14 1. THETA FUNCTIONS

Let us recall what we have proven so far:

THEOREM 1.6. The extended Jacobi symbol has the following properties: let d denote
an odd integer

(1) Ifd=1I,p" >0, c = (3) is a character of (Z/d)*, more precisely

pld

where for any odd prime p, ¢ — (;‘;) denote the Legendre symbol modulo p.

(2) Forc# 0 map d — () defines a character of (Z/4|c|)* which is even if ¢ > 0 and
odd for ¢ <0, ie.

c c

()=

) if >0, (_id) = —(5) if e <0.

(3) In particular
()=l = (1), () =xs(d) = (-1,
(4) and for c odd
c e-1.,d c lel-1  d

() =xa@F () if e >0, (5) = xalda(d) =

|c\) ifc<0

4. The automorphy relation

From these computation we obtain that é(z) satisfies the following automorphy relation

b > € I'y4(2), one has

THEOREM 1.7. For any v = < Z d

(4.1) &(.2) = (%)sgl(cz +d)'/28(2).

PROOF. Let v € T4(2). If ¢ =0, d = £1 and v = £7%(/2): we have

_ _ 0
O(v.2) =0(z) = (g)&?ddl/2

by the extension (3.9) of the Jacobi symbol. For ¢ # 0 and d > 0, we have from (2.4) and

the definition of the Jacobi symbol

61 = (L3 WD (2 1 0)26() = (2 vad)eates + 4)28(2)

= e 2+ )28(2)

since y4(d) = €2 and €} = 1. For d < 0 we replace v by —y and obtain

~ —2c, _ ~ 2c. _
O(v.2) = (—)etil—cz = d)'/?6(2) = ()eg ez +d) 2
by the properties of the extended Jacobi symbol. O

It is also helpful to define the following variant of the Riemann theta series

0(2) == B(22) = é(( c ) =Y en=?).

neZ



4. THE AUTOMORPHY RELATION 15

We have for v € GL§ (R)

o0 =6(( 2 9 )am=a((2 1) (2 0) 2

Now the conjugate subgroup

where

To(d) = {7 = ( o ) € SLa(Z), ¢ = 0(4)}.

I'p(4) is sometimes called the Hecke-ITwahori subgroup of level 4. From this we deduce that

COROLLARY 1.1. For any v = < (; Z > € T'o(4), one has
(4.2) O(7.2) = jij2(7,2)'/*0(2)
where

. Cy 1.
]1/2(77 Z) = (&)sd 1](7? 2)1/27

i(y,2) = cz +d.
That sort of transformation law is typical of modular forms.

4.1. The cocycle relation. Since

O(1'z) =0(v(v'2))

we obtain a cocycle relation: for v, € To(4) one has

(4.3) j1/2(’Y’Y’7 z) = jl/Q(’Ya’Y/Z)jl/Q(’Ylv z).
Squaring it and noting that
C.9 9 1 d=1(4)

— = d =

(d) €d X4( ) {_1 dE3(4)7
we obtain

xa(dd')j(vY', 2) = xa(d)i (7,7 2)xa(d)j (7, 2).

Hence
(4.4) i, 2) =37, 7'2)i (Y, 2).

and in fact this cocycle relation is valid for 7,7 € GL3 (R).

REMARK 4.1. We see from the above computation that the map
Lo(4) — {£1}
v = xa(d)

is in fact a group homomorphism (a character of I'y(4)):

(L0 (80 )=l ad) =) = vt

X4 :

C



16 1. THETA FUNCTIONS

5. Theta series attached to harmonic polynomials
5.1. Higher powers. For [ > 1 an integer, consider the function
z 0y(z) == 0(2)..
If satisfies for v € I'p(4)

Cc, _ .
(5.1) Ou(y-2) = ((5)e7 )i 2)"0u(2).
In particular if [ is even the automorphy relation simplify to
(5.2) 01(7.2) = xa(1)"%(7,2)/*6(2)
where

and for [ = 0(4) we obtain
(5.3) O1(v.2) = j(v, )0y (2)

These relations are typical of what will be called modular forms.

