On the Harish-Chandra Embedding

The purpose of this note is to link the Cartan and the root decompositions. In addition, it explains how we can view a Hermitian symmetric domain as $G_{\mathbf{C}} / P$ where P is a certain parabolic subgroup (more precisely, $P=K_{\mathbf{C}} \cdot P_{-}$in the notation of the previous document).

1. Basic Notions from Lie Theory

1.1 Simple and semi-simple Lie algebras

A simple Lie algebra is a Lie algebra whose only ideals are 0 and itself. A semi-simple Lie algebra is a Lie algebra that is a direct sum of simple Lie algebras.

1.2 The killing form

Given a real Lie algebra $\mathfrak{g}_{\mathbf{R}}$ the Killing form on $\mathfrak{g}_{\mathbf{R}} \times \mathfrak{g}_{\mathbf{R}}$ is defined by

$$
B(X, Y)=-\operatorname{Tr}(\operatorname{ad} X \circ \operatorname{ad} Y) \in \mathbf{R}
$$

Dimitar : Define the killing form.
Dimitar : Maybe give some examples with $\mathrm{SL}_{2}(\mathbf{R})$.

1.3 Cartan subalgebras

A Cartan subalgebra \mathfrak{h} of a Lie algebra \mathfrak{g} is a nilpotent Lie subalgebra that is equal to its centralizer, i.e., such that $\{X \in \mathfrak{g}:[X, \mathfrak{h}] \subset \mathfrak{h}\}=\mathfrak{h}$. For semi-simple Lie algebra \mathfrak{g}, a subalgebra $\mathfrak{h} \subset \mathfrak{g}$ being Cartan is equivalent to \mathfrak{h} being a maximal abelian subalgebra.
Example 1. We will keep in mind the example of $\mathfrak{g}=\mathfrak{s l}_{2}(\mathbf{R})$ and $\mathfrak{h}=\left\{\left(\begin{array}{cc}0 & t \\ -t & 0\end{array}\right): t \in \mathbf{R}\right\}$. Note that \mathfrak{h} is also the compact Lie algebra $\mathfrak{s o}_{2}(\mathbf{R})$. Dimitar : Describe the killing form, etc.

1.4 Root decomposition

If $\mathfrak{g}_{\mathbf{C}}$ is an arbitrary semi-simple Lie algebra and $\mathfrak{h}_{\mathbf{C}} \subset \mathfrak{g}_{\mathbf{C}}$ is a Cartan subalgebra (one can show that every semi-simple Lie algebra contains a Cartan subalgebra Hel78, Thm.III.4.1]), consider the linear subspace $\mathfrak{g}^{\alpha} \subset \mathfrak{g}_{\mathbf{C}}$ associated to a functional $\alpha \in \mathfrak{h}_{\mathbf{C}}^{*}$ and defined by

$$
\mathfrak{g}^{\alpha}=\left\{X \in \mathfrak{g}:[H, X]=\alpha(H) X, \forall H \in \mathfrak{h}_{\mathbf{C}}\right\} .
$$

The functional $\alpha \in \mathfrak{h}_{\mathrm{C}}^{*}$ is called a root if $\mathfrak{g}^{\alpha} \neq 0$. If this is the case then \mathfrak{g}^{α} is called a root subspace. Let Δ be the set of roots. Associated to the pair $\left(\mathfrak{g}_{\mathbf{C}}, \mathfrak{h}_{\mathbf{C}}\right)$, there is a root decomposition

$$
\mathfrak{g}_{\mathbf{C}}=\mathfrak{h}_{\mathbf{C}} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}^{\alpha}
$$

satisfying the following properties:
i) $\operatorname{dim}_{\mathbf{C}} \mathfrak{g}^{\alpha}=1$,
ii) If $\alpha, \beta \in \Delta$ such that $\alpha+\beta \neq 0$ then $B\left(\mathfrak{g}^{\alpha}, \mathfrak{g}^{\beta}\right)=0$,
iii) The restriction of B to $\mathfrak{h}_{\mathbf{C}} \times \mathfrak{h}_{\mathbf{C}}$ is non-degenerate, i.e., for each root α, there is a unique element $H_{\alpha} \in \mathfrak{h}_{\mathbf{C}}$ such that $\alpha(H)=B\left(H, H_{\alpha}\right)$,
iv) For each $\alpha \in \Delta,-\alpha \in \Delta$ and $\left[\mathfrak{g}^{\alpha}, \mathfrak{g}^{-\alpha}\right]=\mathbf{C} H_{\alpha}$.

