ (

(
z 0
0 1

)
, r...,

(
z 0
0 1

)
, 1, s..., 1).

E(G, D) = Q̄{σ∈Gal (Q̄/Q):{∞1,...,∞r}σ={∞1,...,∞r}} ⊆ F

– If B = M2(F ), r = g, s = 0, dimC(D) = g, E(G, D) = Q.

– If B ⊗Q R ' M2(R)× g... ×M2(R), dimC(D) = g, E(G, D) = Q.

– If B ⊗Q R ' M2(R)×H g−1... ×H, dimC(D) = 1, E(G, D) = F .

• Let i : (G, D) ↪→ (G′, D′) be an inclusion of Shimura data (i.e. G ↪→ G′

is a monomorphism and i maps D to D′). Then there is a natu-
ral morphism of Shimura varieties Sh(G, D) ↪→ Sh(G′, D′) which is
a closed immersion (Deligne) and it is an easy exercise to show that
E(G, D) ⊇ E(G′, D′).

4.4 Canonical models of Shimura varieties

Let (G, D) be a Shimura datum.

Definition 4.4.1. A point x ∈ D is a special point if there exists a torus
T ⊂ G such that hx(C∗) ⊂ T (R).
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The pair (T, x) is also called a special pair and (T, x) ⊂ (G, D) is an
inclusion of Shimura data. Note that since hx(C∗) ⊂ T (R), we have thxt

−1 =
hx for any t ∈ T (R) and thus T (R) fixes the point x ∈ D. Almost conversely,
if T ⊂ G is a maximal torus and x ∈ D is a point fixed by the elements of
T (R), then h(C∗) ⊂ {g ∈ G(R) : gt = tg for all t ∈ T (R)} = T (R), because
T is its own centralizer in G; and hence (T, x) is a special pair.

Example 4.4.2. • G = GL2, D = H±
1 . The tori in GL2 are Gm

a 7→a·Id2
↪→

GL2 and T = ResE/QGm
i

↪→ GL2, for any embedding E
i

↪→ GL2(R) of
a quadratic field E/Q. Among these, only imaginary quadratic fields
provide special pairs (because only in this case we have T (R) = (E ⊗
R)∗ = C∗), and for each E

i
↪→ GL2(R), T (R) has exactly two fixed

points x, x̄ on H±
1 .

• G = ResF/Q(B∗), B a quaternion algebra over F . Embeddings E ↪→ B
of quadratic extensions E/F with at least one non-real archimedean
place provide special pairs (T, x).

Let (T, x) ⊂ (G, D) be a torus in (G, D). Let E(x) = E(T, x) be the field
of definition of µx, which is a finite extension of the reflex field E = E(G, D).5

Define the homomorphism

rx : A∗
E(x) −→ T (AQ)

π
� T (AQ,f )

s 7→
∏

σ:E(x)↪→Q̄ µx(s)
σ 7→ rx(s).

Definition 4.4.3. Let (G, D) be a Shimura datum and let K ⊂ G(AQ,f ) be
a compact open subgroup. A canonical model of ShK(G, D) is an algebraic
variety MK = MK(G, D) defined over E(G, D) with

MK(G, D)(C) ' ShK(G, D)

such that for any special pair (T, x) ⊂ (G, D) and any a ∈ G(Af ):

• (x, a) ∈MK(E(x))ab,

• (x, a)rec(s) = (x, rx(s
−1) · a) for any s ∈ A∗

E(x).

5Watch out that we still have not defined the notion of field of definition of a Shimura
variety, though clearly E will become a field over which Sh(G, D) admits a canonical
model and E(x) will turn out to be the field generated by the coordinates of the point
x ∈ Sh(G, D).
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Example 4.4.4. • (T, x) , K ⊂ T (Af ) , E = E(x) ,
ShK(T, x) = T (Q)\T (Af )/K.
A model over E of a finite set of points = Action of Gal (Ē/E) on it.
Define it through

Gal (Ē/E) � Gal (Eab/E) � Gal (HK/E)

recHK/E
'← E∗\A∗

E/K

by as := rx(s
−1) · a, a ∈ T (Af ), s ∈ A∗

E.

• (E, Φ) CM-type, T = ResE/QGm , E(hΦ) = Ẽ,
ShK(T, hΦ) = E∗\A∗

E,f/K.

