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Theorem 1.12. The theta series ⇥(z;P ) is an holomorphic function on H satisfying
the following automorphy relations: for any � 2 �0(4),

⇥(�z;P ) = ((
c

d
)"�1

d )l(cz + d)l/2+d⇥(z;P ).

We will say that ⇥(�z;P ) is an holomorphic modular form of weight

k = l/2 + d.

5.4.1. Proof of Theorem 1.12. The proof which we leave to the reader uses crucially the
following multidimensional version of the Poisson summation formula which is proven by
multiple application of the one dimensional Poisson formula:

Theorem 1.13. Let f 2 S(Rl) be in the Schwarz class, for u 2 Rl, one has
X

x2Zl

f(x+ u) =
X

x02Zl

bf(x0)e(�x0.u)

where x.u =
Pl

i=1 x
0
iui denote the Euclidean inner product and

bf(x0) =

Z

Rl
f(x)e(x.x0)dx

is the Fourier transform.

In particular one need the following

Theorem 1.14. Let P 2 Hl,d and

fP (x) = P (x)e�⇡Ql(x) = P (x)e�⇡(
P

i x
2

i )

then
cfP (x0) = i�dfP (x

0).

Proof. When P = 1,

f̂1(x
0) =

Z

Rl

Y

i

e�⇡x2

i e(xi.x
0
i)dxi =

Y

i

\e�⇡x2

i (x0i) =
Y

i

e�⇡x02
i = f1(x

0).

Take P (x) = (c.x)d and let

L = Lc =
X

i

ci
@

@xi

We have by integration by parts and for any f 2 S(Rl)

dc.xf(x0) = � 1

2⇡i
Lc
bf(x0)

and

\Pc(x)f(x
0) = \(c.x)df(x0) =

(�1)d

(2⇡i)d
Ld
c( bf)(x0)

taking f(x) = f1(x) in this identity we conclude since one proves by recurrence that

Ld
cf1 = (�2⇡)dPc,d(x)f1(x) = (�2⇡)dfP (x).

Indeed
Lce

�⇡(
P

i x
2

i ) =
X

i

�2⇡cixif1(x) = (�2⇡)Pc,1(x)f1(x).
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Suppose that
Ld
cf1 = (�2⇡)dPc,d(x)f1(x),

we have

Ld+1
c f1 = (�2⇡)d[Lc(Pc,d)f1(x) + Pc,dLcf1] = (�2⇡)d[Lc(Pc,d)f1(x) + (�2⇡)Pc,d+1f1],

Now
Lc(Pc,d) = Lc((c.x)

d) = d(c.x)d�1Lc(c.x) = d(c.x)d�1
X

i

c2i = 0.

⇤
5.4.2. Proof of Theorem 5.5. As we will show later, the fact that P is not constant along

with the automorphy relations satisfied by ⇥(z;P ), implies that the function

yk/2|⇥(z;P )|
is bounded on H; this implies that there exists � > 0 such that

(5.6) rl(n;P ) ⌧ n(l/2+d)/2��.

Hence by Proposition 1.1 we have

1

rl(n)

X

Ql(x)=n

P (
xp
n
) ⌧ n�l/4+1��+o(1).

If l > 5 this converge to 0 as n ! +1 since � > 0. One can in fact prove (but this is
harder) that � > 0 so the above sum also converge to 0 for l = 4, n ! +1 (and odd).

In order to prove (5.6) we observe that for any y > 0

exp(�2⇡ny)yk/2rl(n;P ) =

Z

[0,1]
yk/2⇥(x+ iy)e(�nx)dx = O(1).

Taking y = 1/n we obtain
rl(n;P ) ⌧ nk/2.

5.5. Explanation of the figures. The pictures of figure 2 represent the distribution
of the sets

1p
5↵

R4(5
↵)

on the 3-dimensional sphere S4 ⇢ R4. It is of course no simple to represent the 3-sphere on
a two dimensional plane and here we use the Hopf map trick: let us recall that R4 may be
identified with the (associative, non-commutative) algebra of Hamilton quaternions H

(x, y, z, t) ! w = x+ iy + jz + kt, where i2 = j2 = k2 = �1, ij = �ji = k.

