Let us recall what we have proven so far:
ThEOREM 1.6. The extended Jacobi symbol has the following properties: let d denote an odd integer
(1) If $d=\prod_{p} p^{\alpha_{p}}>0, c \rightarrow\left(\frac{c}{d}\right)$ is a character of $(\mathbf{Z} / d)^{\times}$, more precisely

$$
\left(\frac{c}{d}\right)=\prod_{p \mid d}\left(\frac{c}{p}\right)^{\alpha_{p}}
$$

where for any odd prime $p, c \rightarrow\left(\frac{c}{p}\right)$ denote the Legendre symbol modulo p.
(2) For $c \neq 0$ map $d \rightarrow\left(\frac{c}{d}\right)$ defines a character of $(\mathbf{Z} / 4|c|)^{\times}$which is even if $c>0$ and odd for $c<0$, ie.

$$
\left(\frac{c}{-d}\right)=\left(\frac{c}{d}\right) \text { if } c>0,\left(\frac{c}{-d}\right)=-\left(\frac{c}{d}\right) \text { if } c<0
$$

(3) In particular

$$
\left(\frac{-1}{d}\right)=\chi_{4}(d)=(-1)^{\frac{d-1}{2}},\left(\frac{2}{d}\right)=\chi_{8}(d)=(-1)^{\frac{d^{2}-1}{8}}
$$

(4) and for c odd

$$
\left(\frac{c}{d}\right)=\chi_{4}(d)^{\frac{c-1}{2}}\left(\frac{d}{c}\right) \text { if } c>0,\left(\frac{c}{d}\right)=\chi_{4}(d) \chi_{4}(d)^{\frac{|c|-1}{2}}\left(\frac{d}{|c|}\right) \text { if } c<0
$$

4. The automorphy relation

From these computation we obtain that $\widetilde{\Theta}(z)$ satisfies the following automorphy relation
Theorem 1.7. For any $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{d}(2)$, one has

$$
\begin{equation*}
\widetilde{\Theta}(\gamma \cdot z)=\left(\frac{2 c}{d}\right) \varepsilon_{d}^{-1}(c z+d)^{1 / 2} \widetilde{\Theta}(z) \tag{4.1}
\end{equation*}
$$

Proof. Let $\gamma \in \Gamma_{d}(2)$. If $c=0, d= \pm 1$ and $\gamma= \pm T^{2(b / 2)}$: we have

$$
\widetilde{\Theta}(\gamma . z)=\widetilde{\Theta}(z)=\left(\frac{0}{d}\right) \varepsilon_{d} d^{1 / 2}
$$

by the extension (3.9) of the Jacobi symbol. For $c \neq 0$ and $d>0$, we have from (2.4) and the definition of the Jacobi symbol

$$
\begin{aligned}
& \widetilde{\Theta}(\gamma \cdot z)=\left(\frac{-c / 2}{d}\right) \frac{G(1 ; d)}{d^{1 / 2}}(c z+d)^{1 / 2} \widetilde{\Theta}(z)=\left(\frac{2 c}{d}\right) \chi_{4}(d) \varepsilon_{d}(c z+d)^{1 / 2} \widetilde{\Theta}(z) \\
&=\left(\frac{2 c}{d}\right) \varepsilon_{d}^{-1}(c z+d)^{1 / 2} \widetilde{\Theta}(z)
\end{aligned}
$$

since $\chi_{4}(d)=\varepsilon_{d}^{2}$ and $\varepsilon_{d}^{4}=1$. For $d<0$ we replace γ by $-\gamma$ and obtain

$$
\widetilde{\Theta}(\gamma \cdot z)=\left(\frac{-2 c}{-d}\right) \varepsilon_{-d}^{-1}(-c z-d)^{1 / 2} \widetilde{\Theta}(z)=\left(\frac{2 c}{d}\right) \varepsilon_{d}^{-1}(c z+d)^{1 / 2}
$$

by the properties of the extended Jacobi symbol.
It is also helpful to define the following variant of the Riemann theta series

$$
\Theta(z):=\widetilde{\Theta}(2 z)=\widetilde{\Theta}\left(\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) z\right)=\sum_{n \in \mathbf{Z}} e\left(n z^{2}\right)
$$

We have for $\gamma \in \mathrm{GL}_{2}^{+}(\mathbf{R})$

$$
\Theta(\gamma z)=\widetilde{\Theta}\left(\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) \gamma z\right)=\widetilde{\Theta}\left(\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) \gamma\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)^{-1} 2 z\right)
$$

