Harmonic homogeneous polynomials and theta functions

Question 15:

Let V be a finite dimensional $S O(n)$-stable subspace of $L^{2}\left(S^{n-1}, \mu\right)$. Consider an orthonormal basis f_{1}, \ldots, f_{n} of V, and define

$$
\psi_{V}(x, y)=\sum_{i=1, \ldots, n} f_{i}(x) \cdot f_{i}(y)
$$

(i) Prove that $\psi_{V}(x, y)$ does not depend on the choice of an orthonormal basis.
(ii) Determine $\psi_{V}(g \cdot x, g \cdot y)$ for g in $S O(n)$.
(iii) Prove that $x \mapsto \psi_{V}(x, P)$, where P is the north pole of the sphere, is a G-invariant function, where $G=\operatorname{stab}_{S O(n)}(P)$.
(iv) Prove that the previous function belongs to V, and is non zero if and only if V is not $\{0\}$.

Question 16:

Let A be a positive-definite symmetric matrix, and let P be a spherical function with respect to A. Denote by B the matrix equal to $\sqrt{\Lambda} U$, where U is an orthogonal matrix that diagonalises A, and Λ is the corresponding diagonal matrix.
Define

$$
\Theta(z)=\sum_{m \in \mathbb{Z}^{r}} P(m) e\left(\frac{1}{2} A[m] z\right)
$$

where $z \in \mathbb{H}$ and $A[x]={ }^{T} x A x$.
(i) Prove that this is holomorphic in the upper-half plane.

Now we assume that A is integral and that $A^{*}=N A^{-1}$ is also integral, where N is any suitable fixed integer.
(ii) What is a suitable value for N ?

For any suitable N, show that every prime factor of $|A|$ is in N.
(iii) If the degree ν of the spherical function is odd, what can you say?
(iv) Under what integer translations is Θ invariant?

We say that A is even if its diagonal elements are even. What does this tell us about the associated quadratic form $A[x]$?
If A is even, under what integer translations is Θ invariant?

Question 17:

We now want to prove

Proposition 0.1.

$$
\begin{equation*}
\sum_{m \in \mathbb{Z}^{r}} P(m+x) e\left(\frac{1}{2} A[m+x] z\right)=\frac{i^{-\nu}}{\sqrt{|A|}}\left(\frac{i}{k}\right)^{k} \sum_{m \in \mathbb{Z}^{r}} P^{*}(m) e\left(\frac{-A^{-1}[m]}{2 z}+{ }^{T} m x\right) \tag{0.1}
\end{equation*}
$$

where $P^{*}(x)=P\left(A^{-1} x\right)$ is a spherical function for A^{-1} and $k=\nu+r / 2$.
(i) What does this tell us when $x=0$?

To determine this, we will need Poisson summation:

$$
\sum_{m} f(m+x)=\sum_{m} \hat{f}(m) e\left({ }^{T} m x\right)
$$

and also the Fourier integral

$$
\int_{\mathbb{R}} e\left(\frac{1}{2} y^{2} z-y u\right) d y=\left(\frac{i}{z}\right)^{1 / 2} e\left(\frac{-u^{2}}{2 z}\right)
$$

where $u \in \mathbb{R}$ and $z \in \mathbb{H}$.
(ii) Let $P=1$, start with the left-hand side of 0.1) and use Poisson summation to obtain the right-hand side. You may also want to make the substitution (in an integral) of $y=B x$ (where B is defined as above).
(iii) Now without loss of generality we may assume that $P(x)=\left({ }^{T} c A x\right)^{\nu}$ for a suitable vector c. Define the differential operator

$$
L=\sum_{j} c_{j} \partial / \partial x_{j}
$$

Use (multiple) applications of this to what you proved in (ii) to obtain 0.1.
(iv) What does equation (0.1) simplify to when $x=0$ and $|A|=1$?

