
Introduction to Shimura Varieties

1. Introduction

Shimura varieties play a crucial role for providing a link between two major aspects of modern
number theory: the automorphic and arithmetic aspect. The interplay between these two dates
back to the mid-19th century with the work of Kronecker and Kummer. It has later been taken
over by Hilbert and some of his students in the attempt to describe explicitly abelian extensions
of number fields in a similar way to the field of rational numbers (Kronecker–Weber’s theorem)
and quadratic imaginary fields (Kronecker Jugendtraum). With the remarkable discoveries and
developments in the arithmetic properties due to Shimura in the 1950s and the later generalization
to arbitrary reductive groups by Deligne, Shimura varieties took a central role in the Langlands
program, in particular, in the construction of Galois representations associated to automorphic
forms. The latter turned out to be key in the study of elliptic curves and the proof of Fermat’s last
theorem as well as in the major developments related to the Birch and Swinnerton-Dyer conjecture.

To explain in a little more detail the importance of Shimura’s contribution, we take as an
example the quotient of the Poincaré upper half plane H1 = {z ∈ C : im(z) > 0} by the left action
of congruence subgroups of SL2(Z) via linear fractional transformation, i.e., Y (N) = Γ(N)\H1

where Γ(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
mod N

}
. The latter inherits the complex

structure on C and it is not hard to check that it has the structure of a complex analytic manifold.
There are general methods (e.g., Serre’s GAGA principle) that tell us that often1 such complex
analytic manifolds have algebraic structure (i.e., can be viewed as algebraic varieties over C). Thus,
it is not surprising that one can look at Y (N) as a complex curve. The remarkable discovery of
Shimura was that the latter are in fact defined over number fields.

Here is some historical account:

– Kronecker Jugendtraum (1800s): Arithmetic properties of elliptic modular functions and
modular forms turned out to be important for the beautiful Kronecker Jugendtraum.

– Hilbert’s 12th problem (1900): Aims at extending the Kronecker–Weber theorem on the
abelian extensions of Q. More precisely, find analogues of the roots of unity that can be used
to completely describe the abelian extensions of the field.

– Blumenthal (1903): Studied modular forms for real quadratic fields. A student of Hilbert,
this gave rise to Hilbert–Blumenthal varieties, the first examples of Shimura varieties.

– Hecke (1912): Using Hlibert modular forms, attempted to study abelian extensions of real
quadratic fields.

– Taniyama–Shimura (1960): Developed the theory of abelian varieties with complex multi-
plication, subsequently leading to the connection between elliptic curves and modular forms
(i.e., elliptic curves over Q are modular) that is now a theorem due to Wiles et al.

– Langlands (1973): The modern version of Shimura varieties should deal with the Hasse–
Weil Zeta function of a Shimura variety. These should be considered as sources for Galois
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representations associated to automorphic forms.

– Mazur (1977): Modular curves and the Eisenstein ideal - congruences between modular forms
turned out to be relevant to the proof of Fermat’s last theorem.

– Deligne (1979): Recasts the theory of Shimura on the language of reductive groups; extension
of results on canonical models.

2. The course

This course is a basic introduction to Shimura varieties and the work of Shimura, subsequently
revisited and generalized by Deligne.

2.1 Course syllabus

Tentative topics that I am planning to cover are the following:

– Basic notions from differential geometry, complex manifolds, symmetric spaces, hermitian sym-
metric domains. The lecture will include important examples of hermitian symmetric domains
for the symplectic groups and the unitary groups. We will follow [Mil05] with certain refer-
ences to [Hel78]. We will look at examples such as the Poincaré upper-half plane, the Siegel
upper-half space as well as domains associated to unitary groups.

– Introducing the notion of a Hodge structure. Here, I will follow some notes due to Brian
Conrad.

– Defining Shimura data, connected Shimura varieties and Shimura varieties à la Deligne [Del71]
and understanding the motivation behind these.

– Shimura varieties of PEL type (will recall the theory of abelian varieties over the complex
numbers and will discuss certain moduli problems).

– CM theory and special points.

– Theory of canonical models.

– Galois action on special points and on connected components, reciprocity laws.

2.2 Grading

If you need a grade for the course, you have two options: 1) you do a final project (paper) and a
presentation (in which case you have to discuss with me in advance); 2) You turn in homeworks
(these appear in the lecture notes and are marked as exercises). If you choose the second option,
you do not need to turn in all the exercises, yet, you are allowed to select exercises that you find
relevant for a better understanding of the course.