Example 2. Consider the Cartan subalgebra $\mathfrak{h}=\left\{\left(\begin{array}{cc}t & 0 \\ 0 & -t\end{array}\right): t \in \mathbf{R}\right\} \subset \mathfrak{s l}_{2}(\mathbf{R})$. Let $H=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. The two roots for this subalgebra are $2,-2$ and the root spaces are generated by $X=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $Y=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. In fact, we have $[H, X]=2 X$ and $[H, Y]=-2 Y$. As we will see later, this will give us an identification of $\mathbf{S L}_{2}(\mathbf{R}) / A \cong \mathbf{S L}_{2}(\mathbf{C}) / P$ where $P \subset \mathbf{S L}_{2}(\mathbf{C})$ which is the Borel-Weil theorem.

Example 3. We can compute the root decomposition for the pair $\left(\mathfrak{s l}_{2}(\mathbf{R}), \mathfrak{s o}_{2}(\mathbf{R})\right)$ arising from identifying the Poincaré upper-half plane with $\mathbf{S L}_{2}(\mathbf{R}) / \mathbf{S O}_{2}(\mathbf{R})$ (by looking at the stabilizer of $i \in \mathcal{H}_{1}$). In this case the roots are $\alpha_{ \pm}= \pm 2 i$. As we will see later, this Cartan decomposition will be useful to identify $\mathbf{S L}_{2}(\mathbf{R}) / \mathbf{S O}_{2}(\mathbf{R})$ with $\mathbf{S L}_{2}(\mathbf{C}) / P$ (to give us the Harish-Chandra embedding).

2. Harish-Chandra Embedding

Dimitar : Assume that the domain is irreducible, i.e., $\mathfrak{g}_{\mathrm{C}}$ is simple (the latter means that it has non-trivial ideals). All of our analysis should go under this assumption.

We assume that the Hermitian symmetric domain D is irreducible. On the level of Lie algebras (or, the decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$), this means that following:

- \mathfrak{k} contains no ideal of \mathfrak{g} different from $\{0\}$,
$-\operatorname{ad}_{\mathfrak{g}}(\mathfrak{k})$ acts irreducibly on \mathfrak{p}.
Lemma 2.1. Condition (ii) is equivalent to \mathfrak{k} being a maximal proper subalgebra of \mathfrak{g}.
Proof. If \mathfrak{k} is not a maximal proper subalgebra then there exists a proper subalgebra $\mathfrak{k} \subsetneq \mathfrak{k}^{*} \subsetneq \mathfrak{g}$. But we can show that if $\mathfrak{p}^{*}=\mathfrak{k}^{*} \cap \mathfrak{p}$ then \mathfrak{p}^{*} is an invariant subspace for the action of $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{k})$ and hence, $\mathfrak{p}^{*}=\{0\}$ or $\mathfrak{p}^{*}=\mathfrak{p}$. The case $\mathfrak{p}^{*}=\{0\}$ yields a contradiction whereas if $\mathfrak{p}^{*}=\mathfrak{p}$ then $\mathfrak{k}^{*}=\mathfrak{g}$, a contradiction as well. The converse is easy: if $\mathfrak{p}^{*} \subset \mathfrak{p}$ is a proper $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{k})$-invariant subspace then $\mathfrak{k}+\mathfrak{p}^{*} \subset \mathfrak{g}$ is a proper subalgebra of \mathfrak{g} containing \mathfrak{k}.

2.1 Maximal abelian subalgebra of \mathfrak{k}

Let $\mathfrak{h} \subset \mathfrak{k}$ be a maximal abelian subalgebra and let $\mathfrak{h}_{\mathbf{C}}$ be its complexification. Let $\mathfrak{c} \subset \mathfrak{k}$ be the center of \mathfrak{k}. Since \mathfrak{c} is the center of \mathfrak{k} and \mathfrak{h} is maximal abelian subalgebra of \mathfrak{k} then $\mathfrak{c} \subset \mathfrak{h}$. Consider the centralizer $C_{\mathfrak{g}}(\mathfrak{c})$. Since $\mathfrak{k} \subset C_{\mathfrak{g}}(\mathfrak{c})$ Dimitar : Why? and $C_{\mathfrak{g}}(\mathfrak{c})$ is a proper subalgebra of \mathfrak{g} then it follows that $C_{\mathfrak{g}}(\mathfrak{c})=\mathfrak{k}$. We will use this to show that $\mathfrak{h}_{\mathbf{C}}$ is a Cartan subalgebra of $\mathfrak{g}_{\mathbf{C}}$.

