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Let us recall what we have proven so far:

Theorem 1.6. The extended Jacobi symbol has the following properties: let d denote
an odd integer

(1) If d =
Q

p p
↵p > 0, c ! ( cd) is a character of (Z/d)⇥, more precisely

(
c

d
) =

Y

p|d

(
c

p
)↵p

where for any odd prime p, c ! ( cp) denote the Legendre symbol modulo p.

(2) For c 6= 0 map d ! ( cd) defines a character of (Z/4|c|)⇥ which is even if c > 0 and
odd for c < 0, ie.

(
c

�d
) = (

c

d
) if c > 0, (

c

�d
) = �(

c

d
) if c < 0.

(3) In particular

(
�1

d
) = �4(d) = (�1)

d�1

2 , (
2

d
) = �8(d) = (�1)

d2�1

8 ,

(4) and for c odd

(
c

d
) = �4(d)

c�1

2 (
d

c
) if c > 0, (

c

d
) = �4(d)�4(d)

|c|�1

2 (
d

|c|) if c < 0

4. The automorphy relation

From these computation we obtain that e⇥(z) satisfies the following automorphy relation

Theorem 1.7. For any � =

✓
a b
c d

◆
2 �d(2), one has

(4.1) e⇥(�.z) = (
2c

d
)"�1

d (cz + d)1/2e⇥(z).

Proof. Let � 2 �d(2). If c = 0, d = ±1 and � = ±T 2(b/2): we have

e⇥(�.z) = e⇥(z) = (
0

d
)"dd

1/2

by the extension (3.9) of the Jacobi symbol. For c 6= 0 and d > 0, we have from (2.4) and
the definition of the Jacobi symbol

e⇥(�.z) = (
�c/2

d
)
G(1; d)

d1/2
(cz + d)1/2e⇥(z) = (

2c

d
)�4(d)"d(cz + d)1/2e⇥(z)

= (
2c

d
)"�1

d (cz + d)1/2e⇥(z)

since �4(d) = "2d and "4d = 1. For d < 0 we replace � by �� and obtain

e⇥(�.z) = (
�2c

�d
)"�1

�d(�cz � d)1/2e⇥(z) = (
2c

d
)"�1

d (cz + d)1/2

by the properties of the extended Jacobi symbol. ⇤
It is also helpful to define the following variant of the Riemann theta series

⇥(z) := e⇥(2z) = e⇥(

✓
2 0
0 1

◆
z) =

X

n2Z
e(nz2).
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We have for � 2 GL+
2 (R)

⇥(�z) = e⇥(

✓
2 0
0 1

◆
�z) = e⇥(

✓
2 0
0 1

◆
�

✓
2 0
0 1

◆�1

2z)

Now the conjugate subgroup
✓

2 0
0 1

◆�1

�d(2)

✓
2 0
0 1

◆
= �0(4)

where

�0(4) = {� =

✓
a b
c d

◆
2 SL2(Z), c ⌘ 0(4)}.

�0(4) is sometimes called the Hecke-Iwahori subgroup of level 4. From this we deduce that

Corollary 1.1. For any � =

✓
a b
c d

◆
2 �0(4), one has

(4.2) ⇥(�.z) = j1/2(�, z)
1/2⇥(z)

where
j1/2(�, z) = (

c

d
)"�1

d j(�, z)1/2,

j(�, z) = cz + d.

That sort of transformation law is typical of modular forms.

4.1. The cocycle relation. Since

⇥(��0z) = ⇥(�(�0z))

we obtain a cocycle relation: for �, �0 2 �0(4) one has

(4.3) j1/2(��
0, z) = j1/2(�, �

0z)j1/2(�
0, z).

Squaring it and noting that

(
c

d
)2"2d = �4(d) =

(
1 d ⌘ 1(4)

�1 d ⌘ 3(4)
,

we obtain
�4(dd

0)j(��0, z) = �4(d)j(�, �
0z)�4(d

0)j(�0, z).

