
On the Harish-Chandra Embedding

The purpose of this note is to link the Cartan and the root decompositions. In addition, it explains
how we can view a Hermitian symmetric domain as GC/P where P is a certain parabolic subgroup
(more precisely, P = KC · P− in the notation of the previous document).

1. Basic Notions from Lie Theory

1.1 Simple and semi-simple Lie algebras

A simple Lie algebra is a Lie algebra whose only ideals are 0 and itself. A semi-simple Lie algebra
is a Lie algebra that is a direct sum of simple Lie algebras.

1.2 The killing form

Given a real Lie algebra gR the Killing form on gR × gR is defined by

B(X,Y ) = −Tr(adX ◦ adY ) ∈ R

Dimitar : Define the killing form.

Dimitar : Maybe give some examples with SL2(R).

1.3 Cartan subalgebras

A Cartan subalgebra h of a Lie algebra g is a nilpotent Lie subalgebra that is equal to its centralizer,
i.e., such that {X ∈ g : [X, h] ⊂ h} = h. For semi-simple Lie algebra g, a subalgebra h ⊂ g being
Cartan is equivalent to h being a maximal abelian subalgebra.

Example 1. We will keep in mind the example of g = sl2(R) and h =

{(
0 t
−t 0

)
: t ∈ R

}
. Note

that h is also the compact Lie algebra so2(R). Dimitar : Describe the killing form, etc.

1.4 Root decomposition

If gC is an arbitrary semi-simple Lie algebra and hC ⊂ gC is a Cartan subalgebra (one can show
that every semi-simple Lie algebra contains a Cartan subalgebra [Hel78, Thm.III.4.1]), consider the
linear subspace gα ⊂ gC associated to a functional α ∈ h∗C and defined by

gα = {X ∈ g : [H,X] = α(H)X, ∀H ∈ hC}.

The functional α ∈ h∗C is called a root if gα 6= 0. If this is the case then gα is called a root subspace.
Let ∆ be the set of roots. Associated to the pair (gC, hC), there is a root decomposition

gC = hC ⊕
⊕
α∈∆

gα

satisfying the following properties:

i) dimC gα = 1,
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ii) If α, β ∈ ∆ such that α+ β 6= 0 then B(gα, gβ) = 0,

iii) The restriction of B to hC × hC is non-degenerate, i.e., for each root α, there is a unique
element Hα ∈ hC such that α(H) = B(H,Hα),

iv) For each α ∈ ∆, −α ∈ ∆ and [gα, g−α] = CHα.

Example 2. Consider the Cartan subalgebra h =

{(
t 0
0 −t

)
: t ∈ R

}
⊂ sl2(R). Let H =

(
1 0
0 −1

)
.

The two roots for this subalgebra are 2,−2 and the root spaces are generated by X =

(
0 1
0 0

)
and

Y =

(
0 0
1 0

)
. In fact, we have [H,X] = 2X and [H,Y ] = −2Y . As we will see later, this will give us

an identification of SL2(R)/A ∼= SL2(C)/P where P ⊂ SL2(C) which is the Borel–Weil theorem.

Example 3. We can compute the root decomposition for the pair (sl2(R), so2(R)) arising from
identifying the Poincaré upper-half plane with SL2(R)/SO2(R) (by looking at the stabilizer of
i ∈ H1). In this case the roots are α± = ±2i. As we will see later, this Cartan decomposition will be
useful to identify SL2(R)/SO2(R) with SL2(C)/P (to give us the Harish-Chandra embedding).

2. Harish–Chandra Embedding

Dimitar : Assume that the domain is irreducible, i.e., gC is simple (the latter means that it has

non-trivial ideals). All of our analysis should go under this assumption.

We assume that the Hermitian symmetric domain D is irreducible. On the level of Lie algebras (or,
the decomposition g = k⊕ p), this means that following:

– k contains no ideal of g different from {0},
– adg(k) acts irreducibly on p.

Lemma 2.1. Condition (ii) is equivalent to k being a maximal proper subalgebra of g.

Proof. If k is not a maximal proper subalgebra then there exists a proper subalgebra k ( k∗ ( g.
But we can show that if p∗ = k∗ ∩ p then p∗ is an invariant subspace for the action of adg(k) and
hence, p∗ = {0} or p∗ = p. The case p∗ = {0} yields a contradiction whereas if p∗ = p then k∗ = g,
a contradiction as well. The converse is easy: if p∗ ⊂ p is a proper adg(k)-invariant subspace then
k + p∗ ⊂ g is a proper subalgebra of g containing k.

