
Connected Shimura Varieties and Shimura Varieties

As before, S and S1 will denote the real algebraic groups for which S(R) = C× (S is sometimes
called the Deligne circle group) and S1(R) = {z : |z| = 1}, respectively (the usual circle group).

1. Connected Shimura Data and Connected Shimura Varieties

1.1 Congruence subgroups

1.2 Connected Shimura datum

Definition 1.1 (Connected Shimura datum). A connected Shimura datum is a pair (G, X+)
where G is a semi-simple algebraic group over Q and X+ is a Gad(R)+-conjugacy class of morphisms
h : S1

R → Gad satisfying the following axioms:

SV1: ∀h ∈ X+, only {z/z, 1, z/z} occur in the representation of S1(R) on Lie(Gad(R))C.

SV2: The involution Adh(i) is a Cartan involution.

SV3: Gad has no simple factor on which the projection of h is trivial.

As a baby case, we consider the classical modular curve:

Example 1.

1.3 Connected Shimura varieties

Definition 1.2 (Connected Shimura variety). A connected Shimura variety is the inverse system of
locally symmetric varieties (D(Γ))Γ where Γ runs over the arithmetic subgroups of Gad(Q)+ whose
inverse image in G(Q)+ is a congruence subgroup.

1.4 Shimura data of Hodge type

A Shimura datum (G, X) is of Hodge type if there exists a symplectic space (V, ω) and a closed
embedding G ↪→ GSp(V ) that carries X ↪→ X(V, ω). Here, X(V, ω) is the space of Hodge structures
of type {(−1, 0), (0,−1)} on V that are ±-polarized by ω. Below, we will see examples of Shimura
data for unitary groups that are Shimura data of Hodge type.

1.5 Shimura data of abelian type

Dimitar : Mention Deligne’s classification of Shimura data of abelian type.
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2. Connected Shimura Varieties

3. Shimura Varieties

4. Abelian varieties and Hodge structures

Let AV be the category of abelian varieties over C and let IPHS{(−1,0),(0,−1)} be the category of

integral, polarizable Hodge structures of type {(−1, 0), (0,−1)}. Moreover, let AV0 be the category
whose objects are exactly the same as those of AV, but whose morphisms are HomAV0(A,B) =
HomAV(A,B) (i.e., AV0 is the up-to-isogeny category). Similarly, RPHS{(−1,0),(0,−1)} will denote
the category of rational polarized Hodge structures.

Proposition 4.1. (i) The functor A 7→ H1(A,Z) is an equivalence of categories

AV
∼−→ IPHS{(−1,0),(0,−1)} .

(ii) The functor A 7→ H1(A,Q) is an equivalence of categories

AV0 ∼−→ RPHS{(−1,0),(0,−1)} .

Proof. In (i), to give the inverse functor, let VZ be an object of IPHS{(−1,0),(0,−1)}. Then VZ
comes equipped with a polarization ψ : VZ × VZ → Z(−1) giving rise to a Hermitian form 〈v, w〉 =
ψC(v, iw) + iψC(v, w) on VC. This gives a Riemann form on the complex torus V −1,0/VZ and
hence, a complex abelian variety. Here, we use that if A = Cg/Λ then H1(A,Z) ∼= Λ and the
correspondence between complex structures on a real vector space V and Hodge structures on V of
type {(−1, 0), (0,−1)} is given by (V, J) ∼= V (C)/Fil0 V (C).

5. Examples

5.1 The Siegel modular variety

5.1.1 The domain and the Siegel upper-half space Here, let (V, ω) be a symplectic space over R
(i.e., V is an even-dimensional vector space and ω : V × V → R is a non-degenerate symplectic
form). Let J be a complex structure on V such that ω(Jv, Jw) = ω(v, w). Equivalently, we have
chosen a Hodge structure on V of type {(−1, 0), (0,−1)}. The structure J yields a morphism of real
algebraic groups

h : S→ GL(VR), h(a+ ib) : v ∈ VR 7→ (a+ bJ)v ∈ VR.

Lemma 5.1. The morphism h factors through GSp(V ).

Proof. It suffices to show that for every z = a+ ib ∈ C×, h(z) : VR → VR is a symplectic similitude.
We calculate

ω(h(z)v, h(z)w) = ω(av, aw) + ω(bJv, aw) + ω(av, bJw) + ω(bJv, bJw).

Since

ω(bJv, aw) = abω(Jv,w) = abω(J2v, Jw) = −abω(v, Jw) = −ω(av, bJw),

we get ω(h(z)v, h(z)w) = |z|2ω(v, w), i.e., the h(z) is a symplectic similitude with factor |z|2.