3. Hermitian Symmetric Domains

Here, we will assume that (M, g) is a real Riemannian manifold with Riemannian metric g. Typical
examples we will consider are

– Rn with the Euclidean metric g = dx2 + dy2.

– The Poincaré upper-half plane H1 = {z ∈ C : im(z) > 0} together with the Poincaré metric

g =
(dx)2 + (dy)2

y2
. Note that SL2(R) acts on H1 by linear fractional transformations, i.e.,(

a b
c d

)
z =

az + b

cz + d
.
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Shimura Varieties

By an isometry we will mean a morphism that preserves the metric. For instance

– Rotations or translations in Rn are isometries since they preserve the standard metric g.

– SL2(R) acts on H1 by isometries (the Poincaré metric is preserved by SL2(R)).

Exercise 1. Prove that for any γ =

(
a b
c d

)
∈ SL2(R), z 7→ γ · z :=

az + b

cz + d
: H1 → H1 is an

isometry with respect to the Poincaré metric g defined above..

3.1 Complex structures and almost complex structures

3.1.1 Complex manifolds and complex structures. A complex manifold M is given by an atlas
of coordinate charts to Cn such that the transition maps are holomorphic. If M is a smooth real
manifold then a complex structure on M is an atlas of coordinate charts Cn such that the
transition maps are holomorphic. Note that a real manifold M may or may not have a complex
structure (e.g., M = R2n+1 has no complex structure, but M = R2n has).

3.1.2 Almost-complex structure. To understand complex structures on real manifolds, we need the
weaker notion of an almost-complex structure. An almost complex structure is a smoothly
varying family of complex structures on the tangent spaces of the manifold, i.e., a smooth tensor
field (Jp)p∈M , Jp : TpM → TpM , J2

p = −1, where TpM denotes the tangent space at p. A complex
structure on a manifold M induces an almost complex structure in the following way: if z1, . . . , zn
are the coordinates and x1, . . . , xn, y1, . . . , yn are the real coordinates then

∂

∂xi
7→ ∂

∂yi
,

∂

∂yi
7→ − ∂

∂xi
, (1)

gives an almost-complex structure on M .

3.1.3 Integrability. An almost-complex structure may or may not arise from a complex structure.
The notion of integrability of an almost-complex structure allows us to understand when an
almost-complex structure does arise from a complex structure. A almost-complex structure is inte-
grable if there is an atlas of charts and local coordinates so that J is given via (1). If (M,J) is an
almost complex manifold and if J is integrable then M is a complex manifold (the formal statement
is known as the theorem of Newlander–Nierenberg).

3.1.4 Hermitian manifold. A Hermitian manifold is a Riemannian manifold (M, g) together with
a complex structure J that acts by isometries, i.e., g(JX, JY ) = g(X,Y ) for any two vector fields
X,Y (such a metric g is called a Hermitian metric).

3.2 Symmetric spaces

A Riemannian manifold (M, g) is said to be symmetric if its automorphism group acts transitively
and if there exists a point p for which there is an automorphism sp of (M, g) such that s2p = 1
and p is the unique fixed point of sp in some neighborhood of p. A Hermitian symmetric space
is a Hermitian manifold that is connected and symmetric. Before we provide the classification of
Hermitian symmetric spaces, we discuss a bit more the group of isometries of a symmetric space.

We consider three main examples:

Example 1. The Poincaré upper half plane is a homogeneous space (i.e., the automorphism group
acts transitively). Indeed, if z = x+ iy ∈ H1 is any point then(√

y x/
√
y

0 1/
√
y

)
· i = x+ iy = z.

3



Here, we have used im(z) > 0. In addition, the upper-half plane H1 has a symmetry si : H1 → H1

at z = i defined by si(z) = −1/z for i is an isolated fixed point.

Example 2. The Riemann sphere P1(C) is a Hermitian symmetric space when endowed with the
metric coming from R3. Here, rotations act transitively and are isometries. In addition, take any
point p ∈ P1(C). For any point p′, consider the geodesic connecting p and p′ (the large circle) and
define sp(p

′) = p′′, the reflected point across this geodesic. One can check that this is an isometry.

Example 3. Let Λ ⊂ C and consider M = C/Λ endowed with the standard metric. Clearly, the
group of translations acts transitively (translations are isometries) and clearly z 7→ −z is a symmetry
having 0 + Λ as the unique fixed point (here, we use discrete).

