On the Harish-Chandra Embedding

The purpose of this note is to link the Cartan and the root decompositions. In addition, it explains how we can view a Hermitian symmetric domain as $G_{\mathbf{C}}/P$ where P is a certain parabolic subgroup (more precisely, $P = K_{\mathbf{C}} \cdot P_{-}$ in the notation of the previous document).

1. Basic Notions from Lie Theory

1.1 Simple and semi-simple Lie algebras

A *simple Lie algebra* is a Lie algebra whose only ideals are 0 and itself. A semi-simple Lie algebra is a Lie algebra that is a direct sum of simple Lie algebras.

1.2 The killing form

Given a real Lie algebra $\mathfrak{g}_{\mathbf{R}}$ the Killing form on $\mathfrak{g}_{\mathbf{R}} \times \mathfrak{g}_{\mathbf{R}}$ is defined by

$$B(X,Y) = -\operatorname{Tr}(\operatorname{ad} X \circ \operatorname{ad} Y) \in \mathbf{R}$$

Dimitar : Define the killing form.

Dimitar : Maybe give some examples with $SL_2(\mathbf{R})$.

1.3 Cartan subalgebras

A Cartan subalgebra \mathfrak{h} of a Lie algebra \mathfrak{g} is a nilpotent Lie subalgebra that is equal to its centralizer, i.e., such that $\{X \in \mathfrak{g} : [X, \mathfrak{h}] \subset \mathfrak{h}\} = \mathfrak{h}$. For semi-simple Lie algebra \mathfrak{g} , a subalgebra $\mathfrak{h} \subset \mathfrak{g}$ being Cartan is equivalent to \mathfrak{h} being a maximal abelian subalgebra.

Example 1. We will keep in mind the example of $\mathfrak{g} = \mathfrak{sl}_2(\mathbf{R})$ and $\mathfrak{h} = \left\{ \begin{pmatrix} 0 & t \\ -t & 0 \end{pmatrix} : t \in \mathbf{R} \right\}$. Note that \mathfrak{h} is also the compact Lie algebra $\mathfrak{so}_2(\mathbf{R})$. Dimitar : Describe the killing form, etc.

1.4 Root decomposition

If $\mathfrak{g}_{\mathbf{C}}$ is an arbitrary semi-simple Lie algebra and $\mathfrak{h}_{\mathbf{C}} \subset \mathfrak{g}_{\mathbf{C}}$ is a Cartan subalgebra (one can show that every semi-simple Lie algebra contains a Cartan subalgebra [Hel78, Thm.III.4.1]), consider the linear subspace $\mathfrak{g}^{\alpha} \subset \mathfrak{g}_{\mathbf{C}}$ associated to a functional $\alpha \in \mathfrak{h}^*_{\mathbf{C}}$ and defined by

$$\mathfrak{g}^{\alpha} = \{ X \in \mathfrak{g} \colon [H, X] = \alpha(H)X, \ \forall H \in \mathfrak{h}_{\mathbf{C}} \}.$$

The functional $\alpha \in \mathfrak{h}^*_{\mathbf{C}}$ is called a root if $\mathfrak{g}^{\alpha} \neq 0$. If this is the case then \mathfrak{g}^{α} is called a root subspace. Let Δ be the set of roots. Associated to the pair $(\mathfrak{g}_{\mathbf{C}}, \mathfrak{h}_{\mathbf{C}})$, there is a root decomposition

$$\mathfrak{g}_{\mathbf{C}} = \mathfrak{h}_{\mathbf{C}} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}^{lpha}$$

satisfying the following properties:

i) $\dim_{\mathbf{C}} \mathfrak{g}^{\alpha} = 1$,

2000 Mathematics Subject Classification Keywords:

- ii) If $\alpha, \beta \in \Delta$ such that $\alpha + \beta \neq 0$ then $B(\mathfrak{g}^{\alpha}, \mathfrak{g}^{\beta}) = 0$,
- iii) The restriction of B to $\mathfrak{h}_{\mathbf{C}} \times \mathfrak{h}_{\mathbf{C}}$ is non-degenerate, i.e., for each root α , there is a unique element $H_{\alpha} \in \mathfrak{h}_{\mathbf{C}}$ such that $\alpha(H) = B(H, H_{\alpha})$,
- iv) For each $\alpha \in \Delta$, $-\alpha \in \Delta$ and $[\mathfrak{g}^{\alpha}, \mathfrak{g}^{-\alpha}] = \mathbf{C}H_{\alpha}$.

