Navigation
|
Add diffusion on each specie to make the stability easier
Making the change of variable z = x -ct in the diffusion coupled system :
$latex \displaystyle{ \Large -c \dot{w} = \alpha_w \frac{w^2}{1 + w^2} - \gamma_{vw} ~ v \frac{w}{k + w} - \lambda_w ~w + A + \epsilon \ddot{w}}$ $latex \displaystyle{ \Large -c \dot{v} = \frac{w^2}{1 + w^2} - v + \epsilon \ddot{v}}$ $latex \displaystyle{ \Large -c \dot{A} = \alpha_A w - \lambda_A ~A + D \ddot{A}}$
Or : $latex \displaystyle{ \Large \dot{w} = W}$ $latex \displaystyle{ \Large \dot{v} = V}$ $latex \displaystyle{ \Large \dot{A} = B }$ $latex \displaystyle{ \Large \dot{W} = 1/\epsilon ( - \alpha_w \frac{w^2}{1 + w^2} + \gamma_{vw} ~ v \frac{w}{k + w} + \lambda_w ~w - A - c W )}$ $latex \displaystyle{ \Large \dot{V} = 1/\epsilon( -\frac{w^2}{1 + w^2} + v - c V )}$ $latex \displaystyle{ \Large \dot{B} = 1/ D ( -\alpha_A w + \lambda_A ~A - c~B )}$
We take $latex \displaystyle{ \Large \epsilon = 0.01}$. The bifurcation diagram look a bit different :
Period :
Amplitude of w (max - min), level set :
StabilityRaw data
k=0, black : unstable
k=pi / T, black : unstable Schematic :
Smoothed version :
(I) (II)
(III)
(IV)
(V) (Stable)
(VI) (Stable)
Simulating perturbed stationary solution in the original system
Here is a plot of the norm of the difference between stationary solution w(x,t) and perturbed solution w2(x,t), $latex \displaystyle{ \Large w_2(x,0) = w(x,0) + \delta \psi(x) }$ where $latex \displaystyle{ \Large \psi(x) }$ is the eigenfunction associated with eigenvalue $latex \displaystyle{ \Large \lambda }$ :
Here is the same plot integrated on space (blue), the red curve is $latex \displaystyle{ \Large \propto e^{\lambda t} }$ (k = 0):
If we wait long enough we can also see the perturbation :
Negative eigenvalue (k=0):
k=pi / T :
Spectrum (unstable) :
Instabilities seems to be in k = pi over T :
\Little circles !
The dynamic of formation of the little circles as alpha decrease :
|