3.2.5 Groups of isometries of symmetric spaces. To get the link between symmetric spaces and
topological groups, we need to look at groups of isometries. If (M, g) is a symmetric space then we
look at the group Is(M, g) of diffeomorphisms M → M that are also isometries for the Riemann
metric. Given any point p ∈ M , one can consider the stabilizer Kp of p for the action of Is(M, g)
on M . One endows Is(M, g) with the compact-open topology to make it a topological group (we
need to show that multiplication and inverse are continuous for this topology).

Exercise 2. Show thatm : Is(M, g)×Is(M, g)→ Is(M, g) given bym(x, y) = xy and ι : Is(M, g)→
Is(M, g) given by ι(x) = x−1 are continuous maps when Is(M, g) is equipped with the compact-open
topology.

Let Is(M, g)+ indicate the connected component at the identity. We first note that Is(M, g) is
a locally compact topological groups and the stabilizer of a point p ∈M in Is(M, g) is compact.

In fact, you will show this in the following two exercise:

Exercise 3. Show that the compact-open topology turned Is(M, g) into a locally compact topo-
logical space via the following steps:

(i) Show that if {fi : fi ∈ Is(M, g)} is a sequence for which there exists a point p ∈M such that
the sequence {fi(p)} is convergent then the sequence {fi} has an accumulation point in Is(M, g)
with respect to the compact-open topology.

(ii) Given a point p ∈ M and a open relatively compact neighborhood U of p (i.e., having
compact closure), consider W ({p}, U) = {f ∈ Is(M, g) : f(p) ∈ U} (which is open by the definition
of the compact-open topology). Using (i), show that it has a compact closure. Since the stabilizer
of p is a closed subset of W ({p}, U), it is necessarily compact.

Next, we distinguish three types of groups of automorphisms:

– The real-analytic isometries Is(M∞, g),

– The automorphisms Hol(M) of M as a complex manifold,

– The holomorphic isometries Is(M, g); clearly, Is(M, g) = Is(M∞, g) ∩Hol(M).

Remark 1. We will see that for the case of hermitian symmetric domains, the inclusions Is(M∞, g) ⊃
Is(M, g) ⊂ Hol(M) induce equalities of the connected components of the identity for the three
groups.

Example 4. (upper-half plane H1) The group of isometries of H1 is generated by the holomorphic
isometries together with the following anti-holomorphic isometry: z 7→ z−1 (we need to check that
this is an isometry).

Exercise 4. Show that z 7→ z−1 is an isometry of H1 that is, in addition, anti-holomorphic.
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Shimura Varieties

3.3 Classification of Hermitian symmetric spaces

For the classification of Hermitian symmetric spaces, we first look at the group Is(M∞, g) of all
isometries (as a real Riemannian manifold) and look at the subgroup Is(M, g) of holomorphic ones
(a closed subgroup and hence, a Lie subgroup). Recall that a Lie group is called adjoint if it is semi-
simple and has a trivial center. To give the classification, we distinguish three families of Hermitian
symmetric spaces:

– Non-compact type (such asH1): negative curvature, non-compact and adjoint group Is(M, g)+,
simply-connected.

– Compact type (such as P1(C)): positive curvature, compact and adjoint group Is(M, g)+,
simply connected.

– Euclidean type (such as C/Λ): zero curvature, not necessarily simply connected (e.g., torus).
These are quotients of Cg by discrete additive subgroups.

A good reference for the classification is, e.g., [Hel78, VIII]. A Hermitian symmetric space (as a
Hermitian manifold) can be decomposed as M− ×M+ ×M0 where M− is of non-compact type,
M+ is of compact type and M0 is of Euclidean type. An irreducible Hermitian symmetric space
is one which is not a product of two lower-dimensional ones. The spaces M− and M+ are products
of Hermitian symmetric spaces for which the isometry group Is(M, g)+ is simple.

For the theory of shimura varieties, we restrict to Hermitian symmetric spaces of non-compact type
- these are called Hermitian symmetric domains.

3.4 Cartan involutions

Let G be a connected real algebraic group. Let g 7→ g denotes the complex conjugation on G(C).

Definition 3.1 (Cartan involution). An involution θ : G → G (a morphism of real algebraic
groups) is called Cartan if G(θ)(R) = {g ∈ G(C) : g = θ(g)} is compact.

Example 5. Let G = SL2 over R and consider the the involution θ on G(R) given by ad

(
0 −1
1 0

)
.

We compute

G(θ)(R) =

{(
a b
c d

)
∈ SL2(C) :

(
a b
c d

)
=

(
0 −1
1 0

)(
a b

c d

)(
0 −1
1 0

)−1}
.

