Theta functions (continued)

As with last week, we begin with:
Let A be a positive-definite symmetric matrix, and let P be a spherical function with respect to A.
Define

$$
\Theta(z)=\sum_{m \in \mathbb{Z}^{r}} P(m) e\left(\frac{1}{2} A[m] z\right)
$$

where $z \in \mathbb{H}$ and $A[x]={ }^{T} x A x$.

We will now need the following:
Proposition 0.1. Let $\tau=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$ with d odd. If $c \equiv 0 \bmod N$, then

$$
\Theta(\tau z)=\vartheta(\tau)(c z+d)^{k} \Theta(z)
$$

where

$$
\vartheta(\tau)=\left(\frac{|A|}{d}\right)\left(\bar{\epsilon}_{d}\left(\frac{2 c}{d}\right)\right)^{r}
$$

and ϵ_{d} is equal to 1 if $d \equiv 1 \bmod 4$ and i if $d \equiv-1 \bmod 4$.
We will also make use of:
Theorem 0.2. let N be such that $N A^{-1}$ is integral. Let the diagonal of A be even. Then $\Theta(z)$ is an automorphic form for $\Gamma_{0}(2 N)$ of weight $k=\nu+r / 2$ and multiplier ϑ given as above. If $\nu>0$, then it is a cusp form.

Now let A be a symmetric positive definite integral matrix of even rank r. Let N be a positive integer such that $N A^{-1}$ is also an integral matrix. Let A and $N A^{-1}$ have even diagonal entries. Let P be a spherical function with respect to A of even degree ν.

We wish to show that under these conditions, Θ has a modular relation with respect to $\Gamma_{0}(N)$, where the weight is $k=\nu+r / 2$ and the multiplier is as above.

Let $\tau=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(N)$.

Question 18:

(i) What can we conclude if d is odd?

Note that if d is odd and negative, we will extend the Legendre-Jacobi symbol ($\frac{c}{d}$) by the rule

$$
\left(\frac{c}{d}\right)=\frac{c}{|c|}\left(\frac{c}{-d}\right)
$$

as long as $c \neq 0$, and $\left(\frac{0}{d}\right)$ is equal to 1 if $d= \pm 1$ and 0 otherwise.
(ii) What happens to the multiplier system ϑ when r is even?
(iii) Find $\vartheta(-1)$ as a function of the rank.

Assume from here on that d is even.
(iv) Show that N is odd.
(v) Use this to show that $|A|$ is odd. Then prove that

$$
D:=(-1)^{r / 2}|A| \equiv 1 \bmod 4
$$

(vi) Determine that $\vartheta(d)=\vartheta(c+d)$.
(vii) Consider $\Theta\left(\tau^{\prime} z^{\prime}\right)$ where $\tau^{\prime}=\tau T$ (T being the unit translation matrix in $S L_{2}(\mathbb{Z})$) and $z^{\prime}=z-1$. Use this to find a modular relation for $\Theta(\tau z)$.
(viii) What can you say about the rank r if N is equal to 1 ?