2.1 Maximal abelian subalgebra of k

Let h ⊂ k be a maximal abelian subalgebra and let hC be its complexification. Let c ⊂ k be the
center of k. Since c is the center of k and h is maximal abelian subalgebra of k then c ⊂ h. Consider
the centralizer Cg(c). Since k ⊂ Cg(c) Dimitar : Why? and Cg(c) is a proper subalgebra of g then

it follows that Cg(c) = k. We will use this to show that hC is a Cartan subalgebra of gC.

Lemma 2.2. hC ⊂ gC is a Cartan subalgebra.

Proof. Consider the centralizer CgC(hC) = {X ∈ gC : [X, gC] ⊂ hC}. Since hC is a Cartan subalge-
bra of kC, we have CkC(hC) = hC. If CkC(hC) ( CgC(hC) then there exists an element X ∈ p such
that X normalizes hC. But the latter is impossible since [X, hC] ⊂ pC. Hence, CkC(hC) = hC and
hC ⊂ gC is a Cartan subalgebra.
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2.2 Roots of compact and non-compact type and centralizers

Given the Cartan decomposition g = k⊕ p, let h ⊂ k be the maximal abelian subalgebra. We call a
root α compact if gα ⊂ k and non-compact if gα ⊂ pC. Let Q+ be the set of positive roots that do
not vanish identically on cC, i.e., for which adcC(gα) = [cC, g

α] 6= 0. We now consider two subspaces
of pC:

p+ =
∑
α∈Q+

gα, p− =
∑
−α∈Q+

gα.

These subspaces decompose pC as follows

Lemma 2.3. We have [k, p+] ⊂ p+, [k, p−] ⊂ p− and pC = p+ ⊕ p−.

Proof. Clearly, if α is compact then α vanishes on c so we get p+ + p− ⊂ pC. To see that p+ is
abelian, note that if α, β ∈ Q+ then [gα, gβ] ⊂ gα+β and if α + β is a root then α + β ∈ Q+. But
[p+, p+] ∈ k, so it follows that [p+, p+] = 0.

What is tricky to show is that pC = p+ + p−. Let q be the orthogonal complement of p+ + p−
in pC with respect to the killing form. Define

g+ = p+ + p− + [p+, p−].

One can check that g+ ⊂ gC is an ideal Dimitar : Do the computation! and since gC is simple, it

follows that g+ = {0} or gC. The first case is impossible (as all the roots will be compact), so we
are in the second case and p+ + p− = pC.

2.3 More on semi-simple Lie algebras

Consider a semi-simple Lie algebra gC over C. Consider also

– gR - the Lie algebra C viewed as a real Lie algebra,

– Gc - any connected real Lie group with Lie algebra gR,

– u ⊂ gC - a compact real form of gC,

– a ⊂ u - a maximal abelian subalgebra,

– hC = a + ia - a (one has to prove this) Cartan subalgebra of gC.

– n+ =
∑

α∈∆+ gα - the positive nilpotent (with respect to some ordering of the roots) considered
as a real Lie algebra.

– J - a complex structure on gR that coincides with i on gC.

Then (one has to prove this - see [Hel78, Thm.VI.6.3]) there is a direct sum decomposition

gR = u⊕ Ja⊕ n+.

Furthermore, if U,A∗, N+ are the analytic subgroups of Gc with Lie algebras u, a∗ = Ja and n+,
respectively, then the multiplication map gives an analytic diffeomorphism

U ×A∗ ×N+ → Gc.

2.4 The parabolic subgroups

G(R)/K embeds into P− via the following sequence of steps

– One needs to show that the multiplication map P−×KC×P+ → GC induces a diffeomorphism
between P− ×KC × P+ and an open submanifold of GC = G(C) that contains G = G(R).

– One identifies G(R)/K diffeomorphically with G(R)KCP+/KCP+. For this, we need to know
that KCP+ ∩ G(R) = K. Once this is proved, consider the map gKCP+ 7→ gK for any
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g ∈ G(R). It follows that this map is well-defined (if g′KCP+ = g′′KCP+ then g′kp+ = g′′

and hence, kp+ = (g′)−1g′′ ∈ G(R), hence KCP+ ∩G(R) = K) and a bijection.

Lemma 2.4. The multiplication map P− × KC × P+ → GC induces a diffeomorphism between
P− ×KC × P+ and an open submanifold of GC = G(C) that contains G = G(R).

Proof. To show that the map is an injection, suppose that q1k1p1 = q2k2p2, i.e.,

q−1
2 q1 = k2p2p

−1
1 k−1

1 .