It is easy to check that the latter is SU2(R) which is compact, i.e., θ is a Cartan involution.

For the algebraic groups G that we will be working with (i.e., reductive groups - I may recall
some basics on algebraic groups at some point), Cartan involutions always exist and any two are
conjugated by an element of G(R). Rather than diving into more generalities on algebraic groups,
it is instructive to look at some examples:

Example 6. Let V be a finite-dimensional real vector space and let G = GL(V ). Fixing a basis of V
gives us an involution θ : G(R)→ G(R), M 7→ (M t)−1. We claim that this is a Cartan involution.

It is easy to calculate that G(θ)(R) = {M ∈ GLn(C) : MM
t

= In} and the latter is the compact
unitary group U(n).

3.5 Representations of the circle group

An algebraic group that we will often need and refer to is the circle group S. It is a real algebraic
that satisfies S(R) = {z ∈ C× : zz = 1}. Note that S is a non-split torus over R and it splits over
C/R, i.e., S(C) ∼= C× = Gm(C).
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Exercise 5. The group S is more precisely defined as follows: for any R-algebra R, if RC = R⊗RC
then the R-points on S are

S(R) = {z ∈ S(RC) : zz = 1},
where z 7→ z denotes the complex conjugation involution. Prove that S(RC) ∼= Gm(RC). (Hint:
consider the isomorphism C⊗R RC

∼= RC ×RC given by α⊗ x 7→ (αx, αx)).

Now, to give a finite-dimensional representation V over R of S(R) amounts to giving a decom-
position (grading according to the characters of S)

V (C) =
⊕

χ : S→Gm

Vχ,

such that Vc·χ = Vχ, where c denotes complex conjugation action on the character group X∗(S).
Since the characters X∗(S) are given by z 7→ zn, X∗(S) ∼= Z and we look at gradings V (C) = ⊕V n

where S acts on V n via the character z 7→ zn. We easily see that complex conjugation sends the
character z 7→ zn to z 7→ z−n, so the representations of S(R) are direct sums of the following two
representations:

– R with the trivial action of S(R) (this corresponds to V 0).

– R2 where x+ iy acts by the matrix

(
x y
−y x

)n
(this corresponds to V n ⊕ V −n).

4. Examples

4.1 Hermitian symmetric domains for symplectic groups (the Siegel upper-half space)

The Siegel upper-half space is defined by

Hg = {Z ∈Mg(C) : Zt = Z, im(Z) > 0},

where im(Z) > 0 means that the imaginary part of Z is positive definite. As a complex manifold,

Hg locally looks like C
g(g+1)

2 . If g = 1 then we get the Poincaré upper-half plane. First of all, we will
note that there is an action of the group Sp2g(R) on Hg, but before that, let us give a definition of
Sp2g(R) (I will define it using the canonical symplectic form).

4.1.1 Symplectic spaces and symplectic groups. Let V = R2n where we think of the vectors as the
coordinates as x = (x−1, . . . , x−n, x1, . . . , xn) and consider the symplectic form ω : V ×V → R given
by

ω(x,y) =

g∑
i=1

(xiy−i − x−iyi).

We define the group of symplectic isometries as the group

Sp(V )(R) = Sp2g(R) = {g ∈ GL(V )(R) : ω(gv, gw) = ω(v, w), ∀v, w ∈ V }.

Similarly, we define the group of unitary similitudes

GSp2g(V )(R) = {g ∈ GL(V )(R) : ∃ν(g) ∈ R×, ω(gv, gw) = ν(g)ω(v, w), ∀v, w ∈ V }.

With respect to the standard symplectic basis, we get

Sp2g(R) =

{(
A B
C D

)
∈ GL2g(R) :

(
At Ct

Bt Dt

)(
0 −Ig
Ig 0

)(
A B
C D

)
=

(
0 −Ig
Ig 0

)}
.

Here, Jg =

(
0 −Ig
Ig 0

)
is the matrix corresponding to the standard symplectic form on R2g .
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4.1.2 The symmetry. One can check that the group Sp2g(R) acts on Hg by(
A B
C D

)
· Z = (AZ +B)(CZ +D)−1.

Under this action, the point Z = iIg ∈ Hg is the only fixed for the involution Z 7→ Jg · Z.

4.1.3 Comparison with the g-dimensional complex ball Dg. The Poincaré upper half plane H1 is
conformally equivalent to the unit disc D1 via the Möbius transform

H1 → D1, z 7→ z − i
z + i

.

Similarly, define the bounded domain

Dg = {Z ∈ GLg(C) : Z = Zt, Ig − Z
t
Z is positive definite}.

