
Hodge Structures and Shimura Data

It is interesting to understand when the example of GL2(R) acting on the Hermitian symmetric
space C − R or Sp2g(R) acting on Hg, or U(p, q) acting on X (from the last lecture) can be
extended to more general reductive algebraic groups G. In order to do this, one needs to extract
the essential features of the domains. So far, the only common description of these domains was
via G(R)+-conjugacy classes of morphisms S → G from the circle group S (considered as a real
algebraic group) to the real algebraic group G.

If G is an arbitrary reductive group and h : S→ GR is an arbitrary morphism of real algebraic
groups then the orbit space Xh = G(R)+h for the conjugation action of G(R)+ will always have the
structure of a real manifold, but will rarely have a Hermitian structure (i.e., structure of a Hermitian
symmetric domain). We will thus attempt to understand how to axiomatize the properties that will
not only make this orbit space a Hermitian symmetric space, but it will also give it a certain moduli
interpretation.

The main idea is that Xh can be viewed as a moduli space of Hodge structures for a certain
algebraic representation of G(R). Indeed, if ρ : G(R)→ GL(V ) is any algebraic representation of
of the group of real points on G then for any h′ ∈ Xh, one can considers the representation ρ ◦h′ as
a representation of the circle group. This yields a family of Hodge structures as h′ ∈ Xh varies. It
will turn out that for an algebraic representation ρ, a lot of the properties of this family of Hodge
structures is determined by the properties of the same family when ρ is the adjoint representation
on the Lie algebra Lie(G)C and by the corresponding weight space decomposition for this action.
This allows us to axiomatize the properties of Xh in a way that is more intrinsic to the group G.

This is the original point of view of Deligne that led to the formulation of the precise axioms
for a Shimura datum. We will thus look for specific conditions on G and h that give an intrinsic
description of the problem of the existence of a complex structure on Xh.

1. More on GL2(R)

– For any h′ ∈ Xh, h′(C×) ⊂ GL2(R) is a non-split Cartan subgroup.

– Show that ZGL2(R)(h
′(C×)) = h′(C×) for any h′ ∈ Xh.

– Calculating the normalizer NGL2(R)(h
′(C×)). It is R×K0

∞ where K∞ is the unique maximal
compact subgroup of GL2(R) whose identity component K∞ is the circle in h′(C×).

1.1 The case of GL2

1.1.1 C − R as a homogeneous space for GL2(R). GL2(R) acts on C − R by linear fractional
transformations. The following exercise shows that one can identify (non-canonically, by choosing a
base point from C−R) C−R with GL2(R)/Z(R)K0

∞ where K0
∞ is the component at the identity

of some maximal compact subgroup K∞ ⊂ GL2(R).

Consider Homalg(C×,GL2(R)). One can show that any two such maps are conjugated under
GL2(R) (this follows from, e.g., the Skolem-Noether theorem). Here, G = GL2(R).
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1.1.2 Weight space decomposition. Suppose that the circle group S = S(R) acts continuously on
a finite dimensional C-vector space V . We then get a weight decomposition of V as follows:

V =
⊕
n

Vn, Vn = {v ∈ V : z · v = znv, ∀z ∈ S}. (1)

It is instructive to compute the weight decomposition in several examples.

1.1.3 Computing the weight spaces for the action of S = S(R) on gC. To compute the weight
spaces for the action of S on the 4-dimensional Lie algebra gC = gl2,C, consider the closed subgroup
h(C×) ⊂ GL2(R). It gives us a 2-dimensional Lie subalgebra of gl2,C. Since h(C×) commutes with
h(S), this Lie algebra is contained in V0. Next, we discuss the following exercise:

Exercise 1. The action of h(C×) on V = gl2,C is non-trivial, i.e., there are non-trivial weight spaces
in the weight decomposition (1).

The exercise implies that there exists some r > 0 such that V = V0 ⊕ Vr ⊕ V−r. One can go further
and compute the r by observing that for any z ∈ S(R), the matrix h(z) is diagonalizable with

eignevalues z and z−1, hence, in the basis of eigenvalues, ad(h(z)) is conjugation by

(
z 0
0 1/z

)
, i.e.,

(
z 0
0 1/z

)(
a b
c d

)(
z 0
0 1/z

)−1

=

(
a z2b

z−2c d

)
.

From here, we see the two eigenspaces (with respect to the above eigenbasis):

(
0 ?
0 0

)
has eigenvalue

z−2 and

(
0 0
? 0

)
has eigenvalue z2, i.e., r = 2.

1.1.4 For any h, ZGL2(R)(h) ∩ SL2(R) is a maximal compact subgroup.

2. Hodge Structures and Representations of C× on Real Vector Spaces

2.1 Hodge structures

A Hodge structure can be thought of as a generalization of a complex structure.