Now the conjugate subgroup

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)^{-1} \Gamma_{d}(2)\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)=\Gamma_{0}(4)
$$

where

$$
\Gamma_{0}(4)=\left\{\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z}), c \equiv 0(4)\right\} .
$$

$\Gamma_{0}(4)$ is sometimes called the Hecke-Iwahori subgroup of level 4. From this we deduce that Corollary 1.1. For any $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(4)$, one has

$$
\begin{equation*}
\Theta(\gamma . z)=j_{1 / 2}(\gamma, z)^{1 / 2} \Theta(z) \tag{4.2}
\end{equation*}
$$

where

$$
\begin{gathered}
j_{1 / 2}(\gamma, z)=\left(\frac{c}{d}\right) \varepsilon_{d}^{-1} j(\gamma, z)^{1 / 2} \\
j(\gamma, z)=c z+d .
\end{gathered}
$$

That sort of transformation law is typical of modular forms.
4.1. The cocycle relation. Since

$$
\Theta\left(\gamma \gamma^{\prime} z\right)=\Theta\left(\gamma\left(\gamma^{\prime} z\right)\right)
$$

we obtain a cocycle relation: for $\gamma, \gamma^{\prime} \in \Gamma_{0}(4)$ one has

$$
\begin{equation*}
j_{1 / 2}\left(\gamma \gamma^{\prime}, z\right)=j_{1 / 2}\left(\gamma, \gamma^{\prime} z\right) j_{1 / 2}\left(\gamma^{\prime}, z\right) . \tag{4.3}
\end{equation*}
$$

Squaring it and noting that

$$
\left(\frac{c}{d}\right)^{2} \varepsilon_{d}^{2}=\chi_{4}(d)=\left\{\begin{array}{ll}
1 & d \equiv 1(4) \\
-1 & d \equiv 3(4)
\end{array},\right.
$$

we obtain

$$
\chi_{4}\left(d d^{\prime}\right) j\left(\gamma \gamma^{\prime}, z\right)=\chi_{4}(d) j\left(\gamma, \gamma^{\prime} z\right) \chi_{4}\left(d^{\prime}\right) j\left(\gamma^{\prime}, z\right) .
$$

Hence

$$
\begin{equation*}
j\left(\gamma \gamma^{\prime}, z\right)=j\left(\gamma, \gamma^{\prime} z\right) j\left(\gamma^{\prime}, z\right) . \tag{4.4}
\end{equation*}
$$

and in fact this cocycle relation is valid for $\gamma, \gamma^{\prime} \in \mathrm{GL}_{2}^{+}(\mathbf{R})$.
Remark 4.1. We see from the above computation that the map

$$
\chi_{4}: \begin{array}{rlr}
\Gamma_{0}(4) & \mapsto\{ \pm 1\} \\
\gamma & \rightarrow \chi_{4}(d)
\end{array}
$$

is in fact a group homomorphism (a character of $\Gamma_{0}(4)$):

$$
\chi_{4}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)\right)=\chi_{4}\left(c b^{\prime}+d d^{\prime}\right)=\chi_{4}\left(d d^{\prime}\right)=\chi_{4}(d) \chi_{4}\left(d^{\prime}\right) .
$$

5. Theta series attached to harmonic polynomials

5.1. Higher powers. For $l \geqslant 1$ an integer, consider the function

$$
z \mapsto \Theta_{l}(z):=\Theta(z)^{l}
$$

If satisfies for $\gamma \in \Gamma_{0}(4)$

$$
\begin{equation*}
\Theta_{l}(\gamma \cdot z)=\left(\left(\frac{c}{d}\right) \varepsilon_{d}^{-1}\right)^{l} j(\gamma, z)^{l / 2} \Theta_{l}(z) \tag{5.1}
\end{equation*}
$$

In particular if l is even the automorphy relation simplify to

$$
\begin{equation*}
\Theta_{l}(\gamma . z)=\chi_{4}(\gamma)^{l / 2} j(\gamma, z)^{l / 2} \Theta_{l}(z) \tag{5.2}
\end{equation*}
$$

where

$$
\chi_{4}(\gamma)=\left(\frac{c}{d}\right)^{2} \varepsilon_{d}^{2}=\chi_{4}(d)= \begin{cases}1 & d \equiv 1(4) \\ -1 & d \equiv 3(4)\end{cases}
$$

and for $l \equiv 0(4)$ we obtain

$$
\begin{equation*}
\Theta_{l}(\gamma . z)=j(\gamma, z)^{l / 2} \Theta_{l}(z) \tag{5.3}
\end{equation*}
$$