The higher-dimensional analogue of the Möbius transform is

Hg → Dg, Z 7→ (Z − Ig)(Z + Ig)
−1.

Since Dg is a bounded domain, it has a canonical hermitian metric that has negative curvature
(Bergman metric) which makes it a hermitian symmetric domain.

Remark 2. It is known (we will not prove this) that every hermitian symmetric domain can be
embedded into some Cn as a bounded symmetric domain. Hence, every hermitian symmetric domain
D has a hermitian metric that corresponds to the canonical Bergman metric.

4.2 Hermitian symmetric domains for unitary groups

We will now define the real unitary groups U(p, q) of signature (p, q) and associate to it a symmetric
domain X = Xp,q. It will be important to consider three different descriptions of the domain X.

4.2.4 Unitary groups over R. Let (V, 〈 , 〉) be a Hermitian C-vector space of signature (p, q) (and
dimension n = p+ q). Let

U(V )(R) = {g ∈ GL(V )(C) : 〈gv, gw〉 = 〈v, w〉, ∀v, w ∈ V }

be the group of unitary isometries and let

GU(V )(R) = {g ∈ GL(V )(C) : ∃ν(g) ∈ R×, 〈gv, gw〉 = ν(g)〈v, w〉, ∀v, w ∈ V }

be the group of unitary similitudes. We can decompose V = V+ ⊥ V− where (V+, 〈 , 〉) is positive
definite and (V−, 〈 , 〉) is negative-definite. We will often use U(p, q) for U(V )(R).

4.2.5 A matrix representation of U(p, q). Choose a basis B = {v+1 , . . . , v+p , v
−
1 , . . . , v

−
q } for V that

diagonalizes the Hermitian form, i.e., such that B+ = {v+1 , . . . , v+p } is a basis for V + and B− =

v−1 , . . . , v
−
q } is a basis for V− and the matrix for B is Jp,q =

(
Ip
−Iq

)
. With respect to this basis,

U(p, q) is described as follows:

U(p, q) = {M ∈ GLp+q(C) : M
t
Jp,qM = Jp,q}.

We will typically divide each matrix M ∈ U(p, q) into 2 × 2 blocks M =

(
A B
C D

)
where A is a

p× p matrix, B is a p× q matrix, C is q × p and D is q × q.
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4.2.6 First description (as a bounded domain via operators of bounded norm). Consider Hom(V−, V+)
as a complex vector space. It comes equipped with a norm ‖ · ‖ (the operator norm) defined by

‖ϕ‖ = sup
v∈V,v 6=0

√∣∣∣∣〈ϕ(v), ϕ(v)〉
〈v, v〉

∣∣∣∣.
Define a set X = {ϕ ∈ Hom(V−, V+) : ‖ϕ‖ < 1}. Before we understand why X is a hermitian sym-
metric domain, we will define an action of U(p, q) onX and will show that this action is transitive. In-

deed, consider any M ∈ U(p, q) and write it in the form M =

(
A B
C D

)
as above. With respect to the

same choice of basis, we notice that Aϕ+B ∈ Hom(V−, V+) and Cϕ+D ∈ End(V−). We would like
to define the action of M on X in a way similar to the action of SL2(R) on the complex upper-half
plane H1 by linear fractional transformation. To do this, note that if ϕ ∈ X ⊂ HomC(V−, V+) then
Aϕ+B ∈ HomC(V−, V+) and Cϕ+D ∈ EndC(V−). Suppose that we know that Cφ+D ∈ GL(V−).
Then we can consider (Aϕ+B) ◦ (Cϕ+D)−1 ∈ HomC(V−, V+) and try to prove that it belongs to
X.

Lemma 4.1. The endomorphism Cϕ+D ∈ End(V−) is invertible for all ϕ ∈ X.

Proof. Assume the contrary, i.e., for some ϕ ∈ X, ∃v− ∈ V− such that Cϕv− +Dv− = 0. Consider

the vector v =

(
ϕv−
v−

)
∈ V . On one hand, we know that Q(Mv) = Q(v) where Q(w) = 〈w,w〉

since M preserves the hermitian form. Yet, if we calculate Mv, we get (Aϕv− + Bϕv−, 0), so
Q(Mv) = ‖Aϕv− +Bϕ−‖V > 0. Yet, Q(v) = ‖ϕv−‖V − ‖v−‖V < 0, hence a contradiction.

Next, we need to know that if ϕ ∈ X then M · ϕ ∈ X.