Example 2. Consider the Cartan subalgebra $\mathfrak{h} = \left\{ \begin{pmatrix} t & 0 \\ 0 & -t \end{pmatrix} : t \in \mathbf{R} \right\} \subset \mathfrak{sl}_2(\mathbf{R}).$ Let $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$

The two roots for this subalgebra are 2, -2 and the root spaces are generated by $X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and

 $Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. In fact, we have [H, X] = 2X and [H, Y] = -2Y. As we will see later, this will give us an identification of $\mathbf{SL}_2(\mathbf{R})/A \cong \mathbf{SL}_2(\mathbf{C})/P$ where $P \subset \mathbf{SL}_2(\mathbf{C})$ which is the Borel–Weil theorem.

Example 3. We can compute the root decomposition for the pair $(\mathfrak{sl}_2(\mathbf{R}), \mathfrak{so}_2(\mathbf{R}))$ arising from identifying the Poincaré upper-half plane with $\mathbf{SL}_2(\mathbf{R})/\mathbf{SO}_2(\mathbf{R})$ (by looking at the stabilizer of $i \in \mathcal{H}_1$). In this case the roots are $\alpha_{\pm} = \pm 2i$. As we will see later, this Cartan decomposition will be useful to identify $\mathbf{SL}_2(\mathbf{R})/\mathbf{SO}_2(\mathbf{R})$ with $\mathbf{SL}_2(\mathbf{C})/P$ (to give us the Harish-Chandra embedding).

2. Harish–Chandra Embedding

Dimitar : Assume that the domain is irreducible, i.e., $\mathfrak{g}_{\mathbb{C}}$ is simple (the latter means that it has non-trivial ideals). All of our analysis should go under this assumption.

We assume that the Hermitian symmetric domain D is irreducible. On the level of Lie algebras (or, the decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$), this means that following:

- $-\mathfrak{k}$ contains no ideal of \mathfrak{g} different from $\{0\}$,
- $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{k})$ acts irreducibly on \mathfrak{p} .

LEMMA 2.1. Condition (ii) is equivalent to \mathfrak{k} being a maximal proper subalgebra of \mathfrak{g} .

Proof. If \mathfrak{k} is not a maximal proper subalgebra then there exists a proper subalgebra $\mathfrak{k} \subsetneq \mathfrak{k}^* \subsetneq \mathfrak{g}$. But we can show that if $\mathfrak{p}^* = \mathfrak{k}^* \cap \mathfrak{p}$ then \mathfrak{p}^* is an invariant subspace for the action of $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{k})$ and hence, $\mathfrak{p}^* = \{0\}$ or $\mathfrak{p}^* = \mathfrak{p}$. The case $\mathfrak{p}^* = \{0\}$ yields a contradiction whereas if $\mathfrak{p}^* = \mathfrak{p}$ then $\mathfrak{k}^* = \mathfrak{g}$, a contradiction as well. The converse is easy: if $\mathfrak{p}^* \subset \mathfrak{p}$ is a proper $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{k})$ -invariant subspace then $\mathfrak{k} + \mathfrak{p}^* \subset \mathfrak{g}$ is a proper subalgebra of \mathfrak{g} containing \mathfrak{k} .

2.1 Maximal abelian subalgebra of t

Let $\mathfrak{h} \subset \mathfrak{k}$ be a maximal abelian subalgebra and let $\mathfrak{h}_{\mathbf{C}}$ be its complexification. Let $\mathfrak{c} \subset \mathfrak{k}$ be the center of \mathfrak{k} . Since \mathfrak{c} is the center of \mathfrak{k} and \mathfrak{h} is maximal abelian subalgebra of \mathfrak{k} then $\mathfrak{c} \subset \mathfrak{h}$. Consider the centralizer $C_{\mathfrak{g}}(\mathfrak{c})$. Since $\mathfrak{k} \subset C_{\mathfrak{g}}(\mathfrak{c})$ Dimitar : Why? and $C_{\mathfrak{g}}(\mathfrak{c})$ is a proper subalgebra of \mathfrak{g} then

it follows that $C_{\mathfrak{g}}(\mathfrak{c}) = \mathfrak{k}$. We will use this to show that $\mathfrak{h}_{\mathbf{C}}$ is a Cartan subalgebra of $\mathfrak{g}_{\mathbf{C}}$.