Recall that H is equipped with a canonical involution, a reduced trace and a reduced norm:

w = x+iy+jz+kt ! w = x�iy�jz�kt,TrH(w) = w+w = 2x, NrH(w) = ww = x2+y2+z2+t2.

Therefore the map
(x, y, z, t) ! w = x+ iy + jz + kt

is an isometry between the quadratic spaces (R4, Q4) and (H,NrH): ie. the square of the
Euclidean norm correspond to the Quaternionic norm:

x2 + y2 + z2 + t2 = NrH(x+ iy + jz + kt) = (x+ iy + jz + kt)(x� iy � jz � kt).

Therefore S4 gets identified with the quaternions of norm 1,

H1 = {w 2 H, NrH(w) = 1},
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which form a group under multiplication (since the norm is multiplicative

NrH(ww
0) = NrH(w)NrH(w

0) .)

Next the Euclidean 3-space (R3, Q3) is isometrically identified with the subspace of pure
quaternions (H0,NrH) via

(y, z, t) 2 R3 ! iy + jz + kt 2 H0.

The linear action of H1 on H by conjugation, given for w 2 H1 by

⇢w : w0 2 H ! ww0w�1

preserve the norm (ie. NrH(ww0w�1) = NrH(w0)) as well as the trace (ie. TrH(ww0w�1) =
TrH(w0)) and leave H0 invariant. Therefore under the identification H0 ' R3, ⇢w corre-
spond to an isometry2 which is in fact of determinant +1. Therefore we have a group
homomorphism, the Hopf map

Hopf : S4 ' H1 ! SO3(R).

This map is in fact surjective and its kernel is {(±1, 0, 0, 0)} ' {±1H}.
Thus to any x 2 R4(n) one associate the isometry Hopf( 1p

n
x) 2 SO3(R). In the pictures

we have represented the various images of the vector (1, 0, 0) of S3 under the rotations

Hopf(
1p
n
x), x 2 R4(n), n = 52, 53, 54.

These points seem and in fact are equidistributed on S3 with respect to the natural SO3(R)-
invariant measure µ3 as n gets large: this is a consequence of the fact that the set 1p

n
R4(n)

are equidistributed on S4 wrt µ4 as n ! +1.
This last interpretation yields to a further generalization of the theta series:

6. Theta series associated to general definite quadratic forms

Let
Q(x) =

X

i

aiix
2
i +

X

i<j

2aijxixy =
X

i,j

aijxixj , aij = aji

be a non-degenerate quadratic form on Rl. We denote by

hx,x0iQ =
1

2
(Q(x+ x0)�Q(x)�Q(x0))

the associated inner product (or polarization). Let

A = (aij)ij = (hei, ejiQ)i,j
be the associated symmetric matrix; the assumption that Q is non-degenerate is equivalent
to detA 6= 0. We assume that Q is positive and A is integral; in particular Q(Zl) ⇢ Z.

Let
RQ(n) = {x 2 Zl, Q(x) = n}, rQ(n) := |RQ(n)|

We form
⇥Q(z) =

X

x2Zl

e(Q(x)z) =
X

n>0

rQ(n)e(nz)

2 This is either the identity if w 2 R.1 is a scalar or the symetry whose axis is the line generated by the
trace 0-vector w

0

= w � TrH(w)
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where

rQ(n) = |rQ(n)|, RQ(n) = {x 2 Zl, Q(x) = n}
is the cardinality of the set of integral representations of n by Q.

It is easy to see that rQ(n) ⌧ nl/2 so the series converge rapidly and define an holomor-
phic function on H

It turn out that this theta function satisfies automorphy relations similar to the theta
function associated to the Euclidean quadratic form ⇥l(z) = ⇥(z)l but for a smaller sub-
group of SL2(Z): for q > 1 let

�0(q) = {� =

✓
a b
c d

◆
2 SL2(Z), c ⌘ 0(q)}

be the Iwahori-Hecke subgroup of level q. One can prove the following

Theorem 1.15. Let N be such that NA�1 is integral, then ⇥Q(z) is a holomorphic
function on H satisfying. For any � 2 �0(4N)

⇥Q(�z) = (
detA

d
)((

c

d
)"�1

d )l(cz + d)l/2⇥(z).

The proof use the following variant of the Poisson summation formula; for this we need
first to recall the notion of dual lattice and dual basis: if {f1, · · · , fl} is a basis of Rl, its
dual basis with respect to Q is the basis

{f⇤
1 , · · · , f⇤

l }, such that hfi, f⇤
j i = �ij .