These relations are typical of what will be called modular forms.
5.2. Theta series and functions on spheres. Using the original expression for Θ one sees easily that

$$
\Theta_{l}(z)=\sum \sum_{n_{1}, \ldots, n_{l}} \mathrm{e}\left(\left(n_{1}^{2}+\cdots+n_{l}^{2}\right) z\right)=\sum_{n \geqslant 0} r_{l}(n) \exp (n z)
$$

where

$$
r_{l}(n)=\left|\left\{n_{1}^{2}+\cdots+n_{l}^{2}=n\right\}\right| .
$$

Thus $r_{l}(n)$ is the number of ways to write n as a sum of l squares of integers. A slightly different interpretation is to view $r_{l}(n)$ as the cardinality of the set of integral solutions of a diophantine equation namely,

$$
\mathcal{R}_{l}(n)=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{l}\right) \in \mathbf{Z}^{l}, Q_{l}(\mathbf{x})=n\right\}
$$

where

$$
Q_{l}\left(x_{1}, \ldots, x_{l}\right)=x_{1}^{2}+\cdots+x_{l}^{2}
$$

is the Euclidean quadratic form; we say that $\mathcal{R}_{l}(n)$ is the set of integral representations of the integer n by the quadratic form Q_{l}. Expressed differently and more concretely $r_{l}(n)$ is also the number of vectors with integral coordinates which are on the sphere of radius \sqrt{n}.
5.2.1. The size of $\mathcal{R}_{l}(n)$. We first evaluate $r_{l}(n)$ for $l \geqslant 4$: the fact $r_{l}(n)$ has a generating series which is a modular form allows to give estimates $r_{l}(n)$. In particular, for $l=4$ Jacobi proved the following beautiful formula: for $n \geqslant 1$

$$
r_{4}(n)=8\left(2+(-1)^{n}\right) \sum_{d \mid n, 2 \nmid d} d=8\left(2+(-1)^{n}\right) \prod_{p^{\alpha} \| n, p>2} p^{\alpha} \frac{1-1 / p^{\alpha+1}}{1-1 / p}
$$

In particular $r_{4}(n) \geqslant 1$ for any positive integer n; in other terms, one has an "analytic proof of

ThEOREM 1.8 (Lagrange four squares Theorem). Every positive integer is a sum of four squares.

Remark 5.1. Observe that $r^{*}(n)=r_{4}(n) / 8$ is multiplicative: for $(m, n)=1$

$$
r_{4}^{*}(m n)=r_{4}^{*}(m) r_{4}^{*}(n) .
$$

This is a manifestation of Lagrange's identity

$$
\begin{gathered}
\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(a^{\prime 2}+b^{\prime 2}+c^{\prime 2}+d^{\prime 2}\right)= \\
()^{2}+()^{2} \\
+()^{2}+()^{2}
\end{gathered}
$$

We will admit this formula for the moment and use it to deduce an estimate for the number of representations of an integer as a sum of $l \geqslant 4$ squares:

Proposition 1.1. Suppose that either $l=4$ and n is odd, or $l \geqslant 5$ then

$$
r_{l}(n)=n^{l / 2-1+o(1)} \text {, as } n \rightarrow+\infty
$$

Proof. We consider the case n odd and $l=4$, one has

$$
r_{4}(n)=8 n \prod_{p^{\alpha} \| n} \frac{1-p^{-\alpha-1}}{1-p^{-1}}
$$

We estimate the second factor:

$$
\log \left(\prod_{p^{\alpha}| | n} \frac{1-p^{-\alpha-1}}{1-p^{-1}}\right) \ll \sum_{p \mid n} \frac{1}{p} \leqslant \sum_{k \leqslant \omega(n)} \frac{1}{k}
$$

where $\omega(n)=\sum_{p \mid n} 1$ the number of prime divisors of n. Since $2^{\omega(n)} \leqslant n$, one has $\omega(n) \leqslant$ $\log (n)$ and

$$
\log \left(\prod_{p^{\alpha} \| n} \frac{1-p^{-\alpha-1}}{1-p^{-1}}\right) \ll \log (\log n)
$$