LEMMA 2.2. $\mathfrak{h}_{\mathbf{C}} \subset \mathfrak{g}_{\mathbf{C}}$ is a Cartan subalgebra.

Proof. Consider the centralizer $C_{\mathfrak{g}_{\mathbf{C}}}(\mathfrak{h}_{\mathbf{C}}) = \{X \in \mathfrak{g}_{\mathbf{C}} : [X, \mathfrak{g}_{\mathbf{C}}] \subset \mathfrak{h}_{\mathbf{C}}\}$. Since $\mathfrak{h}_{\mathbf{C}}$ is a Cartan subalgebra of $\mathfrak{k}_{\mathbf{C}}$, we have $C_{\mathfrak{k}_{\mathbf{C}}}(\mathfrak{h}_{\mathbf{C}}) = \mathfrak{h}_{\mathbf{C}}$. If $C_{\mathfrak{k}_{\mathbf{C}}}(\mathfrak{h}_{\mathbf{C}}) \subsetneq C_{\mathfrak{g}_{\mathbf{C}}}(\mathfrak{h}_{\mathbf{C}})$ then there exists an element $X \in \mathfrak{p}$ such that X normalizes $\mathfrak{h}_{\mathbf{C}}$. But the latter is impossible since $[X, \mathfrak{h}_{\mathbf{C}}] \subset \mathfrak{p}_{\mathbf{C}}$. Hence, $C_{\mathfrak{k}_{\mathbf{C}}}(\mathfrak{h}_{\mathbf{C}}) = \mathfrak{h}_{\mathbf{C}}$ and $\mathfrak{h}_{\mathbf{C}} \subset \mathfrak{g}_{\mathbf{C}}$ is a Cartan subalgebra.

Shimura Varieties

2.2 Roots of compact and non-compact type and centralizers

Given the Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$, let $\mathfrak{h} \subset \mathfrak{k}$ be the maximal abelian subalgebra. We call a root α compact if $\mathfrak{g}^{\alpha} \subset \mathfrak{k}$ and non-compact if $\mathfrak{g}^{\alpha} \subset \mathfrak{p}_{\mathbf{C}}$. Let Q_{+} be the set of positive roots that do not vanish identically on $\mathfrak{c}_{\mathbf{C}}$, i.e., for which $\mathrm{ad}_{\mathfrak{c}_{\mathbf{C}}}(\mathfrak{g}^{\alpha}) = [\mathfrak{c}_{\mathbf{C}}, \mathfrak{g}^{\alpha}] \neq 0$. We now consider two subspaces of $\mathfrak{p}_{\mathbf{C}}$:

$$\mathfrak{p}_+ = \sum_{lpha \in Q_+} \mathfrak{g}^{lpha}, \qquad \mathfrak{p}_- = \sum_{-lpha \in Q_+} \mathfrak{g}^{lpha}.$$

These subspaces decompose $\mathfrak{p}_{\mathbf{C}}$ as follows

LEMMA 2.3. We have $[\mathfrak{k},\mathfrak{p}_+] \subset \mathfrak{p}_+$, $[\mathfrak{k},\mathfrak{p}_-] \subset \mathfrak{p}_-$ and $\mathfrak{p}_{\mathbf{C}} = \mathfrak{p}_+ \oplus \mathfrak{p}_-$.

Proof. Clearly, if α is compact then α vanishes on \mathfrak{c} so we get $\mathfrak{p}^+ + \mathfrak{p}^- \subset \mathfrak{p}_{\mathbf{C}}$. To see that \mathfrak{p}_+ is abelian, note that if $\alpha, \beta \in Q_+$ then $[\mathfrak{g}^{\alpha}, \mathfrak{g}^{\beta}] \subset \mathfrak{g}^{\alpha+\beta}$ and if $\alpha + \beta$ is a root then $\alpha + \beta \in Q_+$. But $[\mathfrak{p}_+, \mathfrak{p}_+] \in \mathfrak{k}$, so it follows that $[\mathfrak{p}_+, \mathfrak{p}_+] = 0$.