Definition 2.1 (Hodge structure). Let V be an R-vector space and let VC = V ⊗R C. A Hodge
structure on V is a decomposition

VC =
⊕
p,q

V p,q,

such that V p,q are complex vector spaces for which V q,p = V p,q where for a complex vector space
W , W indicates the complex vector space with the conjugated linear action, i.e., the map W →W ,
given by α⊗ w 7→ α⊗ w for α ∈ C and w ∈W .

Given a Hodge structure on V , one can consider the associated Hodge filtration:

F p =
⊕

p′>p, q∈Z
V p,q.

2.2 Examples

2.2.1 Hodge structures as generalizations of complex structures. One can think of a complex struc-
ture as a Hodge structure as follows: suppose that V is an R-vector space such that dimR V is even

2



Shimura Varieties

and suppose that V has a C-linear structure. Let V denote complex vector space having the same
underlying real vector space, but the conjugate C-linear structure.

Exercise 2. Show that the map

VC := C⊗R V → V ⊕ V , α⊗ v 7→ (αv, αv).

is an isomorphism (use that that C⊗R C 7→ C×C, x⊗y 7→ (xy, xy) is an isomorphism of complex
vector spaces where the complex structure on the target is given by α(x, y) = (αx, αy)).

We thus have a decomposition VC = V ⊕ V where

V = {v ∈ VC : z · v = z−(−1)v,∀z ∈ C×}, V = {v ∈ VC : z · v = z−(−1)v,∀z ∈ C×},

i.e., we have a Hodge structure of type {(−1, 0), (0,−1)} (in other words, V −1,0 = V and V 0,−1 = V ).

Exercise 3. Show the converse, i.e., V is a real vector space then a Hodge structure VC = V −1,0⊕
V 0,−1 of type {(−1, 0), (0,−1)} yields a complex structure on V .

2.2.2 Hodge structure on deRham cohomology. Consider a smooth, proper variety Y over C and
consider the deRham cohomology V = Hn(Y (C),R). There is a natural Hodge filtration on VC
coming from the complex structure on Y (C). Intuitively, F p is the space generated by C-valued
differential forms that locally are wedge products of n differential 1-forms dz at least p of which
must be holomorphic (i.e., dzi). This gives us a Hodge filtration {F p} for which F 0 = Hn(Y (C),C),
Fn containing the space H0(Y (C),Ωn

Y (C)) and Fn+1 = 0.

In particular, if E is an elliptic curve then F 0 = VC = Hn(Y (C),C), F 1 = H0(E(C),Ω1
E(C)) is

the space of regular (holomorphic) differential 1-forms on E(C) and there is an exact sequence

0→ F 1 = H1(E(C),Ω1
E(C))→ F 0 = H1(E(C),C)→ H1(E(C),OE(C))→ 0.

The latter cohomology group is also H1(E,OE).

Remark 1. The fact that V p,q = F p∩F q is a Hodge structure that is pure of weight n is not obvious.
One needs to either use harmonic forms, or find an algebraic proof (a theorem of Deligne–Illusie).
Yet, V p,q is canonically isomorphic to Hq(Y (C),Ωp

Y (C)).

2.2.3 Tate twists. Consider the Tate twist Z(1) = ker{exp: C→ C×}. We make this pure of weight
−2 by declaring C(1)−1,−1 = C(1). With this convention, the Hodge filtration is very simple:

F p =

{
V if p < 0

0 if p > 0.

Similarly, we get a Hodge structure for Z(n) := Z(1)⊗n that is pure of weight −2n by declaring that
C(n)−n,−n = C(n). Here, we have F p = V for p < −n+ 1 and F p = 0 for p > −n+ 1. Now, if Y/C
is a smooth, proper and connected algebraic variety then we have an isomorphism of integral pure
Hodge structures of weight 2n, H2n(Y (C),Z) ∼= Z(−n) (just think of top C∞-differential form on
an n-dimensional complex manifold as having bidegree (n, n) the form dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn).
Finally, if V is an R-vector space equipped with a Hodge structure then V (n) = V ⊗C C(n) has a
Hodge structure satisfying V (n)p,q = V p+n,q+n.

3. Parametrizing Hodge Structures

Let X denote (as usual), a G(R)-conjugacy class of embeddings h : C× → GR. We would like that
the points on the space X encode information about Hodge structures on V in the following sense
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of Deligne: if ρ : G(R) → GL(V ) is any algebraic representation and h ∈ X is any point then
we would like that ρ ◦ h : C× → Aut(V ) is a Hodge structure in the following sense (normalized
following the convention of [Del79]):

VC =
⊕
p,q

V p,q, V p,q = {v ∈ VC : (1⊗ ρ ◦ h(z))v = z−pz−qv}.

Under this identification, the Hodge structure determined by h and ρ is pure of weight n if and only
if ρ|R×(x)v = x−nv for all x ∈ R×.

In general, there is a weight decomposition coming just from the (algebraic) action of R× on V :

V =
⊕
n∈Z

Vn,h, Vn,h = {v ∈ V : ρR ◦ h|R×(x)(v) = xnv ∀x ∈ R×}.