Correspondingly let

L = Zf1 + · · ·+ Zfl

be the lattice generated by this basis the dual lattice is

L⇤ = Zf⇤
1 + · · ·+ Zf⇤

l = {x0 2 Rl, 8x 2 L hx,x0iQ 2 Z}
Theorem 1.16. Let f 2 S(Rl) be in the Schwarz class, for u 2 Rl, one has

X

x2Zl

f(x+ u) =
X

x⇤2(Zl)⇤

bf(x⇤)e(�hx⇤, uiQ)

where

bf(x0) =

Z

Rl
f(x)e(hx,x0iQ)dx

denote the Fourier transform relative to the inner product h., .iQ.
6.1. Harmonic polynomials associated to a quadratic form. Let A�1 = (a⇤ij)

the Laplace operator with respect to Q is defined as

�Q =
X

i,j

a⇤ij
@2

@xi@xj

Let P be an harmonic polynomial of degree d with respect to Q (ie. �Q(P ) = 0), then we
form

⇥Q(z;P ) =
X

x2Zl

P (x)e(Q(x)z) =
X

n>0

rQ(n;P )e(nz)
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Theorem 1.17. Let N be such that NA�1 is integral, then ⇥Q(z;P ) is a holomorphic
function on H satisfying, for any � 2 �0(4N)

⇥Q(�z;P ) = (
detA

d
)((

c

d
)"�1

d )l(cz + d)l/2+d⇥(z;P ).

6.2. Equidistribution of representations. One can prove the following (which is
not easy):

Theorem 1.18. For l > 4 there exists explicit(able) integers a, q > 0 such that for
n ⌘ a(q) (n > 0)

rQ(n) = nl/2�1+o(1), n ! +1.

Moreover one has also an equidistribution statement: let

SQ = {x 2 Rl, Q(x) = 1}
be variety of level 1 associated to the quadratic form Q: this is an ellipsoid and also the
”unit sphere” for the inner product induced by Q:

hx,x0iQ :=
1

2
(Q(x+ x0)�Q(x)�Q(x0)).

As for the usual sphere SQ carries a unique probability measure which is SOQ(R)-invariant,
µQ say, then we have

Theorem 1.19. Let a, q be as above and f 2 C(SQ); for n ⌘ a(q), one has

1

rQ(n)

X

x2RQ(n)

f(
x

n1/2
) ! µQ(f), n ! +1.



CHAPTER 2

The Upper-half plane

In the previous chapter we have seen examples on functions (the theta functions) which
are holomorphic functions on the upper-half plane H satisfying some sort of invariance
properties with respect to the action of some subgroup � ⇢ SL2(Z)SL2(R) which is induced
by the action of SL2(R) on H by fractional linear transformations. In this chapter we
describe structural aspect of this action and introduce some elements of hyperbolic geometry.

1. The complex projective line

The projective line P1(C) is by definition the set of lines in C2 passing through the
origin (0, 0):

P1(C) = {L ⇢ C2, 0 2 L a line}.
The lines passing through the origin are parametrized by their slope z 2 C [ {1}

z 2 C, Lz : X = zY, L1 : 0 = Y,

Figure 1. Moebius trasformation revealed: a movie by D. Arnold and J. Rognes.

27
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so we identify P1(C) with C [ {1}.

2. Fractional linear transformations

The general linear group GL2(C) acts on C2 by linear transformations,
✓

a b
c d

◆✓
X
Y

◆
=

✓
aX + bY
cX + dY

◆
.

In particular, its acts on the space of lines passing through the origin P1(C) and in terms
of the slope parametrization this action is given by

g(Lz) = Lgz, g.z =
az + b

cz + d
,

with the convention that
✓

a b
c d

◆
1 =

a

c
, c 6= 0,

✓
a b
0 d

◆
1 = 1.

Observe that the group of scalar matrices

Z(C) = {
✓

a 0
0 a

◆
, a 2 C⇥} = C⇥Id

act trivially: it follows that we have an action by the quotient group

PGL2(C) = GL2(C)/C⇥Id

which is called the projective linear group. Alternatively we may always replace a matrix g
of GL2(C) by a matrix of determinant 1 by multiplying g by the scalar matrix det g�1/2Id,
so without loss of information we may restrict to the action of the special linear group
SL2(C) or to the projective special linear group

PSL2(C) = SL2(C)/{±Id}.