hence

$$
r_{4}(n)=n^{1+O\left(\frac{\log \log n}{\log n}\right)}=n^{1+o(1)} .
$$

Observe that for any n, one has $r_{4}(n) \leqslant n^{1+o(1)}$.
Consider now $l=5$:

$$
r_{5}(n)=\sum_{l \leqslant n^{1 / 2}} r_{4}\left(n-l^{2}\right)=\sum_{\substack{l \leqslant n^{1 / 2} \\ l \equiv n(2)}} r_{4}\left(n-l^{2}\right)+\sum_{\substack{l \leqslant n^{1 / 2} \\ l \neq n(2)}} r_{4}\left(n-l^{2}\right) .
$$

The first term is non-negative and bounded by

$$
\sum_{\substack{l \leqslant n^{1 / 2} \\ l \equiv n(2)}} r_{4}\left(n-l^{2}\right) \leqslant \sum_{\substack{l \leqslant n^{1 / 2} \\ l \equiv n(2)}}\left(n-l^{2}\right)^{1+o(1)} \leqslant n^{1+1 / 2+o(1)}
$$

The second term is evaluated similarly but with an upper and lower bound

$$
\sum_{\substack{l \leq n^{1 / 2} \\ l \neq n(2)}} r_{4}\left(n-l^{2}\right)=n \sum_{\substack{l \leq n^{1 / 2} \\ l \neq n(2)}}\left(1-\frac{l^{2}}{n}\right)^{1+o(1)}=n^{1+1 / 2+o(1)} .
$$

So

$$
r_{5}(n)=n^{3 / 2+o(1)}
$$

and the general case follows by recurrence:

$$
r_{l}(n)=\sum_{l \leqslant n^{1 / 2}} r_{l-1}\left(n-l^{2}\right)=n^{(l-1) / 2-1} \sum_{\substack{l \leqslant n^{1 / 2} \\ l \equiv n(2)}}\left(1-\frac{l^{2}}{n}\right)^{(l-1) / 2-1+o(1)}=n^{l / 2-1+o(1)}
$$

since

$$
\sum_{\substack{l \leq n^{1 / 2} \\ l \neq n(2)}}\left(1-\frac{l^{2}}{n}\right)^{(l-1) / 2-1+o(1)}=n^{1 / 2+o(1)}
$$

In particular, if $l \geqslant 5$ (or if $l=4$ and n is odd) one has more and more points on S_{l} as $n \rightarrow \infty$.
5.3. Application to equidistribution. Any integral vector $\mathbf{x} \in \mathcal{R}_{l}(n)$ yields a point on S_{l} by projection

$$
\mathbf{x} \mapsto \mathbf{x} /\|\mathbf{x}\|=\mathbf{x} / \sqrt{n} \in S_{l}
$$

and one thing one would like to understand is how the set $\frac{1}{\sqrt{n}} \mathcal{R}_{l}(n) \subset S_{l}$ fill the unit sphere as n grows.
5.3.1. Equidistribution. The sphere S_{l} carries a unique probability measure μ_{l} which is invariant under the action of the orthogonal group $\mathrm{SO}_{l}(\mathbf{R})$: that measure is given for $\Omega \subset S_{l}$ a non-empty open subset by

$$
\mu_{l}(\Omega)=\frac{\mu_{\mathbf{R}^{l}}(C(\Omega))}{\mu_{\mathbf{R}^{l}}\left(B_{l}(0,1)\right)}
$$

where $B_{l}(0,1)=\left\{\mathbf{x} \in \mathbf{R}^{l}, Q_{l}(\mathbf{x}) \leqslant 1\right\}$ is the unit ball and

$$
C(\Omega)=\{\lambda \mathbf{x}, \lambda \in[0,1], \mathbf{x} \in \Omega\}
$$

is the solid angle supported by Ω.
We consider the average

$$
\frac{1}{r_{l}(n)} \sum_{Q_{l}(\mathbf{x})=n} f\left(\frac{\mathbf{x}}{\sqrt{n}}\right)
$$

which is a sort of Riemann sums over the rescaled integral vectors of length \sqrt{n}.
Theorem 1.9. Given $l \geqslant 4$ then, as $n \rightarrow+\infty$ (and $n \equiv 1(2)$ if $l=4$), one has, for any $f \in \mathcal{C}\left(S_{l}\right)$

$$
\begin{equation*}
\frac{1}{r_{l}(n)} \sum_{Q_{l}(\mathbf{x})=n} f\left(\frac{\mathbf{x}}{\sqrt{n}}\right) \rightarrow \mu_{l}(f) \tag{5.4}
\end{equation*}
$$