Lemma 4.2. If ϕ ∈ X then (Aϕ+B) ◦ (Cϕ+D)−1 ∈ X.

Proof. Take any v− ∈ V− and let w− = (Cϕ+D)−1v−. We then observe that

M

(
ϕw−
w−

)
=

(
(Mϕ)v−
v−

)
.

As before, if w =

(
ϕw−
w−

)
∈ V then by definition of ϕ, Q(w) < 0, hence (since M preserves the

Hermitian form), it follows that for v =

(
ϕv−
v−

)
, we have Q(v) = 0 which means that ‖Mϕ‖ < 1

since v− ∈ V− was arbitrary.

Finally, we only need to know that U(p, q) acts transitively on X in order to prove the following
proposition:

Proposition 4.3. If M =

(
A B
C D

)
as above then the map ϕ 7→ Mϕ = (AZ + B) ◦ (CZ + D)−1

defines a transitive action of U(p, q) on X.

Exercise 6. Show that the action of U(p, q) on X is transitive.

Remark 3. We also need to discuss the symmetry of X at a given point in order to view X as
a symmetric manifold. For the moment, we will postpone this until the discussion of the second
description where the symmetry will be seen in a very general way. Yet, just as a remark, since X
looks like a complex ball, it is pretty easy to guess what the symmetry of X is - we simply reflect
points across the center of the ball.
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Remark 4. We also need to describe the metric on this domain (since it is a bounded symmetric
domain, the Bergmann metric). Again, we postpone this until the second description where it can
more easily be seen via a trace form.

Remark 5. The complex structure onX is the one induced from the complex structure on HomC(V−, V+)
considered as a complex vector space.

4.2.7 Second description (subspaces of complex flag varieties). One can define the domain in the
following way: consider

X ′ = {W ⊂ V : dimCW = q, 〈 , 〉|W is negative definite}.

Clearly, the action of U(p, q) on V induces an action on X ′. We first discuss explicitly the U(p, q)-
equivariant isomorphism of complex manifolds between X and X ′:

Lemma 4.4. The map φ : X → X ′ that sends ϕ ∈ X to the subspace Wϕ := {ϕ(v−) + v− : v− ∈
V−} ⊂ V is a U(p, q)-equivariant isomorphism of complex manifolds.

Proof. First, the map is well-defined since for any ϕ ∈ X and v− ∈ V−, if v =

(
ϕv−
v−

)
then Q(v) < 0

for the same reason is above, i.e., 〈 , 〉|Wϕ is negative-definite. Next, take any W ∈ X ′ and consider
π−(W ) ⊆ V− where π− : V → V− is the projection. We claim that π− maps W isomorphically to
V−. This is easy to check by checking that ker(π−) ∩W is trivial. Indeed, if w ∈ ker(π−) ∩W is
non-zero then w ∈ V+ and hence, 〈w,w〉 > 0 contradicting the negative-definiteness of W .

We can already use this to define φ−1 as follows: given W ∈ X ′, let φ−1(W ) be the C-linear
map ϕW : V− → V+ defined by ϕW = π+ ◦ (π−|W )−1 : V− → V+.

Remark 6. The above proposition is a particular case of a very general phenomena that Hermitian
symmetric domains can be embedded in complex flag varieties. In this case we have the Grassman-
nian consisting of negative definite q-planes in V (let us denote it by Gr−q (V ) for the moment). To
define the Riemannian metric, we think of each negative-definite q-plane W ⊂ V as a matrix PW
giving the orthogonal projection V → W . This gives us an embedding of the above Grassmannian
into Euclidean space (more precisely, into Mp+q(C)) and hence, we get a Hermitian metric inherited
from the Hermitian metric on the C-vector space Mp+q(C) defined by 〈P,Q〉 = tr(PQ).

4.2.8 Third description (conjugacy classes of embeddings). We start by defining an action of C×

on V = V+ ⊥ V− as follows: given a ∈ C×, define

a · (v+ + v−) = av+ + av−, v+ ∈ V+, v− ∈ V−.

It is easy to check that

〈a · (v+ + v−), a · (w+ + w−)〉 = aa〈v+ + v−, w+ + w−〉,

i.e., a acts as a unitary similitude. This gives us a homomorphism h : C× → GU(p, q) and we denote
by Xh the GU(p, q)-conjugacy class of h. We claim that Xh is isomorphic to X ′ (and hence, to X)
via a U(p, q)-equivariant isomorphism.

Proposition 4.5. The map

ψ : Xh → X ′, ψ(h′) = Wh′ = {v ∈ V : h′(i)v = −iv}.

is a U(p, q)-equivariant isomorphism.

