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Exercise 4.2.1. Show that SU2(C) = {g 2 SL2(C), gtg = Id} is a compact subgroup
of SL2(C) which is maximal for this property; show the same for K = SO2(R) < SL2(R).

Exercise 4.2.2. Show that the Cartan decomposition

N ⇥A⇥K ! SL2(R)

is an homeomorphism (of course not a group morphism !).

Definition 2.3. A topological group action, G  X, is an action of a topological group
on a topological space such that the map

G⇥X ! X ⇥X
(g, x) ! (x, g.x)

is continuous.

Exercise 4.2.3. Verify that the action GL2(C)⇥P1(C) ! P1(C) is a topological group
action.

5. Elements of hyperbolic geometry

The upper-half plane H = H+, as a open subset of C is a complex variety equipped
with two 1-forms

dz = dx+ idy, dz = dx� idy

and one has

d(gz) = det g
dz

(cz + d)2
, d(gz) = det g

dz

(cz + d)2
.

5.1. The hyperbolic metric. In particular (since =(gz) = |cz+ d|�2=z) the positive
definite symmetric 2-forms

ds2 =
1

y2
dz ⌦ dz =

dx⌦ dx+ dy ⌦ dy

y2

is invariant under the action of GL+
2 (R):

1

y(gz)2
dgz ⌦ dgz =

|cz + d|4
det g2y2

det g2dz ⌦ dz

(cz + d)2(cz + d)2
=

dz ⌦ dz

y2
.

In particular the corresponding Riemannian metric is GL+
2 (R)-invariant; it is called the

hyperbolic metric.
This give H the structure of a metric space for the geodesic distance by minimizing the

length:
dh(z, z

0) := inf
L

`h(L), L 2 C1([0, 1] ! H), L(0) = z, L(1) = w,

`h(L) :=

Z 1

0

(x0(t)2 + y0(t)2)1/2

y(t)
dt,

and by invariance the group GL+
2 (R) act by isometries.

Remark 5.1. One can in fact show that PGL2(R) is the group of orientation preserving
isometries of H.

Remark 5.2. The topology induced by this metric is the same as the one induced by the
euclidean metric dx2 + dy2 (since both metrics are comparable when restricted to compact
sets).
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5.2. Shape of balls for the hyperbolic metric. We will now describe explicitly the
hyperbolic circle and balls of hyperbolic radius r and center z 2 H.

Sh(z, r) = {z0 2 H, dh(z, z
0) = r}, Dh(z, r) = {z0 2 H, dh(z, z

0) 6 r}.
The hyperbolic metric is invariant by N(R) which is the group of horizontal translation
on H; so it is natural to look at the distance along a set of representatives of the space of
N -orbits N\H, that is along a vertical half-line:

Lemma 2.1. Let z = x+ iy, z0 = x+ iy0 2 H with the same real part, then the geodesic
segment between these two points is unique and is the vertical segment joining them and

dh(z, z
0) = |

Z

[y,y0]

dt

t
| = | log y/y0|.

In particular for any r > 0, dh(z, x+ iy exp(±r)) = r.

Proof. Consider the vertical path joining z and z0,

Lg(t) = x+ i(ty0 + (1� t)y) = xg(t) + iyg(t);

its length is given by

`h(L) =

Z 1

0

(x0(t)2 + y0(t)2)1/2

y(t)
dt = | log(y0/y)|.

Conversely, given any other path joining z to z0, since (x0(t)2+y0(t)2)1/2

y(t) > |y0(t)|
y(t) , one has

Z 1

0

(x0(t)2 + y0(t)2)1/2

y(t)
dt >

Z 1

0

|y0(t)|
y(t)

dt > |
Z 1

0

y0(t)

y(t)
dt| = | log(y0/y)|.

Moreover equality holds i↵ x0(t) = 0 8t that is i↵ x(t) is constant equal to x. This prove that
dh(z, z0) = | log y/y0| and the the vertical segment joining z to z0 is the geodesic segment. ⇤

Proposition 2.6. For z, z0 2 H, let r = dh(z, z0), one has

Sh(z, r) = SL2(R)z.z
0.