Deligne’s philosophy was to express properties for these Hodge structures arising from any fixed
representation by just looking at the Hodge structures corresponding to the adjoint representation.
One cannot expect that this is possible for an arbitrary X, so we now start (using the notion of
variation of Hodge structure) to study what extra conditions are necessary.

3.1 Towards a family of Hodge structures

3.1.1 The weight homomorphism. We first would like to know when the weight spaces Vh,n are
independent of h for any algebraic representation ρ : G(R) → Aut(V ). In order for this to occur,
we need the restriction h|R× : R× → G(R) to be independent of h. We next provide a group-
theoretic description for the latter to occur:

Proposition 3.1. The subspaces Vh,n are independent of h ∈ Xh and ρ : G(R) → Aut(V ) if and
only if the algebraic morphism wh : GL1,R → GR is independent of h. The latter is equivalent to
the image of wh being contained in the center ZG,R of GR for some (equivalently, all) h.

The proof will rely on the following exercise:

Exercise 4. For any morphism of real algebraic groups GL1,R → GL(V )R, there is a unique
GL1(R)-stable decomposition V =

⊕
Vn, where GL1(R) acts on Vn by the nth power, i.e., x · v =

xnv.

Proof of Prop. 3.1. Let wh be as above and let for g ∈ G(R), wg,h := gwhg
−1. Using the above exer-

cise, we note that if Vh,n’s are independent of h then for all g ∈ G(R), ρ(wg,h) = ρ(g)ρ(wh)ρ(g)−1.
Taking a faithful representation ρ, we obtain that G(R) centralizes wh(x) for all x ∈ R×, i.e.,
gwh(x)g−1 = wh(x). Now, G(R) is Zariski dense in GR, hence the centralizer of G(R) is ZG in the
sense of algebraic group. Now, since GL1(R) is Zariski dense in GL1,R, wh yields a morphism of
algebraic groups wh : GL1,R → ZG,R.

Using the lemma, we obtain a homomoprhism w : GL1 → ZG called the weight homomorphism,
independently of the choice of h ∈ X.

3.1.2 Interpretation in terms of the adjoint representation. Choosing the adjoint representation
ρ = ad: G(R)→ Aut(g), a different way of stating the above proposition is that R× acts trivially
on the “real” Lie algebra g. Another way of saying this is that the algebraic action C× → Aut(g)
yields an action of R× that is pure of weight 0. Dimitar : This is exactly what we mean when we

say that Deligne’s philosophy is to deduce properties of Hodge structures for a general ρ from

those for the adjoint representation. This naturally gives us the first desired condition (axiom)

for the pair (G, X):
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Property 0: For (G, X), the induced Hodge structure on g is pure of weight 0.

Remark 2. The above weight 0 should not be confused with the weight of the Hodge structures
corresponding to the elements h ∈ X. Indeed, consider the case V = R2, VC = C2, G = GL2 and

X being the GL2(R)-conjugacy class of the embedding h : C× → GL2(R), z = a+ ib 7→
(
a b
−b a

)
.

In this case, the Hodge structure corresponding to h is pure of weight -1 according to Deligne’s
convention. Indeed,

V p,q = {v ∈ VC : z · v = z−pz−qv, ∀z ∈ C×},
so x ∈ R× acts on V p,q by multiplication by x−(p+q). On the other hand, h(x) = mtwoxx, so h(x)
acts on VC by multiplication by x, i.e., x · v = x−(−1)v. This means that the weight of the Hodge
structure given by h is -1.

3.1.3 The Hodge structure for the adjoint representation in the case of G = GL2. For the G =
GL2(R), the above property is satisfied. In fact, adGL2(R) ◦h yields a Hodge structure on g given
by

gC = g1,−1 ⊕ g−1,1 ⊕ g0,0, dim g1,−1 = dim g−1,1 = 1, dim g0,0 = 2.

We say that the Hodge structure is of type {(−1, 1), (0, 0), (1,−1)}.
Note that so far, we have only used the action of R× (related to the weight decomposition) and
have not done anything analysis with the actual Hodge structures or the complexification VC.

4. Motivation via Kähler manifolds

In order to better understand and define a suitable notion of a “family” of Hodge structures (and
subsequently motivate Deligne’s axioms of a Shimura datum), we need to look into how Hodge
structures arise from the cohomology of the fibers of certain families of complex manifolds. These
important manifolds in differential geometry carry the three structures (Riemannian, symplectic
and hermitian) in a mutually compatible way. It is the cohomology of these manifolds that will
naturally give rise to the properties that we will abstract in the next section to define variation of
Hodge structures and Shimura data.

Our working example will be the case of K3 surfaces and as we will check, where we will get a
moduli space of polarized Hodge structures for the orthogonal group O(2, 19).

4.1 Kähler manifolds and cohomology

A Kähler manifold is a manifold X that is simultaneously symplectic, Riemannian, complex and
hermitian in a mutually compatible way. That is, for each p ∈ X, there is a symplectic form
ω :
∧2 TpX → R such that ω(Ju, Jv) = ω(u, v) where J : TpX → TpX is the complex structure. In

addition, ω is required to be closed (by the definition of a symplectic manifold) which means that
ω gives us a class [ω] ∈ H2

dR(X,C).