What is tricky to show is that $\mathfrak{p}_{\mathbf{C}} = \mathfrak{p}_{+} + \mathfrak{p}_{-}$. Let \mathfrak{q} be the orthogonal complement of $\mathfrak{p}_{+} + \mathfrak{p}_{-}$ in $\mathfrak{p}_{\mathbf{C}}$ with respect to the killing form. Define

$$\mathfrak{g}_+ = \mathfrak{p}_+ + \mathfrak{p}_- + [\mathfrak{p}_+, \mathfrak{p}_-].$$

One can check that $\mathfrak{g}_+ \subset \mathfrak{g}_{\mathbf{C}}$ is an ideal **Dimitar** : **Do the computation!** and since $\mathfrak{g}_{\mathbf{C}}$ is simple, it

follows that $\mathfrak{g}_+ = \{0\}$ or $\mathfrak{g}_{\mathbf{C}}$. The first case is impossible (as all the roots will be compact), so we are in the second case and $\mathfrak{p}_+ + \mathfrak{p}_- = \mathfrak{p}_{\mathbf{C}}$.

2.3 More on semi-simple Lie algebras

Consider a semi-simple Lie algebra $\mathfrak{g}_{\mathbf{C}}$ over \mathbf{C} . Consider also

- $-\mathfrak{g}^{\mathbf{R}}$ the Lie algebra **C** viewed as a real Lie algebra,
- G_c any connected real Lie group with Lie algebra $\mathfrak{g}_{\mathbf{R}}$,
- $\mathfrak{u} \subset \mathfrak{g}_{\mathbf{C}}$ a compact real form of $\mathfrak{g}_{\mathbf{C}}$,
- $\ \mathfrak{a} \subset \mathfrak{u}$ a maximal abelian subalgebra,
- $-\mathfrak{h}_{\mathbf{C}} = \mathfrak{a} + i\mathfrak{a}$ a (one has to prove this) Cartan subalgebra of $\mathfrak{g}_{\mathbf{C}}$.
- **n** $_+ = \sum_{\alpha \in \Delta^+}$ **g**^α the positive nilpotent (with respect to some ordering of the roots) considered as a real Lie algebra.
- J a complex structure on $\mathfrak{g}^{\mathbf{R}}$ that coincides with i on $\mathfrak{g}_{\mathbf{C}}$.

Then (one has to prove this - see [Hel78, Thm.VI.6.3]) there is a direct sum decomposition

$$\mathfrak{g}^{\mathbf{R}} = \mathfrak{u} \oplus J\mathfrak{a} \oplus \mathfrak{n}_+.$$

Furthermore, if U, A^*, N_+ are the analytic subgroups of G_c with Lie algebras $\mathfrak{u}, \mathfrak{a}^* = J\mathfrak{a}$ and \mathfrak{n}_+ , respectively, then the multiplication map gives an analytic diffeomorphism

$$U \times A^* \times N_+ \to G_c.$$

2.4 The parabolic subgroups

 $\mathbf{G}(\mathbf{R})/K$ embeds into P_{-} via the following sequence of steps

- One needs to show that the multiplication map $P_- \times K_{\mathbf{C}} \times P_+ \to G_{\mathbf{C}}$ induces a diffeomorphism between $P_- \times K_{\mathbf{C}} \times P_+$ and an open submanifold of $G_{\mathbf{C}} = \mathbf{G}(\mathbf{C})$ that contains $G = \mathbf{G}(\mathbf{R})$.
- One identifies $\mathbf{G}(\mathbf{R})/K$ diffeomorphically with $\mathbf{G}(\mathbf{R})K_{\mathbf{C}}P_{+}/K_{\mathbf{C}}P_{+}$. For this, we need to know that $K_{\mathbf{C}}P_{+} \cap \mathbf{G}(\mathbf{R}) = K$. Once this is proved, consider the map $gK_{\mathbf{C}}P_{+} \mapsto gK$ for any

 $g \in \mathbf{G}(\mathbf{R})$. It follows that this map is well-defined (if $g'K_{\mathbf{C}}P_{+} = g''K_{\mathbf{C}}P_{+}$ then $g'kp_{+} = g''$ and hence, $kp_+ = (g')^{-1}g'' \in \mathbf{G}(\mathbf{R})$, hence $K_{\mathbf{C}}P_+ \cap \mathbf{G}(R) = K$) and a bijection.