The action of Ẽ∗\A∗
Ẽ,f

/K
rec' Gal (HK/Ẽ) on ShK(T, hΦ) is provided

by

as := rhΦ
(s−1) · a =

∏
σ:Ẽ↪→Q̄

µΦ(s−1)σ · a = detAE,f
(s−1) · a

for a ∈ A∗
E,f , s ∈ A∗

Ẽ,f
, as in the theorem of Shimura-Taniyama.6

Modular interpretation of the example: For T = ResE/QGm as
above, and any compact open subgroup K ⊂ T (Af ), ShK(T, hΦ) is a finite set
of points which can be regarded as a Shimura variety of PEL-type associated
to the commutative algebra E.

It is the moduli space of triples (A, ι, s, ηK) as in Section 3.4.3, where we
recall that (A, ι) is an abelian variety of CM-type (E, Φ) up to isogeny.

The automorphism group Aut(C/Ẽ) acts on the finite set ShK(T, hΦ)(C) =
{[A, ι, s, ηK]}:

(A, ι, s, ηK)σ = (Aσ, ισ : E ↪→ End(Aσ), sσ, ησ : V (Af )→Vf (A)→Vf (A
σ)).

Since σ fixes Ẽ one checks that (Aσ,ισ) is again an abelian variety of
CM-type (E, Φ).

6The first equality is the definition of rhΦ . The second equality follows by tracing
the definitions of µΦ, Ẽ and detE , but it is not immediate. Check the example E ⊂ C
imaginary quadratic, Φ = {ϕ} given by the inclusion: Then Ẽ = E and

µΦ : Ẽ∗ −→ T (Ẽ) = (E ⊗Q Ẽ)∗ = Ẽ∗ × Ẽ∗

s 7→ (s, 1).

The Galois action of Gal (Ẽ/Q) on T (Ẽ) is given by (z1, z2) = (z̄2, z̄1), so that T (Q) =
E∗ ι

↪→ T (Ẽ) as {(s, s̄) : s ∈ Ẽ}. Thus
∏

σ: Ẽ ↪→Q̄ µΦ(s)σ = (s, 1) · (1, s̄) = (s, s̄) = ι(s).
Since we can choose V = Ẽ = E, we also have detE(V ·s→ V ) = s, as we wished to show.
For general E, the details are those of the proof of Theorem 4.2.2 of Shimura-Taniyama.
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A reformulation of the main Theorem of Complex Multiplication 4.2.2
shows the following proposition:

Proposition 4.4.5. By means of the identification of sets

ShK(T, hΦ) = T (Q)\{x} × T (Af )/K
∼−→ {[A, ι, s, ηK]},

the Galois action induced on ShK(T, hΦ) is:

(x, a)σ = (x, rhΦ
(s−1) · a),

where σ|Ẽab = rec(s).

We are now able to state the main theorem of this chapter.

Theorem 4.4.6. Let (G, D) be a Shimura datum. For any compact open
subgroup K ⊆ G(Af ), there exists a unique canonical model MK(G, D) of
ShK(G, D) over E(G, D), up to (unique) isomorphism over E(G, D).

Outline of the proof for Shimura varieties of Hodge type.

We first discuss the case of Siegel modular varieties SK(G, D) attached
to a symplectic vector space (V, Ψ) of dimension 2n:

We already saw that the reflex field of (G, D) is E(G, D) = Q. Thus we
wish to prove that SK(G, D) admits a canonical modelMK/Q over Q.

Thanks to the moduli interpretation, we are able to describe an action of
Aut(C/Q) on the set of complex points SK(C).

Indeed, there is a one-to-one correspondence

SK(C) ↔ {[A, s, ηK]}

and Aut(C/Q) acts on it:

[A, s, ηK] 7→ [Aσ, sσ, ησK], for any σ ∈ Aut(C/Q).

Recall that we already saw that PEL-Shimura varieties are of Hodge type
and hence Shimura subvarieties of a Siegel modular variety.

In our case, we have that for any CM-type (E, φ) with [E : Q] = 2n, the
Shimura variety of PEL-type attached to (ResE/QGm, hΦ) is a subvariety of
SK . These are finite sets of points and they are special. Proposition 4.4.5
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above shows that the action of Aut(C/Q) on these special points on SK

behaves according to the rule required in the definition of a canonical model
for SK .