Definition 4.1 (Kähler manifold). A symplectic manifold (X,ω) is called Kähler if it has an
integrable almost-complex structure Jp : TpX × TpX → C that is compatible with the symplectic
form ω :

∧2 TpX → C in the sense that ω(Ju, Jv) = ω(u, v).

The associated Hermitian form is called a Kähler metric. In differential geometry, examples of
Kähler manifolds are K3 surfaces (it is a theorem of Siu that they are Kähler) and Calabi–Yau
manifolds.
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Remark 3. It is not very often the case that a compact Kähler manifold admits the structure of a
projective variety. In fact, if this is the case then we can see that [ω] ∈ H2(X,Z) since [ω] is the
class of any hyperplane section in Pn. There is a converse to this statement known as Kodaira’s
embedding theorem [Voi02, Thm.7.11]. For complex tori A = V/L (V is a g-dimensional complex
vector space), H2(A,Z) = Hom(

∧2 V,Z) and hence, H2(A,R) = Hom(
∧2 V,R). The Kähler class

then corresponds to a form ω :
∧2 V → R and this, Kodaira embedding theorem says precisely

that A is algebraic if ω|Λ×Λ takes values in Z (this is a restatement of the fact of the classical
“algebraicity of a complex torus” statement that A is an abelian variety if and only if there exists
a Riemann form on A).

4.1.4 Hodge decomposition on the cohomology of a Kähler manifold. The theory of harmonic forms
allows us to show that the cohomology of Kähler manifolds comes equipped with a Hodge decom-
position, namely

Hk(X,C) =
⊕
p+q=k

Hp,q .

This is a consequence of the fact that harmonic forms decompose into forms of type (p, q) under
the natural action of complex conjugation on Hk(X,R)⊗C. As a consequence, if k is odd then the
Betti number bk must be even.

4.1.5 A non-Kähler surface. Consider the Hopf surface X obtained by quotienting C2−{(0, 0)} by

the action of Γ = Z via (z1, z2) 7→
(

1

2
z1,

1

2
z2

)
. We can compute H1(X,Z) by using that C2−{0, 0}

is simply connected and π1(X) = Z. To compute the Betti numbers, one could either use Hurewitz
theorem or note that X is diffeomorphic to S3 × S1 as follows:

C2 − {0, 0} → S3 ×R>0 → S3 ×R,

where the first map is z 7→ (z/‖z‖, ‖z‖) and the second map is (z, r) 7→ (z, log r). By taking the
quotients, we obtain

X = (C2 − {(0, 0)})/Γ = S3 ×R/Z log 2 ∼= S3 × S1.

Künneth’s formula then allows us to compute the Betti numbers b0 = b1 = b3 = b4 = 1 and b2 = 0.
Since b1 is odd, X cannot be a Kähler manifold.

4.1.6 Lefschetz operator and Poincaré duality. This is given by cup product with the Kähler class
[ω] ∈ H2(X,R):

L : Hk(X,R)→ Xk+2(X,R), α 7→ α ∪ [ω], α ∈ Hk(X,R).

The Poincaré duality gives us a perfect pairing

〈 , 〉 : H2n−k(X,R)⊗Hk(X,R)→ R, (2)

and the Hard Lefschetz theorem says that Ln−k : Hk(X,R) → H2n−k(X,R) is an isomorphism
whenever k 6 n.

4.1.7 Primitive cohomology. The primitive cohomology in degree k is defined as

Hk
prim(X,R) = ker{Ln−k+1 : Hk(X,R)→ H2n−k+2(X,R)}.

For instance, if X is a K3 surface and if k = 2 then H2
prim(X,R) ⊂ H2(X,R) is the orthogonal

complement of the Kähler class [ω] ∈ H2(X,R) under the pairing (2).
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4.1.8 Lefschetz decomposition and Hodge index theorem. If k 6 n then there is an intersection form
Ψ on Hk(X,R) given by

Ψ: Hk(X,R)×Hk(X,R)→ R, Ψ(α, β) =

∫
ωn−k ∧ α ∧ β.

It is easily checked to be symplectic bilinear when k is odd and symmetric bilinear when k is even.
Another way of writing it is as Ψ(α, β) = 〈Ln−kα, β〉. There is an associated Hermitian form on
Hk(X,C) given by H(α, β) = ikΨ(α, β). Another decomposition of the cohomology in degree k is
the Lefschetz decomposition:

Hk(X,C) =
⊕
2r6k

Lr Hk−2r
prim (X,C).

Finally, the subspaces Hp,q(X) ⊂ Hk(X,C) are orthogonal for the Hermitian form Hk and the
Hermitian form (−1)k(k−1)/2ip−q−kHk is positive definite on the subspace

Hp,q
prim(X) = Hk

prim(X) ∩Hp,q(X).