Proof. It is not hard to check that ψ(h) = V− ⊂ V . Note that GU(p, q) acts transitively on X ′, so if
we check U(p, q)-equivariance, we get subjectivity. For the injectivity, suppose that h1, h2 ∈ Xh are
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such that Wh1 = Wh2 . To show that h1 = h2, it suffices to check that h1(i) = h2(i). But h1 and h2
agree on Wh1 (by the definition of Wh1 and Wh2) and by the equivalence of the Hermitian pairing,
they also agree on W⊥h1 . Since V = Wh1 ⊥W⊥h1 , h1 and h2 are the same on the whole V .

Finally, we will calculate the stabilizer StabU(p,q)(h).

Exercise 7. Calculate the stabilizer of h inside U(p, q) and show that the latter is a maximal
compact subgroup. (Hint: you should get that the stabilizer is U(p)× U(q) ⊂ U(p, q).)

4.2.9 The complex structure on Xh. Although the latter description (as conjugacy class of embed-
dings) is quite general and is what we will use in the future for a general reductive group, it has
the drawback that one does not see so explicitly the complex structure on Xh. We will do this by
providing explicitly the almost complex structure, i.e., the complex structure on the tangent space
ThXh. Indeed, if K = U(p) × U(q) is the compact and if g = LieU(p, q) then we can identify (as
real vector spaces), ThXh

∼= g/K. The advantage of such a decomposition is that the action of ad(i)
on g yields a decomposition g = g+ ⊕ g−. We will be done if we manage to identify ThXh with g−.
Indeed, considering the action of Jh = ad(eπi/4) on g− then we have a linear map Jh : ThXh → ThXh

satisfying J2
h = −1, the definition of a complex structure). To show that g/K is naturally isomorphic

to g−1, we simply note that LieK = g− since K is the centralizer of h in U(p, q).

Exercise 8. Show that under the identification Xh
∼= X ′, the complex structure Jh defined above

coincides with the (natural) complex structure on X ′.

5. Classification of Hermitian Symmetric Domains in Terms of Real Groups

The starting point of this section is a hermitian symmetric domain (M, g). We first associate to
(M, g) a connected, adjoint algebraic group G. If p ∈M is a point, we will then consider a homor-
phism up : S → Hol(M), such that up(z) fixes p and acts as multiplication by z on TpM (such a
homomorphism will be unique).

5.1 The associated connected adjoint algebraic group

– One can show that Is(M, g)+ = Is(M∞, g)+ = Hol(M)+.

Since Hol(M)+ has the structure of a connected, adjoint real Lie group H then the adjoint repre-
sentation ad: H → GL(h) is faithful where h = LieH Dimitar : Explain why? . One can show

that there is a connected adjoint algebraic group G ⊂ GL(h) such that H = G(R)+ (since the
adjoint representation of Hol(M)+ on the Lie algebra h is faithful) Dimitar : Explain why or give

a reference! . We illustrate this with an example:

Example 7. If M = Hg then G = PGL2 (since H is adjoint). Yet, PGL2(R) has two connected
components and acts holomorphically on X = C−R. The stabilizer of H1 is then PGL2(R)+.

5.2 Action of the circle group S(R) via holomorphic isometries

Let X be a Hermitian symmetric domain. In order to describe the points of X more “group-
theoretically”, we need the following fact:

Proposition 5.1. For every p ∈ X, there exists a unique homomorphism up : S(R) → Hol(X)
such that up(z) fixes p and acts as multiplication by z on the tangent space TpX.
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Example 8. Start from h : S(R)→ PSL2(R) given by a+ib 7→
(
a b
−b a

)
mod ±I. We can calculate

the action of h(z) on the tangent space at p = i as follows:

d

dz

(
az + b

−bz + a

)
|z=i =

a2 + b2

(a− ib)2
, i.e,

it acts by multiplication by z/z. To define the desired homomorphism u : S(R)→ PSL2(R), we note
that if we set u(z2) = h(z) then u(z2) acts on TiH1 by multiplication by z2. To extend u to S(R),
given z ∈ S(R), choose

√
z ∈ S(R) and define u(z) = h(

√
z) mod ±I. Note that u(z) ∈ PSL2(R)

is independent of the choice of
√
z since h(−1) = −I.