5.2. Theta series and functions on spheres. Using the original expression for ©
one sees easily that

Ou(z) =) D el(ni+---+ni)2) = r(n)exp(nz)
n1,...,M n=0
where
ri(n) = [{n} +--- +ni =n}
Thus r;(n) is the number of ways to write n as a sum of | squares of integers. A slightly

different interpretation is to view r;(n) as the cardinality of the set of integral solutions of
a diophantine equation namely,

Ri(n) = {x = (z1,...,7) € Z!, Qi(x) =n}
where
Ql(zla"'aivl) :ZL‘%—F—FZE%

is the Euclidean quadratic form; we say that R;(n) is the set of integral representations of
the integer n by the quadratic form ;. Expressed differently and more concretely r;(n) is
also the number of vectors with integral coordinates which are on the sphere of radius /n.

5.2.1. The size of Ri(n). We first evaluate r;(n) for [ > 4: the fact r;(n) has a generating
series which is a modular form allows to give estimates r;(n). In particular, for [ = 4 Jacobi
proved the following beautiful formula: for n > 1

ra(n) =82+ (-1)") Y d=82+(-1") [[ »

dn,2td p*[|n,p>2

1_1/pa+1
1-1/p °

In particular r4(n) > 1 for any positive integer n; in other terms, one has an ”analytic proof
of

THEOREM 1.8 (Lagrange four squares Theorem). Every positive integer is a sum of four
squares.
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REMARK 5.1. Observe that 7*(n) = r4(n)/8 is multiplicative: for (m,n) =1
ri(mn) = ry(m)ri(n).
This is a manifestation of Lagrange’s identity
(a2 + b2 + C2 + d2)(a/2 + b/2 + CI? + d/Z) _
0% +07?
+0%+ 0%

We will admit this formula for the moment and use it to deduce an estimate for the
number of representations of an integer as a sum of [ > 4 squares:

PROPOSITION 1.1. Suppose that either | =4 and n is odd, orl > 5 then

ri(n) = n!/271°M a5 n — +oo.
Proor. We consider the case n odd and [ = 4, one has
1— pfozfl
ra(n) =8n || T,

p*||In

We estimate the second factor:

o a—1
o [] T2 )<Y < Y 4

p|In pln k<w(n)
where w(n) = >~ 1 the number of prime divisors of n. Since 2¢(") < n, one has w(n) <
log(n) and

1— p—a—l
log( H 1*7]971) < log(logn)
p*lIn

hence .

ra(n) = IO — p1+o(1).

Observe that for any n, one has r4(n) < n!te).
Consider now [ = 5:

rs(n)= Y ran =)= Y mn -+ Y ran-1).

1<nl/2 1<nl/? 1<nl/2
=n(2) 1#£n(2)

The first term is non-negative and bounded by
Z ra(n —1%) < Z (n — 12)1Ho() L plt1/2+e(1),

l§n1/2 l<n1/2
1=n(2) 1=n(2)

The second term is evaluated similarly but with an upper and lower bound

l2
2y U\ 1te(1) _ 141/2+0(1)
g ran—107)=n g (1 n) =n .
l<n1/2 l<n1/2
1#£n(2) 1#£n(2)
So

Ts5 (n) = n3/2+0(1)
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and the general case follows by recurrence:

ri(n) = Z o (n — 12) = n(-D/2-1 Z (l 1)/2=140(1) _ 1/2—1+0(1)
ISnl/? 1<nl/?
1£n(2)
since ,
S - By a-1/2-14001) _ 172400
l<n1/2 n
1#n(2)

O
In particular, if [ > 5 (or if = 4 and n is odd) one has more and more points on .S; as
n — oo.

5.3. Application to equidistribution. Any integral vector x € R;(n) yields a point

on S; by projection

x = x/||x|| = x/v/n € S
and one thing one would like to understand is how the set ﬁRl(n) C S; fill the unit sphere
as n grows.

5.3.1. Equidistribution. The sphere S; carries a unique probability measure p; which
is invariant under the action of the orthogonal group SO;(R): that measure is given for
Q2 C S; a non-empty open subset by

1 (C(2))

Q)= —————
M) = (B0, 1)
where B;(0,1) = {x € R}, Q;(x) < 1} is the unit ball and
C(Q) ={ x, A€[0,1], x € Q}

is the solid angle supported by €.
We consider the average

PO
Qz(x =n \/>
which is a sort of Riemann sums over the rescaled integral vectors of length /n.