The latter is a consequence of what is known as the Hodge index theorem [Voi02, §6].

4.2 Intersection forms, polarizations and integral polarized Hodge structures

The computation of the signature of H via the Hodge index theorem motivates the following general
definition of an integral polarized Hodge structure:

Definition 4.2 (Integral polarized Hodge structure). An integral polarized Hodge structure that
is pure of weight k is a Z-module VZ equipped with a symmetric (resp. alternating) bilinear pairing

Ψ: VZ × VZ → Z

if k is even (resp., odd), together with a Hodge decomposition VC =
⊕
V p,q that is pure of weight

k such that if

H : VC × VC → C, H(α, β) = ikΨ(α, β)

is the associated Hermitian form then the V p,q are orthogonal with respect to H.

Remark 4. The definition is apparently motivated by the case of a Kähler manifold X where
VZ = Hk(X,Z) and Ψ(α, β) =

∫
ωn−k ∧ α ∧ β begin the intersection pairing which is 1) symmetric

if k is even; 2) symplectic if k is odd.

4.2.9 Period maps and period domains. Let f : X → S be a morphism of complex manifolds and
suppose that for every s ∈ S, Xs is a Kähler manifold. The cohomology Hi(Xs,Z) gives us a local
system L = Rif∗(Z) on S (a locally constant sheaf of abelian groups). If S is connected, we get a
representation ρ : π1(S, s)→ Aut(Ls), where Ls is that stalk of F at s.

For a given s ∈ S let V = Hk(Xs,R) and let r : s 7→ s′ be a path (or more precisely, a homothety
class of paths) in S connecting s and s′. We can get different Hodge structures on the base vector
space V by taking paths (up to homothety) and transporting the corresponding Hodge structure
on the Känler manifold Xs′ to V via the map ρ(r) : Ls′ → Ls. That way, for each homothety class
of paths, we are getting a Hodge structure, so we get a (period) map π : S̃ → D where S̃ is the
universal covering space of S (i.e., the space of homothety classes of paths) and D is a domain
whose points correspond to Hodge structures on V of the same type as the Hodge structure coming

from Xs. This map measures the behavior of the period integrals

∫
γs

ωs where the cycle γs and the

k-form ωs of type (p, q) vary continuously with s.
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Example 1. Consider the famous parameter space for elliptic curves S = P1(C)− {0, 1,∞} known
back to Legendre (the Legendre parametrization of elliptic curves), namely, for each λ ∈ S, we
look at the elliptic curve Eλ : y2 = x(x − 1)(x − λ). The homology H1(Eλ,Z) is generated by two
loops: α around {0, 1} and β around {λ,∞}. This gives identification with Z2 of the polarized
Hodge structure coming from the lattice Lλ = H1(Eλ,Z). We have the Hodge decomposition VC =
V 1,0 ⊕ V 0,1 into holomorphic and anti-holomorphic differentials. The 1-dimensional C-vector space
V 1,0 is generated by ω = dx/y. The universal covering space of S is known to be the Poincare
upper-half plane H1. Indeed, the covering map H1 → S is given by the modular λ-function and the
symmetry group is π1(S) = Γ(2) ∼= F2. The period map is thus

H1 → D, λ 7→

(∫ 1

0

dx√
x(x− 1)(x− λ)

,

∫ ∞
λ

dx

x(x− 1)(x− λ)

)
∈ C2.

The ratio of the two periods turns out to be precisely λ ∈ H1, so the period map

π : S̃ = H1 → H1 = D
is the trivial map.

4.2.10 Variation of Hodge structures. The more general definition of variation of Hodge structures
from last time was not sufficiently well-motivated. The reason we do the digression on Kähler
manifolds is to motivate it naturally. Indeed, starting from a morpshim f : X → S as above (each
fiber Xs is a compact Kähler manifold), we get a “family” of Hodge structures on S coming from the
standard Hodge structures hs = {Hp,q(Xs)}. In addition, if we restrict to the primitive cohomology
Hk

prim(Xs,R) ⊂ Hk(Xs,R), we also get an integral polarized Hodge structure. If we start with the
period maps that we saw last time, namely,

ϕ : S → Grd1,...,dr(VC), s 7→ F •(hs).

then one can show that these satisfy the following two properties:

– (Holomorphicity): ϕ is holomorphic [Voi02, Thm.10.9],

– (Griffiths’ transversality): The image of

dϕ : TsS 7→ TF •(hs) Grd1,...,dr(VC)

is contained in
⊕
p

Hom(F p(hs), F
p−1(hs)/F

p(hs)) [Voi02, Prop.10.12].

Thus, variations of Hodge structures arise very naturally as generalizations of families of Kähler
manifolds and their associated Hodge structures. We will not give a proof of Griffiths transversality
here, but will try to spell out some of the details in the example below (which is relevant when we
talk about Shimura varieties of orthogonal type).

4.2.11 Example: domains of orthogonal type. The following exercise will be very relevant for the
later discussion of Shimura varieties for orthogonal groups:

Exercise 5. Let V be an R-vector space of dimension n and let ψ : V × V → R be a symmetric
bilinear form.

