Topics in Number Theory: Part 1

1. Find the Fourier transform of the normalised Gaussian $e^{-\pi x^{2}}$.
2. Functional equation for L-functions of even Dirichlet characters:

Let χ be a primitive Dirichlet character $\bmod N>1$. It has L-function

$$
L(s, \chi)=\sum_{n \geq 1} \frac{\chi(n)}{n^{s}}
$$

The idea is to prove the functional equation for this L-function, using a similar idea to that for the Riemann zeta function. Namely, we will define a suitable theta series, with functional equation obtained through Poisson summation, exhibit an integral representation of the L-function in terms of this theta series, and use this to prove the functional equation for the L-function.
a) Consider

$$
\theta_{\chi}(i y)=\sum_{n \in \mathbb{Z}} \chi(n) e^{-\pi n^{2} y}
$$

What can we say about this function if χ is odd (i.e., $\chi(-1)=-1$)? Does the same problem occur if χ is even (i.e., $\chi(-1)=+1$)?

We will here on fix χ to be even.
b) (i) Prove that

$$
\int_{0}^{\infty} y^{s / 2} \frac{\theta_{\chi}(i y)}{2} \frac{d y}{y}
$$

is an integral representation of (the completed) Dirichlet L-function.
(ii) Why might one write $\frac{d y}{y}$ separately, rather than absorb the y into the term at the front of the integral?
c) We now wish to obtain a functional equation for θ_{χ}. Can we apply Poisson summation immediately? If not, why not?
d) Decompose the theta series into a double sum, making use of the fact that we can express integers n as $\ell N+b$, where $l \in \mathbb{Z}, b \in\{0,1, \ldots, N-1\}$.
e) Hopefully now you are in a position to consider the Fourier transform of

$$
f(x)=\exp \left(-\pi(x N+b)^{2} y\right)
$$

What is it?
f) Apply Poisson summation to the theta series. Express it as a double sum, where the inner sum is over integers modulo N, and the outer sum is over \mathbb{Z}.

We would like to replace b by $b \ell^{-1} \bmod N$, but ℓ may not be invertible \bmod N. Instead, we will first prove that

$$
\sum_{b \bmod N} \chi(b) \mathrm{e}(\ell b / N)=0
$$

when χ is primitive and ℓ is not invertible $\bmod N$.
g) (i) Let $\operatorname{gcd}(\ell, N)=N / m>1$, and replace b by $b(1+x m)$ for any $x \bmod N / m$. Show that

$$
\sum_{b \bmod N} \chi(b) \mathrm{e}(\ell b / N)=\chi(1+x m) \sum_{b \bmod N / m} \sum_{\beta \bmod m} \chi(b) \mathrm{e}(\ell \beta / N) .
$$

(ii) Explain why this sum is zero, given that χ is primitive.
h) (i) Now make the change of variables, as suggested above (i.e., replace b by $\left.b \ell^{-1} \bmod N\right)$. The inner sum should become a Gauss sum $\langle\chi, \psi\rangle$, which does not depend on ℓ, where

$$
<\chi, \psi>=\sum_{b \bmod N} \chi(b) \bar{\psi}(b)
$$

and $\psi(b)=\mathrm{e}(-b / N)$.
(ii) Obtain the functional equation

$$
\theta_{\chi}(i y)=\frac{<\chi, \psi>}{N \sqrt{y}} \theta_{\chi^{-1}}\left(i / N^{2} y\right)
$$

- The functional equation here relates θ_{χ} to $\theta_{\chi^{-1}}$. Why does this not contradict with what we saw for the Riemann zeta function?
- Note that the flip in the argument is now $y \mapsto 1 / N^{2} y$, not $y \mapsto 1 / y$ as before.