Hence

(4.4) j(��0, z) = j(�, �0z)j(�0, z).

and in fact this cocycle relation is valid for �, �0 2 GL+
2 (R).

Remark 4.1. We see from the above computation that the map

�4 :
�0(4) 7! {±1}

� ! �4(d)

is in fact a group homomorphism (a character of �0(4)):

�4(

✓
a b
c d

◆✓
a0 b0

c0 d0

◆
) = �4(cb

0 + dd0) = �4(dd
0) = �4(d)�4(d

0).
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5. Theta series attached to harmonic polynomials

5.1. Higher powers. For l > 1 an integer, consider the function

z 7! ⇥l(z) := ⇥(z)l.

If satisfies for � 2 �0(4)

(5.1) ⇥l(�.z) = ((
c

d
)"�1

d )lj(�, z)l/2⇥l(z).

In particular if l is even the automorphy relation simplify to

(5.2) ⇥l(�.z) = �4(�)
l/2j(�, z)l/2⇥l(z)

where

�4(�) = (
c

d
)2"2d = �4(d) =

(
1 d ⌘ 1(4)

�1 d ⌘ 3(4)
,

and for l ⌘ 0(4) we obtain

(5.3) ⇥l(�.z) = j(�, z)l/2⇥l(z)

These relations are typical of what will be called modular forms.

5.2. Theta series and functions on spheres. Using the original expression for ⇥
one sees easily that

⇥l(z) =
X X

n
1

,...,nl

e((n2
1 + · · ·+ n2

l )z) =
X

n>0

rl(n) exp(nz)

where
rl(n) = |{n2

1 + · · ·+ n2
l = n}|.

Thus rl(n) is the number of ways to write n as a sum of l squares of integers. A slightly
di↵erent interpretation is to view rl(n) as the cardinality of the set of integral solutions of
a diophantine equation namely,

Rl(n) = {x = (x1, . . . , xl) 2 Zl, Ql(x) = n}
where

Ql(x1, . . . , xl) = x21 + · · ·+ x2l
is the Euclidean quadratic form; we say that Rl(n) is the set of integral representations of
the integer n by the quadratic form Ql. Expressed di↵erently and more concretely rl(n) is
also the number of vectors with integral coordinates which are on the sphere of radius

p
n.

5.2.1. The size of Rl(n). We first evaluate rl(n) for l > 4: the fact rl(n) has a generating
series which is a modular form allows to give estimates rl(n). In particular, for l = 4 Jacobi
proved the following beautiful formula: for n > 1

r4(n) = 8(2 + (�1)n)
X

d|n,2-d
d = 8(2 + (�1)n)

Y

p↵||n,p>2

p↵
1� 1/p↵+1

1� 1/p
.

In particular r4(n) > 1 for any positive integer n; in other terms, one has an ”analytic proof
of

Theorem 1.8 (Lagrange four squares Theorem). Every positive integer is a sum of four
squares.



5. THETA SERIES ATTACHED TO HARMONIC POLYNOMIALS 17

Remark 5.1. Observe that r⇤(n) = r4(n)/8 is multiplicative: for (m,n) = 1

r⇤4(mn) = r⇤4(m)r⇤4(n).

This is a manifestation of Lagrange’s identity

(a2 + b2 + c2 + d2)(a02 + b02 + c02 + d02) =

()2 + ()2

+()2 + ()2.

We will admit this formula for the moment and use it to deduce an estimate for the
number of representations of an integer as a sum of l > 4 squares:

Proposition 1.1. Suppose that either l = 4 and n is odd, or l > 5 then

rl(n) = nl/2�1+o(1), as n ! +1.

Proof. We consider the case n odd and l = 4, one has

r4(n) = 8n
Y

p↵||n

1� p�↵�1

1� p�1
.