Almost conversely, any special point [A, s, ηK] ∈ SK(C) corresponds to
an abelian variety A/C such that End(A) = E1× ...×Em, where Ej are CM-
fields and

∑
[Ej : Q] = 2 dim(A) = 2n. Proposition 4.4.5 readily extends to

this more general case and hence we obtain that the action of Aut(C/Q) on
all special points of SK(C) is as it should according to Definition 4.4.3

Descent criteria. It remains left proving that the action of Aut(C/Q) on
SK(G, D) is a true Galois action on a certain algebraic variety MK/Q such
thatMK ⊗ C ' SK(G, D).

Let k be a field of characteristic 0 and let K/k be an algebraically closed
field containing k. Let X/K be an algebraic variety.

For any σ ∈ Aut(K/k) there is a well-defined algebraic variety Xσ and a
map of sets

X(K) −→ Xσ(K)
x 7→ xσ.

Locally at affine open subsets, Xσ is obtained from X by conjugating by
σ the defining polynomials of X. If x ∈ X(K), the coordinates of the point
xσ ∈ Xσ are the conjugate coordinates of x by σ.

Assume that X is equipped together with an action of Aut(K/k) on the
set X(K). Let us denote the action by (σ, x) 7→ σ(x) ∈ X(K).

For instance, if X0 is a variety over k, then σ(x) := xσ defines an action
of Aut(K/k) on X = X0 ⊗K.

Theorem 4.4.7. Let X be a quasi-projective variety over K together with
an action of Aut(K/k) on X(K) such that

• (Regularity) The morphism of sets

fσ : X −→ Xσ

x 7→ σ−1(xσ)

is a regular algebraic isomorphism.

• (Continuity) There exist points x1, ..., xn ∈ X(K) and a finitely gen-
erated extension L/k in K such that

– σ(xi) = xi for all σ ∈ Aut(K/L),
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– The only automorphism α ∈ Aut(X) fixing all xi simultaneously
is α = Id.

Then there exists a model X0 over k of X.

Theorem 4.4.7 applies to the Siegel modular variety SK = SK(G, D)/C
in order to show that it admits a model over Q:

• SK is a quasi-projective variety over C by Baily-Borel’s Theorem 2.3.1.

• Regularity: Checking this condition exploits the moduli interpreta-
tion of SK and uses the theory of local systems on topological manifolds
and families of abelian varieties. We refer the interested reader to [3,
p. 100-103].

• Continuity: Let x ∈ D be a special point. The real approximation
Theorem (cf. [4, Theorem 7.7]) asserts that for any connected algebraic
group over Q, G(Q) is dense in G(R). Hence, since D is a quotient of
G(R), the set of points {[x, a] : a ∈ G(Af )} ⊂ G(Q)\D × G(Af )/K is
dense in SK for the analytic and thus also the Zariski topology.

Hence only the trivial automorphism Id ∈ Aut(SK) fixes all points
{[x, a] : a ∈ G(Af )} simultaneously. It can be shown that Aut(SK) is a
finite group -recall we only consider K ⊂ G(Af ) such that the resulting
congruence groups are torsion free!. Therefore there exists a finite set
{[x, a1], ..., [x, an]} such that only α = Id fixes all them.

Finally, the main Theorem of Complex Multiplication implies that
[x, a1], ..., [x, an] are fixed by Aut(C/E(x)′), where E(x)′ denotes a fi-
nite abelian extension of E(x).

Hence SK admits a modelMK over Q, which is canonical in the sense of
Definition 4.4.3.

The proof of the existence of a canonical model for Shimura varieties of
Hodge type follows the same pattern, since they are subvarieties of Siegel
modular varieties and they also have a moduli interpretation in terms of
abelian varieties.

The main technical difficulty is the definition of the Galois action on the
Hodge tensors si on the abelian varieties A arising in the moduli interpreta-
tion. If the Hodge conjecture were true, any Hodge tensor s on A would be
the cohomology class c(Z) of an algebraic cycle Z on A and one could define
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sσ = c(Zσ). But the conjecture is not known to hold and Deligne succeeded
to give a definition of sσ not in terms of algebraic cycles - check [3, Theorem
14.13].
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