(i) Show that if V has a polarized Hodge structure {V p,q} of weight 2 then the signature of the
quadratic space (V, ψ) is (2h2,0, n− 2h2,0) where h2,0 = dimV 2,0. Thus, if h2,0 = 1 (this occurs for,
e.g., Hodge structures for K3 surfaces), the signature is (2, n− 2).

(ii) Show that in the case h2,0 = 1, the polarized Hodge structures are parametrized by the
domain

Dn = {u ∈ P(VC) : ψ(u, u) = 0, ψ(u, u) > 0}.
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This particular description of D helps us easily write down the Hodge structure corresponding to
u ∈ P(VC): namely, V 2,0 = u, V 1,1 = (u ⊕ u)⊥ and V 0,2 = u, so one easily checks that the Hodge
filtration is F 0 = VC, F 1 = u⊥, F 2 = u. I will not do it in detail, but rather leave it as a homework.

Exercise 6. Using the fact that a section for the line bundle determined by F 2
u is a choice of a

point u(t) = (u1(t), . . . , un(t)) on the line u for each fiber, show (using the fact that Ψ(u, u) = 0)
that the derivative of u(t) lands in F 1

u/F
2
u .

We will now try to compute the period map. Consider smooth quartic surfaces in P3, i.e., quartics
given by a homogeneous polynomial f with deg f = 4. The projective space of quartic surfaces in

P3 has dimension

(
4 + 4− 1

4− 1

)
− 1 = 34. The space of non-singular projective quartic surfaces is

thus an open subset U ⊂ P34 (and is also a subspace of the moduli space of K3 surfaces). The
group PGL4(C) (having dimension 15) acts on U and hence, the moduli space of smooth quartics
has dimension dimU/PGL4(C) = 34− 15 = 19. The first computation (which we omit) is showing
that if X is any smooth quartic surface in P3 (in particular, a K3 surface), then H1(X,Z) = 0,
L̃ = H2(X,Z) is torsion-free and rank H2(X,Z) = 22. We get a Hodge decomposition:

H2(X,C) = H2,0(X,C)⊕H0,2(X,C)⊕H1,1(X,C),

where dim H2,0(X,C) = dim H0,2(X,C) = 1 and dim H1,1(X,C) = 20. So far, this Hodge structure
is not polarized. Yet, by considering the primitive cohomology H2

prim(X,C), we get an integral (by

taking Z-coefficients) polarized Hodge structure (21-dimensional lattice) L ⊂ L̃ of type h2,0 = 1 =
h0,2 and h1,1 = 19. We thus get the period map

{smooth quartics in P3} ∼= U/PGL4(C)→ D21 = {polarized Hodge structures of type (1,1,19)}.

By Torelli’s theorem for K3 surfaces proved by Piatetskii-Shapiro and Shafarevich [Voi02, Thm.7.21],
this map is an open immersion (this is similar to the case of abelian varieties where the isomorphism
class of an abelian variety over C is determined by the period matrix; here, we integrate 2-forms).

5. Axiomatic Description of Shimura Data

Let G be a reductive group over Q. We start with an algebraic morphism h : Gm,R → GR and as
before, let X denote the G(R)-conjugacy class of this morphism. Let Kh ⊂ G(R) be the centralizer
of h. Then the orbit map identifies X ∼= G(R)/Kh. We would like to study when one can put a
complex structure on X.

Example 2. Recall that for the case of unitary groups, we had Xh
∼= U(p, q)/U(p) × U(q) where

h(a) ∈ GU(p, q) was defined as the endomorphism a · (v+ + v−) = av+ + av−.

Now, suppose that ρ : G(R) → GL(V ) is any representation and h : S → GR is any algebraic
homomorphism. Then the composition ρ ◦ h is a representation of the circle group, hence, we can
use the description from the previous handout to get a Hodge structure corresponding to h.

5.1 The Hodge structure corresponding to h

5.2 Variation of Hodge structures

What we would like to do is the following: suppose that we fix the weight n and the Hodge numbers
hp,q = dimV p,q for all (p, q) with p + q = n. Let S be the moduli space of all polarized Hodge
structures Dimitar : Define polarized with these discrete invariants. We would like to address the

following question:
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Question 5.1. Is there a family X → S such that for any s ∈M the Hodge structure corresponding
to s is the middle cohomology of the variety Xs?

5.3 Hermitian symmetric domains as parameter spaces for certain Hodge structures

We would like to fix an R-vector space V and consider Hodge structures on V parametrized by the
points on some base S that is a complex manifold. This means that for any s ∈ S, we have a Hodge
structure of weight n that we denote by hs = {V p,q

s }p+q=n. We would like these Hodge structures
to vary continuously in the following sense:

– dimV p,q
s = d(p, q) is constant,

– dp,q : S → Grd(p,q)(V ), s 7→ V p,q
s is continuous.