Remark 7. We will not prove in gory detail Proposition 5.1, but will rather indicate what ingredients
go into the proof: the latter uses a classical concept from Riemannian geometry that we have not
yet discussed - the sectional curvature. This is a way of computing the curvature by picking a 2-
dimensional subspace Ep ⊂ TpX of the tangent space of the manifold X at p and computing the
Gauss curvature of the surface that has the plane E as the tangent space. We denote this curvature
by K(p,Ep).

– Integrability property: we need to know the following: if a : TpX → Tp′X
′ is a linear isometry

that preserves K(p,E) for every 2-dimensional plane E ⊂ TpX then the exponential map
expp(Y ) 7→ expp′(aY ) is an isometry of a neighborhood of p to a neighborhood of p′.

– Uniqueness: if X is complete, connected and simply-connected then there is a unique isom-
etry α : M →M ′ such that α(p) = p′ and dαp : TpX → Tp′X

′ coincides with a.

– We need to know that multiplication-by-z on the tangent space preserves the sectional curva-
ture tensor (this should be a computation).

– Using the above uniqueness, we can show that for any z, z′ ∈ S(R), up(z) ◦ up(z′) acts by
multiplication by zz′ on the tangent space, i.e., (again by uniqueness) it coincides with up(zz

′),
and hence, get a unique homomorphism up : S(R) → Hol(X) Dimitar : Something needs to

be said about up(z) being a holomorphic isometry.

Exercise 9. If you are very curious, try to prove the above claims. That will undoubtedly

5.2.10 Essential properties of up. We are interested in what properties of up classify p as being a
point of a Hermitian symmetric domain. We state a very general theorem (often known as Cartan’s
classification of Hermitian symmetric domains) and discuss it in a much greater detail via
Hodge theory leading to Deligne’s notion of a Shimura datum.

Theorem 5.2. Suppose thatX is a Hermitian symmetric domain and let G be the associated adjoint
real algebraic group (i.e., Hol(X)+ = G(R)+). Given a point p ∈ X, the associated morphism
up : SR → GR of real algebraic groups has the following properties:

i) The only characters occurring in the representation ad ◦up of S(R) on Lie(G(R))C are z, 1, z−1.

ii) Ad(up(−1)) is a Cartan involution.

iii) up(−1) does not project to 1 on any simple factor of G.

Conversely, let u : SR → GR be a morphism of algebraic groups satisfying i), ii) and iii). Then the
G(R)+-conjugacy class Xu of u is a Hermitian symmetric domain.

Remark 8. We will not prove the theorem immediately, but rather look at sufficiently many examples
first to arrive naturally to its understanding and Deligne’s notion of Shimura datum.

Remark 9. This is known as Cartan’s classification of Hermitian symmetric domains.
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Proof. If we start with u : SR → GR and the G(R)+-conjugacy class Xu of u, we have to do the
following to show that Xu is a Hermitian symmetric domain:

– Show that the centralizer Ku = ZG(R)+(u) is a compact. To do this, consider the Cartan
involution θ = Ad(u(−1)) and note that

Ku = {g ∈ G(R)+ : gu(−1) = u(−1)g} ⊂ {g ∈ G(C) : gu(−1) = u(−1)g} = Gθ(R).

Since Gθ(R) is compact and Ku is closed then Ku is compact. It then follows Dimitar : Is

it possible to give a good reference for that? that the orbit space Xu = (G(R)+/Ku) · u

has the structure of a smooth real analytic manifold. The tangent space to Xu at u is then
identified with

TuXu
∼= Lie(G(R))/Ku.

– (Almost complex structure) Dimitar : There is an integrability question to get a complex

structure out of the almost complex structure. We get that by using condition (ii). Indeed,

to equip TuXu with a complex structure, we observe that u(z) acts on TuXu as z (implied by
the second condition), so we can use u(i) to define the complex structure (for that, u(i)2 will
act as -1). We need to show that this complex structure is integrable Dimitar : The latter is

not a priori obvious, give a reference .

– (Hermitian metric): since Ku is compact, there is a Ku-invariant positive-definite form on
TuXu

∼= g/g+. Indeed, taking any symmetric, positive-definite form 〈 , 〉 on the quotient g/g+

and defining

〈v, w〉Ku =

∫
Ku

〈kv, kw〉dk

where dk is the Haar measure on Ku. This gives us a Ku-invariant symmetric bilinear form
on TuXu. To show that this is indeed a Hermitian metric, we simply note that u(i) ∈ Ku. We
thus choose a Hermitian metric on TuXu and use the homogeneity of Xu to move it to the
other tangent spaces by elements of G(R)+.

– Condition (iii) implies that Xu does not have an irreducible factor of compact type.
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