THEOREM 1.9. Given | > 4 then, asn — 400 (and n = 1(2) if | = 4), one has, for any

f S C(Sl)
(5.4) Z f(—=) = wlf)
ri(n f
Qz (x)=n
One then says that the sequence of sets

(g Riln)st (0= 1(2)if 1= 4)

becomes equidistributed on S; wrt p;. It follow by approximation that for any open subset
0 #QCS5
[{x € Ry(n), n""?x € Q}| ~ y(Q)|Ry(n)], n — +oc.

We start with the following general
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F1GuRE 1. Distribution of R4(5%), a = 2,3,4 via the Hopf map S; — SO3(R)

19



20 1. THETA FUNCTIONS

THEOREM 1.10 (Weyl’s equidsitribution criterion). In order for (5.4) to hold for any
continuous function f it is sufficient that (5.4) holds for every f € F C C(S;) for a family
F generating a dense subspace in C(S;) for the topology of uniform convergence.

PROOF. Let f be a continuous function, by definition of F there exist for any € > 0 a
finite set I and a linear combination

fre=> Xfi, N€C, fieF

i€l
such that
If = f1llo <.
Therefore writing
1 X
tn () ri(n) f(ﬁ)

we have

|/'Ll,n(f) - /Jl,n(ff)| < Nl,n(|f - fl|) <e.
Moreover for n > n(e) large enough we have

i (f1) = Z Aitn(fi) = Z Aipa (fi) + O(Z |Aile) = m(f1) + O(Z |Aile)

andso for n large enough we have

tun(f) — mn(fr) < e.
0

REMARK 5.2. Althougt this is discussed for the case of the sphere S; only, Weyl’s
criterion is quite general and valid for any compact space and any sequence of probability
measures: in order to show that a sequence of probability measures convergence weakly
to some given measure, it is sufficient to test convergence against a family of functions
generating a dense subspace of the space of continuous functions.

We need to produce such a family F in the case of the sphere:
DEFINITION 1.1. A polynomial P(x) on R! is harmonic if it is homogeneous:
P(\x) = MP(x), d = deg P
and it is a zero eigenvalue of the Laplace operator:
82
AP=0, A=) ——.
i=1...1

we denote by H; q the subspace of Harmonic polynomials of degree d.
The following follows from the exercise sessions:

THEOREM 1.11. One has the following

e The group SO;(R) acts on Hy 4 (by linear change of variables g.P(x) = P(g~'x))
and H;q does not contain any proper SO;(R)-invariant subspace (in other terms
Hi.q is an irreducible representation of SO;(R)).
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e H, 4 is generated by poynomials of the shape
P.4(x) = (ex)%,ce C'Q(c) = ZC’LQ =0.
i
e For d # d the subspaces Hiq and Hiqa are perpendicular with respect to the
SO;(R)-invariant inner product on homogenenous polynomials
_ 1 I

P, P = 1y(PP :/ P(x)P'(x)dx.

(. P) = (PP = s | PP
e The subspace

> Hyas, € C(S)
d

generated by the restriction to the sphere of the harmonic polynomials is dense in
C(S;) for the topology of uniform convergence.

The family EBd>0 Ha,; generate a dense subspace of C(.S;) and because of Weyl’s crite-
rion, we may therefore assume that f(x) = P(x) for P € H4; a non-constant harmonic
polynomial: in that case, one has

1 b ¢ 1

> - Y e
/2

i) Qo VU mn

We will show that for [ > 5 and P non-constant,

ri(n; P) := Z P(x) < nlt+d)/2=1=0

Qi(x)=n
for some § > 0. This implies that
1 X 1
5.5 P(—=)=———=Rp(n) <n® — 0= u(P).
(5:5) ri(n) Z (\/71) ri(n)nd/? pln) <n u(P)

Qu(x)=n

5.4. Theta series associated to harmonic polynomials. The proof of (5.5) Given
an harmonic polynomial P one can form the theta series

0 P) = 3 Pe(@(x)2) = S etn=)( Y Px) = 3 r(ni Ple(n2)
x€Z! n>0 Qu(x)=n n>0
say. Observe that if d is odd,
O(z; P) =0,

we may therefore assume that d is even. Since |r(n; P)| < p n!/? this is a rapidly converging
series hence an holomorphic function on H. The following is a consequence of the Poisson
summation formula:

THEOREM 1.12. The theta series ©(z; P) is an holomorphic function on H satisfying
the following automorphy relations: for any v € T'g(4),

(72 P) = ((5)eg")' (= + d)//*+ 0 (= P).

We will say that ©(yz; P) is an holomorphic modular form of weight
k=1/2+d.