Lemma 2.2. $\mathfrak{h}_{\mathbf{C}} \subset \mathfrak{g}_{\mathbf{C}}$ is a Cartan subalgebra.
Proof. Consider the centralizer $C_{\mathfrak{g}_{\mathbf{C}}}\left(\mathfrak{h}_{\mathbf{C}}\right)=\left\{X \in \mathfrak{g}_{\mathbf{C}}:\left[X, \mathfrak{g}_{\mathbf{C}}\right] \subset \mathfrak{h}_{\mathbf{C}}\right\}$. Since $\mathfrak{h}_{\mathbf{C}}$ is a Cartan subalgebra of $\mathfrak{k}_{\mathbf{C}}$, we have $C_{\mathfrak{k}_{\mathbf{C}}}\left(\mathfrak{h}_{\mathbf{C}}\right)=\mathfrak{h}_{\mathbf{C}}$. If $C_{\mathfrak{k}_{\mathbf{C}}}\left(\mathfrak{h}_{\mathbf{C}}\right) \subsetneq C_{\mathfrak{g}_{\mathbf{C}}}\left(\mathfrak{h}_{\mathbf{C}}\right)$ then there exists an element $X \in \mathfrak{p}$ such that X normalizes $\mathfrak{h}_{\mathbf{C}}$. But the latter is impossible since $\left[X, \mathfrak{h}_{\mathbf{C}}\right] \subset \mathfrak{p}_{\mathbf{C}}$. Hence, $C_{\mathfrak{t}_{\mathbf{C}}}\left(\mathfrak{h}_{\mathbf{C}}\right)=\mathfrak{h}_{\mathbf{C}}$ and $\mathfrak{h}_{\mathbf{C}} \subset \mathfrak{g}_{\mathbf{C}}$ is a Cartan subalgebra.

Shimura Varieties

2.2 Roots of compact and non-compact type and centralizers

Given the Cartan decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$, let $\mathfrak{h} \subset \mathfrak{k}$ be the maximal abelian subalgebra. We call a root α compact if $\mathfrak{g}^{\alpha} \subset \mathfrak{k}$ and non-compact if $\mathfrak{g}^{\alpha} \subset \mathfrak{p}_{\mathbf{C}}$. Let Q_{+}be the set of positive roots that do not vanish identically on $\mathfrak{c}_{\mathbf{C}}$, i.e., for which $\operatorname{ad}_{\mathfrak{c}_{\mathbf{C}}}\left(\mathfrak{g}^{\alpha}\right)=\left[\mathfrak{c}_{\mathbf{C}}, \mathfrak{g}^{\alpha}\right] \neq 0$. We now consider two subspaces of $\mathfrak{p}_{\mathrm{C}}$:

$$
\mathfrak{p}_{+}=\sum_{\alpha \in Q_{+}} \mathfrak{g}^{\alpha}, \quad \mathfrak{p}_{-}=\sum_{-\alpha \in Q_{+}} \mathfrak{g}^{\alpha} .
$$

These subspaces decompose $\mathfrak{p}_{\mathbf{C}}$ as follows
Lemma 2.3. We have $\left[\mathfrak{k}, \mathfrak{p}_{+}\right] \subset \mathfrak{p}_{+},\left[\mathfrak{k}, \mathfrak{p}_{-}\right] \subset \mathfrak{p}_{-}$and $\mathfrak{p}_{\mathbf{C}}=\mathfrak{p}_{+} \oplus \mathfrak{p}_{-}$.
Proof. Clearly, if α is compact then α vanishes on \mathfrak{c} so we get $\mathfrak{p}^{+}+\mathfrak{p}^{-} \subset \mathfrak{p}_{\mathbf{C}}$. To see that \mathfrak{p}_{+}is abelian, note that if $\alpha, \beta \in Q_{+}$then $\left[\mathfrak{g}^{\alpha}, \mathfrak{g}^{\beta}\right] \subset \mathfrak{g}^{\alpha+\beta}$ and if $\alpha+\beta$ is a root then $\alpha+\beta \in Q_{+}$. But $\left[\mathfrak{p}_{+}, \mathfrak{p}_{+}\right] \in \mathfrak{k}$, so it follows that $\left[\mathfrak{p}_{+}, \mathfrak{p}_{+}\right]=0$.