We estimate the second factor:

log(
Y

p↵||n

1� p�↵�1

1� p�1
) ⌧

X

p|n

1

p
6

X

k6!(n)

1

k

where !(n) =
P

p|n 1 the number of prime divisors of n. Since 2!(n) 6 n, one has !(n) 6
log(n) and

log(
Y

p↵||n

1� p�↵�1

1� p�1
) ⌧ log(log n)

hence

r4(n) = n1+O( log logn
logn ) = n1+o(1).

Observe that for any n, one has r4(n) 6 n1+o(1).
Consider now l = 5:

r5(n) =
X

l6n1/2

r4(n� l2) =
X

l6n1/2

l⌘n(2)

r4(n� l2) +
X

l6n1/2

l 6⌘n(2)

r4(n� l2).

The first term is non-negative and bounded by
X

l6n1/2

l⌘n(2)

r4(n� l2) 6
X

l6n1/2

l⌘n(2)

(n� l2)1+o(1) 6 n1+1/2+o(1).

The second term is evaluated similarly but with an upper and lower bound
X

l6n1/2

l 6⌘n(2)

r4(n� l2) = n
X

l6n1/2

l 6⌘n(2)

(1� l2

n
)1+o(1) = n1+1/2+o(1).

So
r5(n) = n3/2+o(1)
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and the general case follows by recurrence:

rl(n) =
X

l6n1/2

rl�1(n� l2) = n(l�1)/2�1
X

l6n1/2

l 6⌘n(2)

(1� l2

n
)(l�1)/2�1+o(1) = nl/2�1+o(1)

since
X

l6n1/2

l 6⌘n(2)

(1� l2

n
)(l�1)/2�1+o(1) = n1/2+o(1).

⇤
In particular, if l > 5 (or if l = 4 and n is odd) one has more and more points on Sl as

n ! 1.

5.3. Application to equidistribution. Any integral vector x 2 Rl(n) yields a point
on Sl by projection

x 7! x/kxk = x/
p
n 2 Sl

and one thing one would like to understand is how the set 1p
n
Rl(n) ⇢ Sl fill the unit sphere

as n grows.
5.3.1. Equidistribution. The sphere Sl carries a unique probability measure µl which

is invariant under the action of the orthogonal group SOl(R): that measure is given for
⌦ ⇢ Sl a non-empty open subset by

µl(⌦) =
µRl(C(⌦))

µRl(Bl(0, 1))

where Bl(0, 1) = {x 2 Rl, Ql(x) 6 1} is the unit ball and

C(⌦) = {�x, � 2 [0, 1], x 2 ⌦}
is the solid angle supported by ⌦.

We consider the average
1

rl(n)

X

Ql(x)=n

f(
xp
n
)

which is a sort of Riemann sums over the rescaled integral vectors of length
p
n.

Theorem 1.9. Given l > 4 then, as n ! +1 (and n ⌘ 1(2) if l = 4), one has, for any
f 2 C(Sl)

(5.4)
1

rl(n)

X

Ql(x)=n

f(
xp
n
) ! µl(f).

One then says that the sequence of sets

(
1

n1/2
Rl(n))n>1 (n ⌘ 1(2)if l = 4)

becomes equidistributed on Sl wrt µl. It follow by approximation that for any open subset
; 6= ⌦ ⇢ Sl

|{x 2 Rl(n), n�1/2x 2 ⌦}| ' µl(⌦)|Rl(n)|, n ! +1.

We start with the following general
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Figure 1. Distribution of R4(5↵), ↵ = 2, 3, 4 via the Hopf map S4 ! SO3(R)
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Theorem 1.10 (Weyl’s equidsitribution criterion). In order for (5.4) to hold for any
continuous function f it is su�cient that (5.4) holds for every f 2 F ⇢ C(Sl) for a family
F generating a dense subspace in C(Sl) for the topology of uniform convergence.

Proof. Let f be a continuous function, by definition of F there exist for any " > 0 a
finite set I and a linear combination

fI :=
X

i2I
�ifi, �i 2 C, fi 2 F

such that

kf � fIk1 6 ".