One then says that the sequence of sets

$$
\left(\frac{1}{n^{1 / 2}} \mathcal{R}_{l}(n)\right)_{n \geqslant 1}(n \equiv 1(2) \text { if } l=4)
$$

becomes equidistributed on S_{l} wrt μ_{l}. It follow by approximation that for any open subset $\emptyset \neq \Omega \subset S_{l}$

$$
\left|\left\{\mathbf{x} \in \mathcal{R}_{l}(n), n^{-1 / 2} \mathbf{x} \in \Omega\right\}\right| \simeq \mu_{l}(\Omega)\left|\mathcal{R}_{l}(n)\right|, n \rightarrow+\infty
$$

We start with the following general

Figure 1. Distribution of $\mathcal{R}_{4}\left(5^{\alpha}\right), \alpha=2,3,4$ via the Hopf map $S_{4} \rightarrow \mathrm{SO}_{3}(\mathbf{R})$

Theorem 1.10 (Weyl's equidsitribution criterion). In order for (5.4) to hold for any continuous function f it is sufficient that (5.4) holds for every $f \in \mathcal{F} \subset \mathcal{C}\left(S_{l}\right)$ for a family \mathcal{F} generating a dense subspace in $\mathcal{C}\left(S_{l}\right)$ for the topology of uniform convergence.

Proof. Let f be a continuous function, by definition of \mathcal{F} there exist for any $\varepsilon>0$ a finite set I and a linear combination

$$
f_{I}:=\sum_{i \in I} \lambda_{i} f_{i}, \lambda_{i} \in \mathbf{C}, f_{i} \in \mathcal{F}
$$

such that

$$
\left\|f-f_{I}\right\|_{\infty} \leqslant \varepsilon
$$

Therefore writing

$$
\mu_{l, n}(f)=\frac{1}{r_{l}(n)} \sum_{Q_{l}(\mathbf{x})=n} f\left(\frac{\mathbf{x}}{\sqrt{n}}\right)
$$

we have

$$
\left|\mu_{l, n}(f)-\mu_{l, n}\left(f_{I}\right)\right| \leqslant \mu_{l, n}\left(\left|f-f_{I}\right|\right) \leqslant \varepsilon .
$$

Moreover for $n \geqslant n(\varepsilon)$ large enough we have

$$
\mu_{l, n}\left(f_{I}\right)=\sum_{i} \lambda_{i} \mu_{l, n}\left(f_{i}\right)=\sum_{i} \lambda_{i} \mu_{l}\left(f_{i}\right)+O\left(\sum_{i}\left|\lambda_{i}\right| \varepsilon\right)=\mu_{l}\left(f_{I}\right)+O\left(\sum_{i}\left|\lambda_{i}\right| \varepsilon\right)
$$

andso for n large enough we have

$$
\mu_{l, n}(f)-\mu_{l, n}\left(f_{I}\right) \ll \varepsilon .
$$

Remark 5.2. Althougt this is discussed for the case of the sphere S_{l} only, Weyl's criterion is quite general and valid for any compact space and any sequence of probability measures: in order to show that a sequence of probability measures convergence weakly to some given measure, it is sufficient to test convergence against a family of functions generating a dense subspace of the space of continuous functions.

We need to produce such a family \mathcal{F} in the case of the sphere:
Definition 1.1. A polynomial $P(\mathbf{x})$ on \mathbf{R}^{l} is harmonic if it is homogeneous:

$$
P(\lambda \mathbf{x})=\lambda^{d} P(\mathbf{x}), d=\operatorname{deg} P
$$

and it is a zero eigenvalue of the Laplace operator:

$$
\Delta_{l} P=0, \Delta_{l}=\sum_{i=1 \ldots l} \frac{\partial^{2}}{\partial^{2} x_{i}}
$$

we denote by $\mathcal{H}_{l, d}$ the subspace of Harmonic polynomials of degree d.
The following follows from the exercise sessions:
Theorem 1.11. One has the following