What is tricky to show is that $\mathfrak{p}_{\mathbf{C}}=\mathfrak{p}_{+}+\mathfrak{p}_{-}$. Let \mathfrak{q} be the orthogonal complement of $\mathfrak{p}_{+}+\mathfrak{p}_{-}$ in $\mathfrak{p}_{\mathbf{C}}$ with respect to the killing form. Define

$$
\mathfrak{g}_{+}=\mathfrak{p}_{+}+\mathfrak{p}_{-}+\left[\mathfrak{p}_{+}, \mathfrak{p}_{-}\right] .
$$

One can check that $\mathfrak{g}_{+} \subset \mathfrak{g}_{\mathbf{C}}$ is an ideal Dimitar : Do the computation! and since $\mathfrak{g}_{\mathbf{C}}$ is simple, it follows that $\mathfrak{g}_{+}=\{0\}$ or $\mathfrak{g}_{\mathbf{C}}$. The first case is impossible (as all the roots will be compact), so we are in the second case and $\mathfrak{p}_{+}+\mathfrak{p}_{-}=\mathfrak{p}_{\mathbf{C}}$.

2.3 More on semi-simple Lie algebras

Consider a semi-simple Lie algebra $\mathfrak{g}_{\mathbf{C}}$ over C. Consider also

- $\mathfrak{g}^{\mathbf{R}}$ - the Lie algebra \mathbf{C} viewed as a real Lie algebra,
- G_{c} - any connected real Lie group with Lie algebra $\mathfrak{g}_{\mathbf{R}}$,
$-\mathfrak{u} \subset \mathfrak{g}_{\mathbf{C}}-$ a compact real form of $\mathfrak{g}_{\mathbf{C}}$,
$-\mathfrak{a} \subset \mathfrak{u}$ - a maximal abelian subalgebra,
$-\mathfrak{h}_{\mathbf{C}}=\mathfrak{a}+i \mathfrak{a}-\mathrm{a}$ (one has to prove this) Cartan subalgebra of $\mathfrak{g}_{\mathbf{C}}$.
$-\mathfrak{n}_{+}=\sum_{\alpha \in \Delta^{+}} \mathfrak{g}^{\alpha}$ - the positive nilpotent (with respect to some ordering of the roots) considered as a real Lie algebra.
- J - a complex structure on $\mathfrak{g}^{\mathbf{R}}$ that coincides with i on $\mathfrak{g}_{\mathbf{C}}$.

Then (one has to prove this - see [Hel78, Thm.VI.6.3]) there is a direct sum decomposition

$$
\mathfrak{g}^{\mathbf{R}}=\mathfrak{u} \oplus J \mathfrak{a} \oplus \mathfrak{n}_{+}
$$

Furthermore, if U, A^{*}, N_{+}are the analytic subgroups of G_{c} with Lie algebras $\mathfrak{u}, \mathfrak{a}^{*}=J \mathfrak{a}$ and \mathfrak{n}_{+}, respectively, then the multiplication map gives an analytic diffeomorphism

$$
U \times A^{*} \times N_{+} \rightarrow G_{c} .
$$

2.4 The parabolic subgroups

$\mathbf{G}(\mathbf{R}) / K$ embeds into P_{-}via the following sequence of steps

- One needs to show that the multiplication map $P_{-} \times K_{\mathbf{C}} \times P_{+} \rightarrow G_{\mathbf{C}}$ induces a diffeomorphism between $P_{-} \times K_{\mathbf{C}} \times P_{+}$and an open submanifold of $G_{\mathbf{C}}=\mathbf{G}(\mathbf{C})$ that contains $G=\mathbf{G}(\mathbf{R})$.
- One identifies $\mathbf{G}(\mathbf{R}) / K$ diffeomorphically with $\mathbf{G}(\mathbf{R}) K_{\mathbf{C}} P_{+} / K_{\mathbf{C}} P_{+}$. For this, we need to know that $K_{\mathbf{C}} P_{+} \cap \mathbf{G}(\mathbf{R})=K$. Once this is proved, consider the map $g K_{\mathbf{C}} P_{+} \mapsto g K$ for any
$g \in \mathbf{G}(\mathbf{R})$. It follows that this map is well-defined (if $g^{\prime} K_{\mathbf{C}} P_{+}=g^{\prime \prime} K_{\mathbf{C}} P_{+}$then $g^{\prime} k p_{+}=g^{\prime \prime}$ and hence, $k p_{+}=\left(g^{\prime}\right)^{-1} g^{\prime \prime} \in \mathbf{G}(\mathbf{R})$, hence $\left.K_{\mathbf{C}} P_{+} \cap \mathbf{G}(R)=K\right)$ and a bijection.
Lemma 2.4. The multiplication map $P_{-} \times K_{\mathbf{C}} \times P_{+} \rightarrow G_{\mathbf{C}}$ induces a diffeomorphism between $P_{-} \times K_{\mathbf{C}} \times P_{+}$and an open submanifold of $G_{\mathbf{C}}=\mathbf{G}(\mathbf{C})$ that contains $G=\mathbf{G}(\mathbf{R})$.
Proof. To show that the map is an injection, suppose that $q_{1} k_{1} p_{1}=q_{2} k_{2} p_{2}$, i.e.,