2.1. Orbits. The structure of the space of orbits GL2(C)\P1(C) is very simple: there
is only one orbit (the group GL2(C) acts transitively on P1(C)): for c 6= 0

✓
a b
c d

◆
1 =

a

c
,

so for any z 2 P1(C),

P1(C) = GL2(C).1 = GL2(C).z.

The stabilizer of 1 is the Borel subgroup (of upper-triangular matrices)

GL2(C)1 = B(C) = {
✓

a b
0 d

◆
2 GL2(C)}

and hence

P1(C) ' GL2(C)/B(C),

given by the inverse of the map gB(C) 7! g.1.
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2.2. Fixed points. Given g 2 GL2(C), a fixed point of g is a z 2 P1(C) such that

g.z = z.

These can be determined by solving the equation of degree 6 2

az + b = z(cz + d) () cz2 + (d� a)z � b = 0

and either the set of fixed point is the whole of P1(C) (if and only if g = �Id, � 2 C⇥) or
has at most 2 elements. If fact, thinking in term of lines in C2, one see that z is a fixed
point of g if and only if the line Lz is an eigenspace for the linear map g on C2. This depend
whether g is, up to multiplication by a scalar, the identity, a unipotent matrix (di↵erent
from the identity), or a non-unipotent matrix.

2.3. The Bruhat decomposition. The Borel subgroup decompose further as

B(C) = N(C)D(C) = Z(C)N(C)A(C),

where

N(C) = {n(z) =
✓

1 z
0 1

◆
, z 2 C},

is the group of upper-triangular unipotent matrices and

D(C) = {
✓

a 0
0 d

◆
, a, d 2 C⇥}, A(C) = D(C) \ SL2(C) = {

✓
a 0
0 a�1

◆
, a 2 C⇥}

are the groups of diagonal matrices. We now prove some further decompositions: consider
the inversion matrix

w =

✓
0 �1
1 0

◆

then w2 = �Id so w is an involution on P1(C) with ±i as fixed points,

wz = �1/z, w2z = z, w.0 = 1, w.i = i.

Proposition 2.1 (Bruhat decomposition). One has

GL2(C) = B(C) tN(C)wB(C)

and this decomposition is unique (a matrix g not in B(C) can be written in a unique way
into to form g = nwb with n 2 N and b 2 B). Similarly one has

SL2(C) = N(C)A(C) tN(C)wN(C)A(C)

Proof. One has
P1(C) = {1} tC

moreover, since N acts by translations

n(z)z0 = z + z0,

C is the N -orbit of 0 = w1 (moreover N(C)0 = {Id})
C = N(C).0 = N(C)w1

since B(C) is the stabilizer of 1 in GL2(C),

GL2(C)/B(C) ' P1(C) ' {1} tC ' B(C)/B(C) tN(C)wB(C)/B(C).

This decomposition is unique: if g is not in B(C) and satisfies g = nwb = n0wb0 then

g1 = nw1 = n.0 = n0.0 ) n = n0
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and then b = b0. ⇤
Since B(C) = Z(C)N(C)A(C) one has

Corollary 2.1. GL2(C) is generated by w and the subgroups Z(C), A(C), N(C).
SL2(C) is generated by w, A(C) and N(C).

Notice that this decomposition is ”algebraic”: let g =

✓
a b
c d

◆
2 SL2(C)�N(C)A(C)

(c 6= 0), then g = n(u)wn(v)a(w)

g.1 = a/c = n(u)0 = u,

hence n(�a/c)g.z = g.z � a/c =
az + b

cz + d
� a/c = � 1

c(cz + d)
= wn(v)a(w) =

�1

w2z + v
so that ✓

a b
c d

◆
=

✓
1 a/c

1

◆
w

✓
1 cd
0 1

◆✓
cd 0

1/cd

◆
,

In particular we have
az + b

cz + d
=

a

c
� 1

c(cz + d)

Corollary 2.2. The above decompositions remain valid if one replace GL2(C), SL2(C),
B(C), N(C), . . . etc. by GL2(K), SL2(K), B(K), N(K), . . . for K ⇢ C any subfield. In
particular these remain valid for K = R.