Therefore writing

µl,n(f) =
1

rl(n)

X

Ql(x)=n

f(
xp
n
)

we have

|µl,n(f)� µl,n(fI)| 6 µl,n(|f � fI |) 6 ".

Moreover for n > n(") large enough we have

µl,n(fI) =
X

i

�iµl,n(fi) =
X

i

�iµl(fi) +O(
X

i

|�i|") = µl(fI) +O(
X

i

|�i|")

andso for n large enough we have

µl,n(f)� µl,n(fI) ⌧ ".

⇤
Remark 5.2. Althougt this is discussed for the case of the sphere Sl only, Weyl’s

criterion is quite general and valid for any compact space and any sequence of probability
measures: in order to show that a sequence of probability measures convergence weakly
to some given measure, it is su�cient to test convergence against a family of functions
generating a dense subspace of the space of continuous functions.

We need to produce such a family F in the case of the sphere:

Definition 1.1. A polynomial P (x) on Rl is harmonic if it is homogeneous:

P (�x) = �dP (x), d = degP

and it is a zero eigenvalue of the Laplace operator:

�lP = 0, �l =
X

i=1...l

@2

@2xi
.

we denote by Hl,d the subspace of Harmonic polynomials of degree d.

The following follows from the exercise sessions:

Theorem 1.11. One has the following

• The group SOl(R) acts on Hl,d (by linear change of variables g.P (x) = P (g�1x))
and Hl,d does not contain any proper SOl(R)-invariant subspace (in other terms
Hl,d is an irreducible representation of SOl(R)).
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• Hl,d is generated by poynomials of the shape

Pc,d(x) = (c.x)d, c 2 ClQ(c) =
X

i

c2i = 0.

• For d 6= d0 the subspaces Hl,d and Hl,d0 are perpendicular with respect to the
SOl(R)-invariant inner product on homogenenous polynomials

hP, P 0i = µl(PP
0
) =

1

vol(Bl)

Z

Bl

P (x)P 0(x)dx.

• The subspace X

d

Hl,d|Sl
⇢ C(Sl)

generated by the restriction to the sphere of the harmonic polynomials is dense in
C(Sl) for the topology of uniform convergence.

The family
L

d>0Hd,l generate a dense subspace of C(Sl) and because of Weyl’s crite-
rion, we may therefore assume that f(x) = P (x) for P 2 Hd,l a non-constant harmonic
polynomial: in that case, one has

1

rl(n)

X

Ql(x)=n

P (
xp
n
) =

1

rl(n)nd/2

X

Ql(x)=n

P (x).

We will show that for l > 5 and P non-constant,

rl(n;P ) :=
X

Ql(x)=n

P (x) ⌧ n(l+d)/2�1��

for some � > 0. This implies that

(5.5)
1

rl(n)

X

Ql(x)=n

P (
xp
n
) =

1

rl(n)nd/2
RP (n) ⌧ n�� ! 0 = µl(P ).

5.4. Theta series associated to harmonic polynomials. The proof of (5.5) Given
an harmonic polynomial P one can form the theta series

⇥(z;P ) =
X

x2Zl

P (x)e(Ql(x)z) =
X

n>0

e(nz)(
X

Ql(x)=n

P (x)) =
X

n>0

r(n;P )e(nz)

say. Observe that if d is odd,
⇥(z;P ) = 0,

we may therefore assume that d is even. Since |r(n;P )| ⌧P nl/2 this is a rapidly converging
series hence an holomorphic function on H. The following is a consequence of the Poisson
summation formula:

Theorem 1.12. The theta series ⇥(z;P ) is an holomorphic function on H satisfying
the following automorphy relations: for any � 2 �0(4),

⇥(�z;P ) = ((
c

d
)"�1

d )l(cz + d)l/2+d⇥(z;P ).

We will say that ⇥(�z;P ) is an holomorphic modular form of weight

k = l/2 + d.