$$
q_{2}^{-1} q_{1}=k_{2} p_{2} p_{1}^{-1} k_{1}^{-1}
$$

The right-hand side is $k_{2} k_{1}^{-1}\left(k_{1} p_{2} p_{1}^{-1} k_{1}^{-1}\right)$ and $k_{1} p_{2} p_{1}^{-1} k_{1}^{-1} \in P_{+}$since $K_{\mathbf{C}}$ normalizes P_{+}. Hence, it suffices to show that $P_{-} K_{\mathbf{C}} \cap P_{+}=\{e\}$ to get injectivity. The latter can be seen on the level of the Lie algebra as follows: suppose that $y \in P_{-} K_{\mathbf{C}} \cap P_{+}$and let $Y \in \mathfrak{p}_{+}$such that $\exp (Y)=y$. One one hand, we can write $Y=\sum_{\alpha \in Q_{+}} c_{\alpha} X_{\alpha}$. Since $\left[\mathfrak{p}_{+}, \mathfrak{p}_{-}\right] \subset \mathfrak{p}_{-}$, it follow that $\operatorname{ad}(y): \mathfrak{p}_{-} \rightarrow \mathfrak{p}_{-}$. Let $\mathfrak{n}_{+}=\sum_{\alpha \in \Delta^{+}} \mathfrak{g}^{\alpha}$ and $\mathfrak{n}_{-}=\sum_{-\alpha \in \Delta^{+}} \mathfrak{g}^{\alpha}$ (these are nilpotent Lie algebras whose Lie groups are unipotent groups Dimitar : May need to be more precise about the latter.). Let $\beta \in Q_{+}$be the lowest root for which $c_{\beta} \neq 0$. After calculating

$$
\left[Y, X_{-\beta}\right] \equiv c_{\beta}\left[X_{\beta}, X_{-\beta}\right] \bmod \mathfrak{n}_{+}
$$

we observe that it cannot be $0 \bmod \mathfrak{n}_{+}+\mathfrak{n}_{-}$and hence, $\operatorname{ad}(Y)\left(X_{-\beta}\right) \notin \mathfrak{p}_{-}$, a contradiction. Next, a dimension count shows that the image of the map is an open submanifold of $G_{\mathbf{C}}$. Finally, we want to show that any $p \in P=\exp (\mathfrak{p})$ is in the image (which, together with $G=K P=P K$ will imply that $G=\mathbf{G}(\mathbf{R})$ is contained in the image).
Example 4. For $\mathfrak{g}=\mathfrak{s l}_{2}(\mathbf{R})$, one can compute explicitly P_{+}and P_{-}using the two non-compact root spaces. Since $\alpha=2 i$ is the positive root then the Lie algebra \mathfrak{p}_{-}is simply the root space $\mathfrak{g}^{-\alpha}$. The embedding that we get is then the Cayley transform. Dimitar : Complete the example.

2.5 The Lie algebra of $\mathrm{SL}(2, \mathrm{C})$

The Lie algebra $\mathfrak{s l}_{2}(\mathbf{C})$ of $\mathbf{S L}_{2}(\mathbf{C})$ consists of all trace-zero matrices in $M_{2}(\mathbf{C})$. A basis is given by the matrices

$$
H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad X=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad Y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

They satisfy the relations $[X, Y]=H,[H, X]=2 X$ and $[H, Y]=-2 Y$. The key point is that it is possible, given any $Z \in \mathbf{C}(X+Y)$, to decompose $\exp (Z)$ in the form $P_{-} K_{\mathbf{C}} P_{+}$via the following lemma:

Lemma 2.5. Given any $Z=t(X+Y)$ then we have

$$
\exp t(X+Y)=\exp (\tanh t Y) \exp (\log (\cosh t) H) \exp (\tanh X) .
$$

Proof.