Moreover Sh(z, r) is a (Euclidean) circle whose diameter is the segment with end-points

x+ iy exp(±r).

Proof. Since g 2 SL2(R)z is an isometry fixing z, one has

dh(g.z
0, z) = dh(g.z

0, g.z) = dh(z, z
0) = r, ie. SL2(R)z.z

0 ⇢ Sh(z, r).

For the converse: we observe that the stabilizer SL2(R)z is conjugate to SL2(R)i =
SO2(R) so is compact. Thus the orbit SL2(R)z.z

0 is compact and let z± = x± + iy± 2
SL2(R)z.z

0 be such that y+ (resp. y�) is maximal (resp. minimal). We will show that

z± = x+ iy exp(±r).

This imply that SL2(R)z acts transitively on Sh(z, r) and that Sh(z, r) = SL2(R)z.z
0.

By definition we have y� 6 y exp(�r); on the other hand, for L : [0, 1] ! H any path
between z and z�, we have

`h(L) =

Z 1

0

(x0(t)2 + y0(t)2)1/2

y(t)
dt >

Z 1

0

|y0(t)|
y(t)

dt > | log(y�/y)| = log(y/y�).

Thus r = log(y/y�); moreover `h(L) = log(y/y�) if only if x0(t) ⌘ 0 so x� = x and
z� = x+ iy exp(�r). Similarly, z+ = x+ iy exp(r).
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Let us show that the hyperbolic circle is an euclidean circle: we may assume that z = i;
indeed writing z = g.i and v = g.z0, then dh(z, z0) = dh(i, v) and

SL2(R)z.z
0 = gSL2(R)ig

�1.gv = gSL2(R)i.v

is the transform by g of the orbit SL2(R)i.v hence is a circle if SL2(R)i.v is. This later orbit
is parametrized by k(✓):

k(✓).v =
cos(✓)v � sin(✓)

sin(✓)v + cos(✓)
=

e(✓)(iv � 1) + e(�✓)(iv + 1)

e(✓)(v + i)� e(�✓)(v � i)
= g(v).e(2✓),

g(v) =

✓
iv � 1 iv + 1
v + i v � i

◆
2 GL2(C),

thus this orbit is the transform of the unit circle by the fractional linear transformation
g(v) hence is a circle. ⇤

Corollary 2.3 (Cartan decomposition). One has SL2(R) = KAK.

Proof. given g 2 SL2(R), let z = g.i and let k 2 K such that <(k.z) = <(i) = 0, then
there is a 2 A such that k.z = a.i = kg.i so that a�1kg = k0 2 K. ⇤

Observe that the Cartan decomposition is not unique. We have also the following:

Proposition 2.7. The group SL2(R) acts 2-transitively on H: if dh(z, z0) = dh(w,w0)
there exists g 2 SL2(R) such that

gz = w, gz0 = w0.

Proof. Set r = dh(w,w0). Take g such that gz = w, then g.z0 2 Sh(w, r), then there
exist k 2 SL2(R)w such that kg.z0 = w0 and kg answer the question. ⇤

From this we deduce

Proposition 2.8. The geodesic segment joining two points z 6= z0 2 H is unique and
either the vertical segment between these two points if their real part agree or the arc of
the unique half-circle centered on R containing these two points . Moreover, one has the
formula

cosh(dh(z, z
0)) = 1 + 2

|z � z0|2
4yy0

.

Proof. By the previous proposition if <z 6= <z0 one can find g such that gz, gz0 are
vertically aligned and at the same distance. The geodesic segment joining z and z0 is the
transform by g�1 of the vertical segment between [gz, gz0]. The verification of the formula
for the hyperbolic distance is left to the reader. ⇤

5.3. The hyperbolic metric in the disk model. Under the Cayley transform z !
gC,z

0

.z = u = rei✓ the hyperbolic metric transform into a metric proportional to the

du⌦ du

(1� |u|2)2
This metric is radially invariant: invariant under euclidean rotations around 0, u 7! ei✓u.
in particular the Cayley transform maps hyperbolic disks centered at z0 to Euclidean disk
centered at 0, geodesic segments passing through z0 to Euclidean segment passing through
0.
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5.4. The Hyperbolic measure. Similarly the alternating 2-form

