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1. OUTLINE OF THE SEMINAR

Maxime Gheysens, the 17th of March 2014.

In this first lecture, we gave an overview of the state of the art and of what we would like to
cover during this working seminar.

1.1. Classification. As mathematicians, we classify objects. To this purpose we try to establish
a catalogue of simple objects among them and a reduction process of a general object to the
simpler ones composing it.

Two trivial examples are vector spaces, classified by their fields and dimensions, and integers
which are product of primes. A less trivial example is the family of finite groups. Finiteness
guaranties the existence of maximal normal subgroups which yield (finite) simple quotients.
Though the latter have been fully classified, it is not clear how the simple pieces assembles
together.

We would like to have something similar for locally compact groups, but it is much harder.
Usually, the existence of maximal proper normal subgroup is not guarantied, already in R. The
same is true for closed subgroups. Classification itself is hard since the class of locally compact
groups contains all groups with the discrete topology which are known to be unclassifiable thanks
to a result of Champetier.

Theorem 1 (Champetier’s thesis, 1991). Let X be a standard Borel space. For any Borel map
¢ : { Finitely generated groups} — X,

which is invariant (constant) on isomorphism classes, there exist two finitely generated non-

isomorphic G1, G2 such that o(G1) = ¢(G2).

Therefore we shall always exclude the discrete groups from this discouraging picture. Hope-
fully,

Theorem 2 (Caprace, Monod, 2011). Let G be a compactly generated locally compact group.
Then exactly one of the following happens :

e GG has a discrete infinite quotient.

e G has a cocompact normal subgroup, which is connected and solvable.

e GG has a cocompact normal subgroups, which admits exactly n simple quotients for some
integer 0 < n < oco. These quotients are non-discrete and non-compact.

Remarks.

(i) Here and in what follows, a ‘quotient’ of a topological group means a quotient by a normal
closed subgroup. Also ‘simple’ will always means ‘topologically simple’ except if explicitly
stated otherwise.

(ii) Champetier’s result shows that already compactly generated groups are difficult to tame.
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1.2. Consequence of Hilbert’s fifth problem and simplicity. Let G be a (Hausdorff)
topological group, let G° denote the connected component of the identity. It is a closed normal
subgroup of G, thus the sequence

0-G°—-G—-G/G° =0

is exact. The group G/G° is totally disconnected, often abbreviated t.d., that is, every connected
component is a singleton. The next theorem is a version of the solution to Hilbert’s fifth problem.

Theorem 3 (Gleason, Montgomery-Zippin, Yamabe, ~1950). Let G be a locally compact group.
For every identity neighbourhood U, there is an open (hence closed) subgroup G' of G and a
closed subgroup K <1 G’ such that K C U and G'/K is a Lie group.

Corollary 4. A connected locally compact simple group G is a Lie group.

Remark. If G is simple, then either G° = G or G° = {e}. In other words, either G is a Lie group
or GG is totally disconnected.

Corollary 5 (Meta-corollary). We need to understand the classe %;.q. of totally disconnected,
simple, compactly generated, locally compact, non-discrete groups.

1.3. Locally normal subgroups of simple locally compact groups. A general approach
to the study of .%; 4. was missing until Caprace, Reid, Willis started publishing a serie of three
papers who give a local insight. Their key concept is the study of compact locally normal
subgroups.

Definition 6. A subgroup H < G is called locally normal if its normalizer N (H) is open.

In their paper, locally normal subgroups are always assumed compact. We won’t follow this
convention. A normal subgroup is obviously locally normal and so is any open subgroup, because
any subgroup containing an open subgroup is itself open.

Our main goal will be to understand the following statement and, if we are ambitious, its
proof.

Theorem 7 (Caprace, Reid, Willis, 2013). For every G € % .4., there is a compact totally
disconnected G-space Q = Q(G) such that either Q = {x} or the following hold :

e ) has no isolated point,

e the G-action on ) is continuous and faithful,
o G~ Q is minimal, i.e. every G-orbit is dense,
o G ) is strongly proximal.

The G-space €2 is called the Stone-space of G. Strong proximality means that for every
probability measure p on €2, there is a sequence (g,,) in G such that g,u converges to a Dirac
mass in the weak-*-topology. It is important to know that the situation Q # {*} appears if and
only if there is a pair (L, M) of non-trivial, locally normal, compact subgroups of G such that
L, M) = {e}.

Corollary 8. If Q # {x}, then G is non-amenable.
Proof. An invariant measure must be a Dirac mass by strong proximality, hence there is a fixed

point. On the other hand, minimality insures that the orbits are dense which contradict  # {*}
being Haussdorf. O

This leads us to think it is unlikely to have amenable groups in .#; 4.. On the other hand
recent results of Juschenko and Monod show that in the discrete case there exist finitely generate
simple groups.