Remark 2.1. This, of course, could have been checked directly; the point of this proof
is that it generalize to much more complicated groups of matrices.

2.4. The action of GL2(C) on lines.

Definition 2.1. A line in P1(C) is either L [ {1} where L is a line in C ' R2 or a
circle in C.

Proposition 2.2. The fractional transformations preserve lines.

Proof. It is su�cient to verify this for elements of Z,N,A and for w. This is obvious for
Z,N,A since these correspond to a�ne transformations in R2.Consider w: since wA = Aw
and the elements of A act on C by a�ne transformations, we may assume that the line
is symmetric about the imaginary axis iR and passes through 0 or i (correspond either
to a horizontal line through 0 or i) or a circle centered on iR passing through 0 or i. In
the former case this is easy and one always obtain an horizontal line (using the fact that
=wz = =z/|z|2). In the later case, the circle is parametrized by

C(✓) = ✓ ! i� r(ei✓ � i), r 2 R

and (since the line iR [ {1} is transformed into it self by w and ) one check that wC(✓)
parametrize the circle centered on iR whose diameter is the segment with endpoints

wC(⇡/2) = i, wC(�⇡/2) =
i

1 + 2r
.

⇤

3. Fractional linear transformations for real matrices

We consider the restriction of this action to the subgroup GL2(R).
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3.1. Orbits. This action has two orbits: the real projective line

P1(R) = R [ {1}, P1(C)� P1(R) = H+ [H�

with
H± = {z = x+ iy 2 C, ±y > 0}

the upper and lower half-planes.
More precisely, GL+

2 (R) (equivalently SL2(R)) acts transitively on P1(R): N(R)w.1 =
R. The stabilizer of 1 is

SL2(R)1 = B(R) \ SL2(R) = B1(R) = N(R)A(R)

and the stabilizer of any other element of P1(R) is conjugate to B1(R).
The subgroup B1 act also transitively on H: given z = x+ iy 2 H, let

n(x) =

✓
1 x
0 1

◆
, a(y) =

✓
y1/2 0
0 y�1/2

◆

then

n(x)a(y)i =

✓
y1/2 x/y1/2

y�1/2

◆
i = z.

We set

m(z) := n(x)a(y) =

✓
y1/2 x/y1/2

y�1/2

◆
2 M

The stabilizer of i is

SL2(R)i = SO2(R) = { k(✓) =

✓
cos(✓) � sin(✓)
sin(✓) cos(✓)

◆
, ✓ 2 R.}

and the stabilizer of any z 2 H is conjugate to SO2(R).

Finally any matrix of negative determinant for instance

✓
0 1
1 0

◆
map H± to H⌥.

In particular
P1(R) = SL2(R).1 = SL2(R)/N(R)A(R),

H = SL2(R).i ' SL2(R)/SL2(R)i = SL2(R)/SO2(R).

3.2. Fixed points. The various fractional linear transformations of SL2(R) are pa-
rameterized according to the number of their fixed points in P1(C) and in particular are
invariant under conjugation in SL2(R): g 2 SL2(R) is

• ±Id: its fixed points are all or P1(C).
• Parabolic: |tr(g)| = 2 or g has one fixed point on P1(R):

g = n(x) =

✓
1 x
0 1

◆
, x 2 R

• Hyperbolic: |tr(g)| > 2 or g has two fixed point on P1(R):

g = a(y) =

✓
y1/2 0
0 y�1/2

◆
, y 2 R>0.

• Elliptic: |tr(g)| < 2 or g has one fixed point in each H±:

g = k(✓) =

✓
cos(✓) � sin(✓)
sin(✓) cos(✓)

◆
, ✓ 2 [�⇡,⇡].
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3.3. Action on half-lines. As we have seen the elements of SL2(R) transform lines of
P1(C) into lines. Let us see what happens to the restriction of these lines on the upper-half
space H.

- If C is a circle in H, g.C is a circle contained in H.
- If C is an horizontal line or a circle in H tangent to R at x (which correspond to
a line in P1(C) intersecting P1(R) in one point, 1 or x 2 R) then g.C is either
the circle in H tangent at the point g.x (if g.x 6= 1) or an horizontal line.