LEMMA 2.4. The multiplication map $P_- \times K_{\mathbf{C}} \times P_+ \to G_{\mathbf{C}}$ induces a diffeomorphism between $P_{-} \times K_{\mathbf{C}} \times P_{+}$ and an open submanifold of $G_{\mathbf{C}} = \mathbf{G}(\mathbf{C})$ that contains $G = \mathbf{G}(\mathbf{R})$.

Proof. To show that the map is an injection, suppose that $q_1k_1p_1 = q_2k_2p_2$, i.e.,

$$q_2^{-1}q_1 = k_2 p_2 p_1^{-1} k_1^{-1}.$$

The right-hand side is $k_2k_1^{-1}(k_1p_2p_1^{-1}k_1^{-1})$ and $k_1p_2p_1^{-1}k_1^{-1} \in P_+$ since $K_{\mathbf{C}}$ normalizes P_+ . Hence, it suffices to show that $P_{-}K_{\mathbf{C}} \cap P_{+} = \{e\}$ to get injectivity. The latter can be seen on the level of the Lie algebra as follows: suppose that $y \in P_{-}K_{\mathbb{C}} \cap P_{+}$ and let $Y \in \mathfrak{p}_{+}$ such that $\exp(Y) = y$. One one hand, we can write $Y = \sum c_{\alpha} X_{\alpha}$. Since $[\mathfrak{p}_+, \mathfrak{p}_-] \subset \mathfrak{p}_-$, it follow that $\mathrm{ad}(y) \colon \mathfrak{p}_- \to \mathfrak{p}_-$. Let

 $\mathfrak{n}_{+} = \sum_{\alpha \in \Delta^{+}} \mathfrak{g}^{\alpha} \text{ and } \mathfrak{n}_{-} = \sum_{\substack{\alpha \in \Delta^{+} \\ -\alpha \in \Delta^{+}}} \mathfrak{g}^{\alpha} \text{ (these are nilpotent Lie algebras whose Lie groups are unipotent groups Dimiter : Maximized in the second s$

groups **Dimitar** : May need to be more precise about the latter.). Let $\beta \in Q_+$ be the lowest root

for which $c_{\beta} \neq 0$. After calculating

$$[Y, X_{-\beta}] \equiv c_{\beta}[X_{\beta}, X_{-\beta}] \mod \mathfrak{n}_{+\beta}$$

we observe that it cannot be 0 mod $\mathfrak{n}_+ + \mathfrak{n}_-$ and hence, $\operatorname{ad}(Y)(X_{-\beta}) \notin \mathfrak{p}_-$, a contradiction. Next, a dimension count shows that the image of the map is an open submanifold of $G_{\mathbf{C}}$. Finally, we want to show that any $p \in P = \exp(\mathfrak{p})$ is in the image (which, together with G = KP = PK will imply that $G = \mathbf{G}(\mathbf{R})$ is contained in the image).

Example 4. For $\mathfrak{g} = \mathfrak{sl}_2(\mathbf{R})$, one can compute explicitly P_+ and P_- using the two non-compact root spaces. Since $\alpha = 2i$ is the positive root then the Lie algebra \mathfrak{p}_{-} is simply the root space $\mathfrak{g}^{-\alpha}$. The embedding that we get is then the Cayley transform. Dimitar : Complete the example.

2.5 The Lie algebra of $SL(2, \mathbb{C})$

The Lie algebra $\mathfrak{sl}_2(\mathbf{C})$ of $\mathbf{SL}_2(\mathbf{C})$ consists of all trace-zero matrices in $M_2(\mathbf{C})$. A basis is given by the matrices

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

They satisfy the relations [X, Y] = H, [H, X] = 2X and [H, Y] = -2Y. The key point is that it is possible, given any $Z \in \mathbf{C}(X+Y)$, to decompose $\exp(Z)$ in the form $P_{-}K_{\mathbf{C}}P_{+}$ via the following lemma:

LEMMA 2.5. Given any Z = t(X + Y) then we have

$$\exp t(X+Y) = \exp(\tanh tY) \exp(\log(\cosh t)H) \exp(\tanh X).$$

Proof.