2.6 Boundedness

- Define a maximal abelian subalgebra $\mathfrak{a}_{\mathbf{C}} \subset \mathfrak{p}_{\mathbf{C}}$ as

$$
\mathfrak{a}_{\mathbf{C}}=\sum_{i=1}^{s} \mathbf{C}\left(X_{\gamma_{i}}+X_{-\gamma_{i}}\right) \subset \mathfrak{p}_{\mathbf{C}} .
$$

Here, the vectors $X_{\alpha} \in \mathfrak{g}^{\alpha}$ are chosen such that

$$
X_{\alpha}-X_{-\alpha}, \quad i\left(X_{\alpha}+X_{-\alpha}\right) \in \mathfrak{u}_{\mathbf{C}}:=\mathfrak{k} \oplus i \mathfrak{p}, \quad\left[X_{\alpha}, X_{-\alpha}\right]=2 / \alpha\left(H_{\alpha}\right) H_{\alpha}
$$

Shimura Varieties

the latter being the compact form of $\mathfrak{g}_{\mathbf{C}}$.

- If the X_{α} 's are chosen as above then

$$
\mathfrak{a}=\sum_{i=1}^{s} \mathbf{R}\left(X_{\gamma_{i}}+X_{-\gamma_{i}}\right) \subset \mathfrak{p} .
$$

- Suppose that $Z \in \mathfrak{a}$ and write

$$
Z=\sum_{i=1}^{s} t_{i}\left(X_{\gamma_{i}}+X_{-\gamma_{i}}\right)
$$

Using some nested commutator relations (à la Campbell-Hausdorff formula), one can show that

$$
\begin{equation*}
\exp (Z)=\exp (Y) \exp (H) \exp (X) \tag{1}
\end{equation*}
$$

where $Y=\sum_{i=1}^{s}\left(\tanh t_{i}\right) X_{-\gamma_{i}}, H=\sum_{i=1}^{s} \log \left(\cosh t_{i}\right)\left[X_{\gamma_{i}}, X_{-\gamma_{i}}\right]$ and $X=\sum_{i=1}^{s}\left(\tanh t_{i}\right) X_{\gamma_{i}}$. Since $\exp (X) \in P_{+}, \exp (H) \in K_{\mathbf{C}}$ (since $H \in \mathfrak{h}_{\mathbf{C}} \subset \mathfrak{k}_{\mathbf{C}}$), so we compute that

$$
\log \xi(a)=\sum_{i=1}^{s}\left(\tanh t_{i}\right) X_{-\gamma_{i}} \in \mathfrak{p}
$$

Remark 1. What helped in explicitly determining $\xi(a)$ was the fact that the Lie subalgebra generated by $X_{\gamma_{i}}, X_{-\gamma_{i}}, H_{\gamma_{i}}$ is isomorphic to the Lie algebra $\mathfrak{s l}_{2}(\mathbf{C})$ and for the latter, one can compute the decomposition (11) explicitly.

To understand why the image is bounded once we know that $P_{+} \cdot K_{\mathbf{C}} \cdot P_{-} \rightarrow \mathbf{G}_{\mathbf{C}}$ is injective and contains $\mathbf{G}(\mathbf{R})$ in its image, we use the following

Lemma 2.6. Given $x \in \mathbf{G}(\mathbf{R})$, let $\xi(x)$ be the unique element of P_{-}such that $x \in P_{+} K_{\mathbf{C}} \xi(x)$. Then $\|\log |\xi(x)|\|$ is bounded as x varies through $\mathbf{G}(\mathbf{R})$.

Proof. We prove it using the following steps:

- Consider a Cartan decomposition $\mathbf{G}(\mathbf{R})=K A K$ for some analytic subgroup A with Lie algebra \mathfrak{a}.
- Take $x \in \mathbf{G}(\mathbf{R})$ and write it as $x=k a k^{\prime}$. Then express $\xi(x)$ in terms of $\xi(a)$.

Dimitar: Define and discuss a.

3. Complex Structures on Homogeneous Spaces and the Borel-Weil Theorem

References

Hel78 S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press Inc., New York, 1978.