1

y2
dz ^ dz =

�2idx ^ dy

y2

is GL+
2 (R)-invariant. Remove the �2i-factor, on obtainsf fmro this 2-form a measure on H

of density

dµh(z) =
dxdy

y2

called the hyperbolic measure. This measure is GL+
2 (R)-invariant: for f(z) continuous

compactly supported and g 2 SL2(R)
Z

H
f(z)dµh(z) =

Z

H
f(gz)dµh(z).

This measure is called the hyperbolic measure.





CHAPTER 3

The action of SL2(Z)

We examine now the action of the subgroup SL2(Z) in H and more generally the action
of certain subgroups (congruence subgroups to be defined below) � ⇢ SL2(Z) of finite
index. In particular we will explain how the structures on H (topological space, Riemannian
manifold, complex manifold) descent to the space of orbits

Y (�) = �\H = {�z, z 2 H}.
We will show the following

Theorem 3.1. For � ⇢ SL2(Z) a congruence subgroup, the space Y (�) has a structure
of (non-compact) Riemann surface such that the projection map

⇡� : H 7! Y (�)

is a local holomorphic homeomorphism at all but finitely many points (and at all points
if � = �(q), q > 3). Moreover, there exist a Compact Riemann surface, X(�) and an
holomorphic embedding Y (�) ,! X(�) such that X(�)� Y (�) is finite.

This will mainly come from the fact that action of SL2(R) on H is topological and that
SL2(Z) is a large discrete subgroup of SL2(R).

1. Congruence subgroups

Definition 3.1. For q > 1 an integer, the principal congruence subgroup of level q is
the subgroup of SL2(Z) of matrices congruent to the identity modulo q:

�(q) := {� =

✓
a b
c d

◆
2 SL2(Z), a ⌘ d ⌘ 1(q), b ⌘ c ⌘ 0(q)}.

�(q) is is a finite index normal subgroup of SL2(Z) and

[SL2(Z) : �(q)] = | SL2(Z/q)| = q3
Y

p|q

(1� 1/p2).

Exercise 1.0.1. Prove the claim.

Definition 3.2. A subgroup � < SL2(Z) is congruence or arithmetic if it contains some
principal congruence subgroup. In particular it is of finite index in SL2(Z)

Example of congruence subgroups are the Hecke-Iwahori subgroups

�0(q) = {
✓

a b
c d

◆
2 SL2(Z),

✓
a b
c d

◆
⌘

✓ ⇤ ⇤
0 ⇤

◆
(mod q)}.

Other important examples of arithmetic subgroups are

�1(q) = {
✓

a b
c d

◆
2 SL2(Z),

✓
a b
c d

◆
⌘

✓
1 ⇤
0 1

◆
(mod q)}

39
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�d(q) = {
✓

a b
c d

◆
2 SL2(Z),

✓
a b
c d

◆
⌘

✓ ⇤ 0
0 ⇤

◆
(mod q)}.

Note however that not all the finite index subgroups of SL2(Z) are arithmetic.

Exercise 1.0.2. Compute the indexes of �0(q), �1(q), �d(q).

For specific congruence subgroups we use the following standard notations:

Y (q) := Y (�(q)), Y1(q) := Y (�1(q)), Y0(q) := Y (�0(q)).

2. The fundamental domains

For the maximal congruence subgroup SL2(Z) we have the following

Theorem 3.2. SL2(Z) is generated by n(1) =

✓
1 1
0 1

◆
and w =

✓
0 �1
1 0

◆
.

Proof. Notice that w2 = �Id.

