Processing math: 100%
Synchro
Coupling by diffusion : complex model
français | english
Navigation
Home
Sitemap
This wiki
This page

Coupling by diffusion : complex model

 

 

Complex field without diffusion (I) :

 

At=I(t) γA 

 

If I(t)=αeift then A(t)=αif+γeift (initial condition ?)

 

With |αif+γ|=αf2+γ2 and arg(αif+γ)=arctan(f/γ)

 

If γ=0  (long life time) then arg(αif+γ)=π/2

If γ=+ (short life time) then arg(αif+γ)=0

 

Then A(t) can be written as αf2+γ2ei arctan(f/γ)eift=αf2+γ2(cos(atan(f/γ))i atan(sin(f/γ))eift=αf2+γ2(11+f2/γ2i f/γ1+f2/γ2)eift=(γγ2+f2i fγ2+f2)αeift

 


Complex oscillator coupled with a complex field without diffusion (II) :

 

(1) zt=(μ+iω)zz|z|2+A(t)  

(2) At=αz(t) γA  

 

Let's suppose that z(t)=βeiθt then from (I) : A(t)=αiθ+γz(t)

1. become :

iθz=(μ+iω)zβ2z+αiθ+γz,

iθ=(μ+iω)β2+αiθ+γ=(μ+iω)β2+αγθ2+γ2iαθθ2+γ2 

 

Then :

(3) β=μ+αγθ2+γ2 

(4) θ=ωαθθ2+γ2  

 

The function αγθ2+γ2 as a maximum at θ=γ.

 

(4) gives the cubic equation : θ3θ2ω+θ(γ2+α)ωγ2

 

If γ2>>α then θ=ω (no effect of the coupling)

 

One can find the roots of this equations, in our case the first root is usually real and positive. 

Here is the relationship between the field amplitude α and the resulting oscillator frequency θ using γ=10,ω=5 and μ=2 (the complex field as a phase shift of 0.46), using both the first root of the equation above and the measured frequency from ODE simulation of the system :

 

As the two methods match well, the above derivation is probably correct. 

 


Complex oscillator coupled with a complex field, a forcing phase and without diffusion (III) : 

 

(5) zt=(μ+iω)zz|z|2+eiΩA(t)  

(6) At=αz(t) γA

 

From (II) :

iθ=(μ+iω)β2+αiθ+γ=(μ+iω)β2+αeiΩ(γθ2+γ2iθθ2+γ2), we find :

 

(7) β2=μ+αθ2+γ2(cos(Ω)γ+sin(Ω)θ)=μ+αθ2+γ2(cos(Ωatan(θ/γ))) 

(8) θ=ωαθ2+γ2(sin(Ω)γcos(Ω)θ)=ωαθ2+γ2(sin(Ωatan(θ/γ)))  

 

(8) gives the cubic equation : θ3θ2ω+θ(γ2+αcos(Ω))ωγ2αγsin(Ω)

 

One can easily show that if Ω=atan(ω/γ) then θ=ω is a solution of (8).

 

Then the first root of this equation is a periodic function of Ωγ=10,ω=5 and α=50,μ=5 )

 

 

Search
Share