- If L is the restriction to H of a line in P1(C) meeting P1(R) in two distinct points,
x, x0 (L is either a non-horizontal half-line or the intersection of a circle with H)
then g.L is the restriction to H of a line in P1(C) meeting P1(R) in g.x, g.x0

3.4. Various decompositions. Let us first recall the

Proposition 2.3 (Bruhat decomposition). One has

GL2(R) = B(R) tN(R)wB(R),

SL2(R) = N(R)A(R) tN(R)wN(R)A(R).

and this decomposition is unique (a matrix g not in B(R) can be written in a unique way
into to form g = nwb with n 2 N and b 2 B).

One has also the following important decomposition

Proposition 2.4 (Iwasawa decomposition).

SL2(R) = NAK

and this decomposition is unique.

Proof. Given g consider z = x+ iy = g.i = n(x)a(y).i where a(y) =

✓
y1/2 0
0 y�1/2

◆

so that (n(x)a(y))�1g 2 SL2(R)i = SO2(R). ⇤
We also have the following useful decomposition which we will prove later (but which

can be proven directly)

Proposition 2.5 (Cartan or ”polar” decomposition).

SL2(R) = KAK.

3.5. The disk model. It is useful (for instance for the purpose of visualization) to
identify H with an open subset of a bounded domain in C: this is accomplished by mean
of the Cayley transform: for any z0 2 H, let

gC,z
0

=

✓
1 �z0
1 �z0

◆
2 GL2(C)

the corresponding fractional linear transformation on P1(C)

z ! gC,z
0

.z =
z � z0
z � z0

maps z0 to 0 and is an holomorphic homeomorphism between H to the open unit disk
D(0, 1):

|gC,z
0

.z| = |z � z0|/|z � z0| < 1 i↵ y > 0.

Moreover gC,z
0

maps P1(R) bijectively to the unit circle and maps 1 to 1. One advantage
of this identification is that all points on P1(R) play the same role.
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In particular, the conjugate subgroup gC,z
0

SL2(R)g�1
C,z

0

acts onD(0, 1) and the stabilizer
of 0 is the conjugate of the stabilizer of z0 and is given by the elements of the form:

✓ 2 R 7! e(✓).

In particular, the action is given by Euclidean rotations with center 0.
To check this we remark that

gC,z
0

= y�1/2
0 gC,i(n(x0)a(y0))

�1 = y�1/2
0 gC,i

 
y1/20 x0y

�1/2
0

0 y�1/2
0

!�1

so that it is su�cient to check this for z0 = i.

4. Topological group actions

So far we have considered only the set theoretic action of GL2(C) on P1(C) or of
GL+

2 (R). But these groups and the space they are acting on are equipped with a natural
topology (and in fact more structures) and we will now take this aspect into account.

4.1. The projective line and the Riemann sphere. The space P1(C) = C[ {1}
has a topology of compact locally compact separated space with C an open dense subset:
this is the one point-compactification or Alexandro↵ compactification of C. On C one take
the usual topology and one takes as a basis of open neighborhoods of 1 the complement
in P1(C) of compact subsets of C. The resulting topological space, bC is separated locally
compact and compact.

Exercise 4.1.1. Verify this and prove that P1(R) is a closed (hence compact) subset.

Remark 4.1. bC is in homeomorphic via the stereographic projection map to the 2-
sphere S2: this is the Riemann sphere.

4.2. Topological groups. Besides this, the group GL2(C) itself carries a natural
topology: GL2(C) an open subset of the C-vector space of 2 ⇥ 2-matrices, M2(C) ' C4

which is equipped with the norm

g =

✓
a b
c d

◆
, kmk = tr(gtg)1/2 = (|a|2 + |b|2 + |c|2 + |d|2)1/2.

Definition 2.2. A topological group G is a group which is also a topological separated
locally compact space such that the map

G⇥G ! G
(g, g0) ! g�1g0

is continuous. In particular the translations and inversion maps

g ! gg0, g ! g�1

are homeomorphism.

The group GL2(C) is a topological group and the subgroups N(C), A(C), GL2(R),
SL2(R), SO2(R) etc... are closed topological subgroups.

Boserve that M2(Z) ⇢ M2(R) is a discrete subset (the induced topology on M2(Z) is
the discrete topology). This implies that SL2(Z) = M2(R)\SL2(R) < SL2(R) is a discrete
subgroup .