2.6 Boundedness

– Define a maximal abelian subalgebra $\mathfrak{a}_{\mathbf{C}} \subset \mathfrak{p}_{\mathbf{C}}$ as

$$\mathfrak{a}_{\mathbf{C}} = \sum_{i=1}^{s} \mathbf{C}(X_{\gamma_{i}} + X_{-\gamma_{i}}) \subset \mathfrak{p}_{\mathbf{C}}.$$

Here, the vectors $X_{\alpha} \in \mathfrak{g}^{\alpha}$ are chosen such that

$$X_{\alpha} - X_{-\alpha}, \qquad i(X_{\alpha} + X_{-\alpha}) \in \mathfrak{u}_{\mathbf{C}} := \mathfrak{k} \oplus i\mathfrak{p}, \qquad [X_{\alpha}, X_{-\alpha}] = 2/\alpha(H_{\alpha})H_{\alpha}.$$

the latter being the compact form of $\mathfrak{g}_{\mathbf{C}}$.

- If the X_{α} 's are chosen as above then

$$\mathfrak{a} = \sum_{i=1}^{s} \mathbf{R}(X_{\gamma_i} + X_{-\gamma_i}) \subset \mathfrak{p}.$$

- Suppose that $Z \in \mathfrak{a}$ and write

$$Z = \sum_{i=1}^{s} t_i (X_{\gamma_i} + X_{-\gamma_i}).$$

Using some nested commutator relations (à la Campbell–Hausdorff formula), one can show that

$$xp(Z) = exp(Y) exp(H) exp(X), \qquad (1)$$

where $Y = \sum_{i=1}^{s} (\tanh t_i) X_{-\gamma_i}, H = \sum_{i=1}^{s} \log(\cosh t_i) [X_{\gamma_i}, X_{-\gamma_i}]$ and $X = \sum_{i=1}^{s} (\tanh t_i) X_{\gamma_i}$. Since $\exp(X) \in P_+, \exp(H) \in K_{\mathbf{C}}$ (since $H \in \mathfrak{h}_{\mathbf{C}} \subset \mathfrak{k}_{\mathbf{C}}$), so we compute that

$$\log \xi(a) = \sum_{i=1}^{s} (\tanh t_i) X_{-\gamma_i} \in \mathfrak{p}.$$

Remark 1. What helped in explicitly determining $\xi(a)$ was the fact that the Lie subalgebra generated by $X_{\gamma_i}, X_{-\gamma_i}, H_{\gamma_i}$ is isomorphic to the Lie algebra $\mathfrak{sl}_2(\mathbf{C})$ and for the latter, one can compute the decomposition (1) explicitly.

To understand why the image is bounded once we know that $P_+ \cdot K_{\mathbf{C}} \cdot P_- \to \mathbf{G}_{\mathbf{C}}$ is injective and contains $\mathbf{G}(\mathbf{R})$ in its image, we use the following

LEMMA 2.6. Given $x \in \mathbf{G}(\mathbf{R})$, let $\xi(x)$ be the unique element of P_- such that $x \in P_+K_{\mathbf{C}}\xi(x)$. Then $\|\log |\xi(x)|\|$ is bounded as x varies through $\mathbf{G}(\mathbf{R})$.

Proof. We prove it using the following steps:

- Consider a Cartan decomposition $\mathbf{G}(\mathbf{R}) = KAK$ for some analytic subgroup A with Lie algebra \mathfrak{a} .
- Take $x \in \mathbf{G}(\mathbf{R})$ and write it as x = kak'. Then express $\xi(x)$ in terms of $\xi(a)$.

 $\mathbf{Dimitar}: \mathbf{Define \ and \ discuss \ } \mathfrak{a}.$

3. Complex Structures on Homogeneous Spaces and the Borel–Weil Theorem

References

Hel78 S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press Inc., New York, 1978.