Let X(V, ω) be the GSp(V )(R)-conjugacy class of h. Then X = H+
g tH−g .

5.1.2 What does this mean in terms of Hodge structures.

5.1.3 Verification of the axioms.
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Shimura Varieties

5.1.4 Moduli interpretation in terms of rational polarized Hodge structures. Let G = GSp(V ). If
K ⊂ GSp(V )(Af ) then let HK be the set of triples {(W,h), s, ηK} where

– (W,h) is a rational Hodge structure of type {(−1, 0), (0,−1)},
– ±λ is a polarization for (W,h),

– ηK is a K-orbit of Af -isomorphisms η : W ⊗Af → V ⊗Af sending ω to an A×f multiple of s.

Two triples ((W,h),±λ, ηK) and ((W ′, h′),±λ′, η′K) are said to be isomorphic if there exists an
isomorphism of Hodge structures f : (W,h) → (W ′, h′) such that f(λ) is a Q×-multiple of λ′ and
f ◦ η = η′ mod K.

There is a map HK → G(Q)\G(Af ) × X(V, ω)/K defined as follows: suppose that (W,h) is a
rational Hodge structure and λ is a polarization for (W,h). Since η is an isomorphism, dimW =
dimV and hence, there is an isomorphism a : W → V sending λ to ψ. Fix such an isomorphism for
the particular rational polarized Hodge structure and notice that

g = a ◦ η : VAf

η−→WAf

a−→ VAf

is a symplectic similitude for VAf
and hence, an element of G(Af ). Moreover ah yields a rational

Hodge structure on V and hence, an element of X = X(V, ω). Then consider [g, ah] ∈ ShK(G, X)
and note that it is independent of the choice of a (a is defined up to an element of G(Q)). It is not
hard to check that this map yields a bijection

HK/∼= → ShK(G, X) = G(Q)\G(Af )×X/K.

5.1.5 Moduli interpretation in terms of polarized abelian varieties. Using the moduli interpretation
in terms of rational polarized Hodge structures as well as the equivalence of the categories AV0 and
RPHS{(−1,0),(0,−1)}, we can establish the following:

Theorem 5.2. The Siegel modular variety ShK(G, X) classifies isomorphism classes of triples of
the form (A, λ, ηK) where

– A is an abelian variety over C up to isogeny (i.e., an object in AV0),

– ±λ is a polarization on A

– ηK is a K-orbit of Af -linear isomorphisms

η : V ⊗Af → Vf (A)

that carry the symplectic form ψ onto an Af -multiple of λ

Proof.

Dimitar : Explain why working with rational polarized Hodge structures.

5.2 Unitary Shimura varieties

5.2.6 The domains. Let K = Q(
√
−D) be an imaginary quadratic field for some D < 0 and

let (V0, 〈 , 〉) be a Hermitian K-vector space. Let V denote the underlying Q-vector space and let
ω : V ×V → Q be the (alternating) bilinear form obtained by projecting 〈 , 〉 to the

√
−D-component

of E, i.e., we write ω(v, w) = im〈v, w〉.

Exercise 1. Check that ω defined as above is an alternating form.

The idea that unitary Shimura varieties are Shimura varieties of Hodge type is built upon the
fact that one associated the symplectic space (V, ω) to the Hermitian space (V0, 〈 , 〉). We thus get
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Shimura Varieties

an embedding of algebraic groups GU(V0) ↪→ GSp(V ). Indeed, if g ∈ GU(V0)(k) for a Q-algebra
k then

ω(gv, gw) = im〈gu, gv〉 = im〈u, v〉 = ω(v, w).

5.2.7 Moduli interpretation. Consider quadruples (A, λ, ι, ηK) where

– A is an abelian variety that is an object of AV0,

– λ : A→ A∨ is a polarization,

– ι : K → End(A) is an action of K up to isogeny (explain what this means)

– ηK is a K-orbit of K-linear isomorphisms

η : V ⊗Af → V̂ (A).

In addition, we require that

i) η carries ω to a A×f -multiple of λ.

ii) There exists a K-linear isomorphism a : V → H1(A; Q) carrying ω to a Q×-multiple of λ.

We decree that two quadruples (A, λ, ι, ηK) and (A′, λ′, ι′, η′K) are isomorphic if there exists a
K-linear isogeny ϕ : A→ A′ such that carries λ to a Q×-multiple of λ′ as well as ηK to η′K.

Proposition 5.3. The Shimura variety ShK(GU(V0), X) classifies isomorphism classes of quadru-
ples (A, λ, ι, η) as above.
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