Moreover, we would like some holomorphicity condition. Dimitar : State it precisely. With these

in mind, we can define what it means for a family of Hodge structures {hs}s∈S to be a variation of
Hodge structure.

5.4 Griffiths transversality

Assume that the datum (G, X) satisfies Property 0. Take any algebraic representation ρ : G(R)→
Aut(V ) on a real vector space V . There is a weight decomposition V =

⊕
Vn such that Vn,C is the

weight-n part of the Hodge decomposition VC =
⊕
V p,q corresponding to ρ ◦ h for any h. For each

n, for each h ∈ X and each ρ, we consider the Hodge filtration {F pn(h, ρ)}. We would like to study
the variation of this Hodge filtration as we vary h ∈ X.

Dimitar : Assume the existence of a holomorphic structure on X for the moment.

Consider the holomorphic vector bundle Hn(ρ) = X × Vn,C and the subbundle Fpn(ρ) ⊂ Hn(ρ)
whose fibers are the spaces F pn(h, ρ) ⊂ Vn,C. It turns out that there is a very special condition
making this decreasing chain of subbundles holomorphic (recall that an n-dimensional holomorphic
bundle over a complex manifold X is a vector bundle π : E → X such that the total space E is a
complex manifold and π is holomorphic; equivalently, the trivialization maps π−1(U) ∼= U ×Cn are
biholomorphic and the transition maps tU,V : U ∩ V → GLn(C) are holomorphic).

5.4.12 Intuitive idea (motivation for Griffiths transversality).

– If f : Y → S is a morphism of smooth algebraic varieties then one can consider the cohomology
of the fibers Hn(Ys,C) and the associated Hodge structure. By homological methods, the Hodge
filtration yields a filtration on relative deRham cohomology

Hn
dR(Y/S) = Rnf∗(f

−1OS) ∼= Rnf∗(C)⊗C OS ,

by OS-submodules Fp.
– Ehresmann’s theorem: Hn(Ys,C) are locally constant.

– Yet, the complex structures on the fibers may vary. This can be detected by studying the Hodge
structures on the fibers Hn(Ys,C). Mapping a point to the corresponding Hodge filtration gives
us a map from S to the flag variety corresponding to the Hodge filtration {Fp}.

– Griffiths transversality: a property satisfied by these filtrations with respect to the first
derivative

∇ = 1⊗ d : Hn
dR(X/S)→ Hn

dR(X/S)⊗OS
Ω1
S .

5.4.13 Formal statement. Here, we will state the theorem and will prove it and explain in in more
detail in the next section.
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Shimura Varieties

Theorem 5.2 (Griffiths transversality). Setting as above. Assume that the vector subbundles
{Fpn(ρ)} are holomorphic. If ∇ρ = 1 ⊗ d : Vn,C ⊗C OX → Vn,C ⊗C Ω1

X = Hn(ρ) ⊗OX
Ω1
X is the

derivation map then

∇ρ(Fpn(ρ)) ⊂ Fp−1
n (ρ) (Griffiths transversality)

if and only if for every h, the weight zero Hodge structure {V p,−p
h }p∈Z on g associated to the adjoint

representation AdG(R) ◦ h is of type {(1,−1), (0, 0), (−1, 1)}. In addition, the latter is equivalent to
the transversality condition holding for a single ρ that is faithful.

6. Variations of Hodge structures and Hermitian symmetric domains

6.1 Flag varieties

Here, V = VC will be a complex vector space. Fix a sequence of integers n = d0 > d1 > · · · > dr > 0
and consider Grd0,d1,...,dr(V ) to be the set of flags F : V ⊃ V 1 ⊃ V 2 ⊃ · · · ⊃ V r ⊃ 0.

6.1.14 Grd1,...,dr(V ) as an algebraic variety. Recall that map

W 7→
d∧
W : Grd(V )→ P(

d∧
V )

embeds the Grassmannian as a closed subset of P(
∧d V ), hence Grd(V ) is a projective variety. For

general flags, consider

F 7→ (Vi) : Grd1,...,dn(V ) ↪→
∏
i

Grdi(V ) ⊂
∏
i

P(

di∧
V ).

6.1.15 The tangent space at a flag. Given a flag V ⊃ V 1 ⊃ V 2 ⊃ · · · ⊃ V r ⊃ {0}, the tangent
space at this flag is defined as all sequences {φi ∈ : V i → V/V i : i = 1, . . . , r} such that

φi|V i+1 ≡ φi+1 mod Vi, i = 1, . . . , r − 1.

This can be easily seen if we think of the flag variety Grd1,...,dr(V ) as a homogeneous space: indeed,
choosing a flag F • gives us an identification GL(V )/PF •(V ), where PF •(V ) ⊂ GL(V ) is the
parabolic subgroup fixing the flag F •. The tangent space TF • Grd1,...,dr(V ) is then the quotient of
the two Lie algebras, i.e., gl(V )/pF •(V ), where pF•(V ) = EndF •(V ) = {φ : V → V : φ(V i) ⊂ V i} is
the Lie algebra of the Lie group PF •(V ) (considered as a Lie group over C).