- The group $\mathrm{SO}_{l}(\mathbf{R})$ acts on $\mathcal{H}_{l, d}$ (by linear change of variables g. $P(\mathbf{x})=P\left(g^{-1} \mathbf{x}\right)$) and $\mathcal{H}_{l, d}$ does not contain any proper $\mathrm{SO}_{l}(\mathbf{R})$-invariant subspace (in other terms $\mathcal{H}_{l, d}$ is an irreducible representation of $\mathrm{SO}_{l}(\mathbf{R})$).
- $\mathcal{H}_{l, d}$ is generated by poynomials of the shape

$$
P_{c, d}(\mathbf{x})=(c . \mathbf{x})^{d}, c \in \mathbf{C}^{l} Q(c)=\sum_{i} c_{i}^{2}=0
$$

- For $d \neq d^{\prime}$ the subspaces $\mathcal{H}_{l, d}$ and $\mathcal{H}_{l, d^{\prime}}$ are perpendicular with respect to the $\mathrm{SO}_{l}(\mathbf{R})$-invariant inner product on homogenenous polynomials

$$
\left\langle P, P^{\prime}\right\rangle=\mu_{l}\left(P \bar{P}^{\prime}\right)=\frac{1}{\operatorname{vol}\left(B_{l}\right)} \int_{B_{l}} P(\mathbf{x}) \overline{P^{\prime}}(\mathbf{x}) d \mathbf{x}
$$

- The subspace

$$
\sum_{d} \mathcal{H}_{l, d \mid S_{l}} \subset \mathcal{C}\left(S_{l}\right)
$$

generated by the restriction to the sphere of the harmonic polynomials is dense in $\mathcal{C}\left(S_{l}\right)$ for the topology of uniform convergence.

The family $\bigoplus_{d \geqslant 0} \mathcal{H}_{d, l}$ generate a dense subspace of $\mathcal{C}\left(S_{l}\right)$ and because of Weyl's criterion, we may therefore assume that $f(\mathbf{x})=P(\mathbf{x})$ for $P \in \mathcal{H}_{d, l}$ a non-constant harmonic polynomial: in that case, one has

$$
\frac{1}{r_{l}(n)} \sum_{Q_{l}(\mathbf{x})=n} P\left(\frac{\mathbf{x}}{\sqrt{n}}\right)=\frac{1}{r_{l}(n) n^{d / 2}} \sum_{Q_{l}(\mathbf{x})=n} P(\mathbf{x}) .
$$

We will show that for $l \geqslant 5$ and P non-constant,

$$
r_{l}(n ; P):=\sum_{Q_{l}(\mathbf{x})=n} P(\mathbf{x}) \ll n^{(l+d) / 2-1-\delta}
$$

for some $\delta>0$. This implies that

$$
\begin{equation*}
\frac{1}{r_{l}(n)} \sum_{Q_{l}(\mathbf{x})=n} P\left(\frac{\mathbf{x}}{\sqrt{n}}\right)=\frac{1}{r_{l}(n) n^{d / 2}} R_{P}(n) \ll n^{-\delta} \rightarrow 0=\mu_{l}(P) . \tag{5.5}
\end{equation*}
$$

5.4. Theta series associated to harmonic polynomials. The proof of (5.5) Given an harmonic polynomial P one can form the theta series

$$
\Theta(z ; P)=\sum_{\mathbf{x} \in \mathbf{Z}^{l}} P(\mathbf{x}) e\left(Q_{l}(\mathbf{x}) z\right)=\sum_{n \geqslant 0} e(n z)\left(\sum_{Q_{l}(\mathbf{x})=n} P(\mathbf{x})\right)=\sum_{n \geqslant 0} r(n ; P) e(n z)
$$

say. Observe that if d is odd,

$$
\Theta(z ; P)=0,
$$

we may therefore assume that d is even. Since $|r(n ; P)| \ll P P n^{l / 2}$ this is a rapidly converging series hence an holomorphic function on \mathbf{H}. The following is a consequence of the Poisson summation formula:

Theorem 1.12. The theta series $\Theta(z ; P)$ is an holomorphic function on \mathbf{H} satisfying the following automorphy relations: for any $\gamma \in \Gamma_{0}(4)$,

$$
\Theta(\gamma z ; P)=\left(\left(\frac{c}{d}\right) \varepsilon_{d}^{-1}\right)^{l}(c z+d)^{l / 2+d} \Theta(z ; P) .
$$

We will say that $\Theta(\gamma z ; P)$ is an holomorphic modular form of weight

$$
k=l / 2+d .
$$