The right-hand side is k2k
−1
1 (k1p2p

−1
1 k−1

1 ) and k1p2p
−1
1 k−1

1 ∈ P+ since KC normalizes P+. Hence,
it suffices to show that P−KC ∩ P+ = {e} to get injectivity. The latter can be seen on the level of
the Lie algebra as follows: suppose that y ∈ P−KC ∩P+ and let Y ∈ p+ such that exp(Y ) = y. One

one hand, we can write Y =
∑
α∈Q+

cαXα. Since [p+, p−] ⊂ p−, it follow that ad(y) : p− → p−. Let

n+ =
∑
α∈∆+

gα and n− =
∑
−α∈∆+

gα (these are nilpotent Lie algebras whose Lie groups are unipotent

groups Dimitar : May need to be more precise about the latter. ). Let β ∈ Q+ be the lowest root

for which cβ 6= 0. After calculating

[Y,X−β] ≡ cβ[Xβ, X−β] mod n+,

we observe that it cannot be 0 mod n+ +n− and hence, ad(Y )(X−β) /∈ p−, a contradiction. Next, a
dimension count shows that the image of the map is an open submanifold of GC. Finally, we want
to show that any p ∈ P = exp(p) is in the image (which, together with G = KP = PK will imply
that G = G(R) is contained in the image).

Example 4. For g = sl2(R), one can compute explicitly P+ and P− using the two non-compact root
spaces. Since α = 2i is the positive root then the Lie algebra p− is simply the root space g−α. The
embedding that we get is then the Cayley transform. Dimitar : Complete the example.

2.5 The Lie algebra of SL(2,C)

The Lie algebra sl2(C) of SL2(C) consists of all trace-zero matrices in M2(C). A basis is given by
the matrices

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

They satisfy the relations [X,Y ] = H, [H,X] = 2X and [H,Y ] = −2Y . The key point is that it is
possible, given any Z ∈ C(X + Y ), to decompose exp(Z) in the form P−KCP+ via the following
lemma:

Lemma 2.5. Given any Z = t(X + Y ) then we have

exp t(X + Y ) = exp(tanh tY ) exp(log(cosh t)H) exp(tanhX).

Proof.

2.6 Boundedness

– Define a maximal abelian subalgebra aC ⊂ pC as

aC =
s∑
i=1

C(Xγi +X−γi) ⊂ pC.

Here, the vectors Xα ∈ gα are chosen such that

Xα −X−α, i(Xα +X−α) ∈ uC := k⊕ ip, [Xα, X−α] = 2/α(Hα)Hα.
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the latter being the compact form of gC.

– If the Xα’s are chosen as above then

a =
s∑
i=1

R(Xγi +X−γi) ⊂ p.

– Suppose that Z ∈ a and write

Z =

s∑
i=1

ti(Xγi +X−γi).

Using some nested commutator relations (à la Campbell–Hausdorff formula), one can show
that

exp(Z) = exp(Y ) exp(H) exp(X), (1)

where Y =
s∑
i=1

(tanh ti)X−γi , H =
s∑
i=1

log(cosh ti)[Xγi , X−γi ] and X =
s∑
i=1

(tanh ti)Xγi . Since

exp(X) ∈ P+, exp(H) ∈ KC (since H ∈ hC ⊂ kC), so we compute that

log ξ(a) =
s∑
i=1

(tanh ti)X−γi ∈ p.

Remark 1. What helped in explicitly determining ξ(a) was the fact that the Lie subalgebra generated
by Xγi , X−γi , Hγi is isomorphic to the Lie algebra sl2(C) and for the latter, one can compute the
decomposition (1) explicitly.

To understand why the image is bounded once we know that P+ ·KC · P− → GC is injective and
contains G(R) in its image, we use the following

Lemma 2.6. Given x ∈ G(R), let ξ(x) be the unique element of P− such that x ∈ P+KCξ(x). Then
‖ log |ξ(x)|‖ is bounded as x varies through G(R).

Proof. We prove it using the following steps:

– Consider a Cartan decomposition G(R) = KAK for some analytic subgroup A with Lie
algebra a.

– Take x ∈ G(R) and write it as x = kak′. Then express ξ(x) in terms of ξ(a).

Dimitar : Define and discuss a.

3. Complex Structures on Homogeneous Spaces and the Borel–Weil Theorem

References

Hel78 S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics,
vol. 80, Academic Press Inc., New York, 1978.

5


	Basic Notions from Lie Theory
	Simple and semi-simple Lie algebras
	The killing form
	Cartan subalgebras
	Root decomposition

	Harish–Chandra Embedding
	Maximal abelian subalgebra of k
	Roots of compact and non-compact type and centralizers
	More on semi-simple Lie algebras
	The parabolic subgroups
	The Lie algebra of `39`42`"613A``45`47`"603ASL(2, C)
	Boundedness

	Complex Structures on Homogeneous Spaces and the Borel–Weil Theorem