6.2 Variation of Hodge structures

If S is a connected complex manifold whose points correspond to Hodge structures that vary con-
tinuously, i.e., we have {hs}s∈S , where hs = {V p,q

s } is a Hodge structure on V that is pure of a
fixed weight n. In particular, suppose that the dimension of the corresponding Hodge filtrations are
constant, i.e., dimF ps = dp for 1 6 p 6 r. This gives us a holomorphic map

ϕ : S → Grd1,...,dr(V ), ϕ : s 7→ F •s

and so, an induced map on tangent spaces

dϕs : TsS → TF •s ⊂
r⊕
p=1

Hom(F ps , V/F
p
s ).

A quick observation is that ϕ is injective (this follows from the purity condition since V p,q = F p∩F q,
i.e., the Hodge filtration recovers uniquely the Hodge structure whenever the Hodge structure is
pure).
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Definition 6.1 (Variation of Hodge structures). We say that {hs}s∈S is a variation of Hodge

structures if the image of the above map dϕs lands in
r⊕
p=1

Hom(F ps , F
p−1
s /F ps ), i.e., if any first-order

direction in S makes the vector subbundle Fp = {F ps } of the trivial bundle V ∼= V ×S vary at most
within the subbundle Fp−1 ⊂ V.

6.3 Proof of Theorem 5.2

Suppose that ρR : G(R)→ GL(V ) is an algebraic representation. Recall that

6.3.16 Hodge structure on duals and tensor products. Let V be a real vector space with a Hodge
structure on its complexification. Then V ∗ has a natural Hodge structure defined by (V ∗)p,q =
(V −p,−q)⊥ so that F p(V ∗) = (F 1−p)⊥. In addition, if V ′ and V ′′ be two real vector spaces with
Hodge structures on their complexifications, then we get a Hodge structure on the complexification
of V ′ ⊗R V ′′ defined by

(V ′ ⊗ V ′′)p,q =
⊕

a′+a′′=p,b′+b′′=q

(V ′)a
′,b′ ⊗C (V ′′)a

′′,b′′ .

The corresponding Hodge filtration satisfies F p(V ′ ⊗C V ′′) =
∑

a′+a′′=p

F a
′
(V ′)⊗ F a′′(V ′′).

Dimitar : Double check the details.

6.3.17 Transversality condition in terms of the Lie algebra of gl(V ). The Lie algebra gl(V ) comes
equipped with a Hodge structure arising from the Hodge structure on V coming from the represen-
tation ρR ◦ h.

– Prove that φ(h(z)gh(z)−1) = ρ(h(z))C(F •g·h).

– What does this mean? Well, G(R) has an action of C× given by h and Grd1,...,dr(V ) has an
action of C× given by ρR ◦ h and what ϕ does is it intertwines the two actions.

– Since X = G(R)/ZG(R)(h) is a homogeneous space, then Th(X) can be identified with g/g0,0

where g0,0 is the R-descent of the (0, 0)-piece g0,0
C ⊂ gC of the Hodge structure determined by

AdG(R) ◦ h (just as in the G = GL2-case).

– The transversality condition is equivalent to dϕs(g/g
0,0) ⊂ F−1(gl(V ))/F 0(gl(V )).

7. Examples

7.1 The Siegel upper-half space Hg
Dimitar : Describe the Siegel upper-half space as the set of polarized Hodge structures on R2g.

7.2 Six points in P1

Fixing α = (Q1, . . . , Q6) ∈ (P1)6, we consider the genus 4 curve in P2

Cα : Y 3Z3 =
6∏
i=1

(X −X(Qi)Z).

There is an obvious action of R = Z[µ3] ⊂ Q(µ3) on Cα and hence, on L = H1(Cα,Z) and this O-
lattice is free of rank 4 Dimitar : Explain why? It lives in the complex vector space VC = H1(Cα,C).
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There is a complex conjugation coming from the action of µ3 on this space yielding an eigenspace
decomposition VC = V +⊕V −. Now, L⊗RC = V + Dimitar : Mention why? . There is a Hermitian

form on V + coming from the intersection form: H(x) = 〈x, x〉 whose signature can be shown to
be (3, 1). But C× acts on V + and yields a Witt decomposition V + = V 1,0 ⊕ V 0,1 where H|V 1,0 is
positive-definite and H|V 0,1 is negative-definite. Let Dα = V 0,1. Then we get a map

φ : {(Q1, . . . , Q6) : Qi ∈ P1} → S = Γ\SU(3, 1)/SU(3), φ(α) = Dα, (3)

where Γ = SU3,1(O) is the stabilizer of L in SU(3, 1)(E) for E = Q(µ3).

Dimitar : Need to explain why the signature of H is (3, 1) - in fact, a basis for H0(Cα,Ω
1) is given

by

{
dx

y
,
dx

y2
,
xdx

y2
,
x2dx

y2

}
and the negative-definite part is spanned by the first differential. Show

the details of the computation.
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