Let � =

✓
a b
c d

◆
2 SL2(Z). We proceed by recurrence on |c|: if c = 0 we are done

since � = ±n(b); if c 6= 0, we have for k 2 Z

n(k)

✓
a b
c d

◆
=

✓
1 k
0 1

◆✓
a b
c d

◆
=

✓
a+ kc b+ kd

c d

◆
.

so if c 6= 0 multiplying by a proper power of n(1) we reduce to the case where |a| < |c|; next
applying w we have

✓
0 �1
1 0

◆✓
a b
c d

◆
=

✓ �c b� d
a b

◆
=

✓
a0 b0

c0 d0

◆

since |c0| < |c| we conclude by recurrence. ⇤
Definition 3.3. Let � < SL2(R) be a discrete subgroup. A fundamental domain for �,

D ⇢ H say, is an open subset whose closure meets every �-orbit in at least one point: ie.
such that

8z 2 H, �.z \D 6= ;,
and which meet every orbit in at most one point : i.e.

8z 2 H, |�.z \D| 6 1.

Observe that the above conditions are equivalent to

H = �.D, and 8� 2 �, � 6= ±Id, D \ �.D = ;
Theorem 3.3. A fundamental domain for SL2(Z) is given by the set

DSL
2

(Z) = {z 2 H, |x| < 1/2, |z| > 1}.
More generally for � < SL2(Z) a subgroup of finite index:

SL2(Z) =
G

�i

��i

a fundamental domain for � is given by

D� =
[

�i

�iDSL
2

(Z).
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Proof. Let z 2 H, we claim that there exist � 2 SL2(Z) such that =(�.z) is maximal:
since =(�.z) = =(z)/|cz+ d|2 this amount to find � such that |cz+ d| is minimal. The map
(c, d) 2 R2 7! |cz + d| is a norm on R2 and since Z2 ⇢ R2 is discrete there exists (c, d) 6= 0
such that |cz+d| > 0 is minimal. Observe that the gcd (c, d) = 1: if c = (c, d)c0, d = (c, d)d0

then |cz + d| = (c, d)|c0z + d0| contradicting minimality if (c, d) > 1. Given such (c, d), by

Bezout’s theorem, there exist � 2 SL2(Z) of the shape g =

✓
a b
c d

◆
. Replacing z by �.z we

may assume that =(z) is maximal within its orbit. In particular =(w.z) = =(z)/|z|2 6 =z
so |z| > 1 and applying n(1)k for a suitable k 2 Z, we have n(1)k.z = z + k which does
not change the imaginary part, we may always assume that <ez 2]� 1/2, 1/2]. This proves
that for any z 2 H, SL2(Z).z \DSL

2

(Z) 6= ;.
Suppose that z 2 DSL

2

(Z) we claim that for any coprime integers c, d,

|cz + d| > 1.

Indeed, if c or d = 0 (then d or c = ±1), the inequality is obvious; suppose cd 6= 0, we have

|cz+d|2 = (cx+d)2+c2y2 = c2(x2+y2)+2cdx+d2 > c2� |cd|+d2 > 2|cd|� |cd| = |cd| > 1.

In particular for any � 2 SL2(Z) we have

=�.z = =z/|cz + d|2 6 =z
so =z is maximal within its orbit. Hence if z and z0 = �.z 6= z are both in DSL

2

(Z) then
=(z) = =(�.z) and |cz + d| = 1. If c = 0, � = ±n(k) for k 2 Z and z0 = z + k. Hence
|k| = 1, <z = ±1/2 and <z0 = ⌥1/2. If d = 0 then c = ±1 and |z| = 1 so z 2 @DSL

2

(Z). If

cd 6= 0, then |c| = |d| = 1, x = �cd/2 = ±1/2, |z| = 1 and y =
p
3
2 i and z = j or �j and n

any case it belongs to @DSL
2

(Z)

The final part of the statement is immediate from the equivalent definition of a funda-
mental domain. ⇤

Remark 2.1. From the above proof one see that under the SL2(Z)-action the boundary
segments [j, j + i1[ and [�j,�j + i1[ are identified (by n(±1)) and that the boundary
segments [i, j] is identified to [i,�j] via w. Moreover these are the only ways by which two
distinct elements of the boundary of DSL

2

(Z) can be identified.

Remark 2.2. The construction of this fundamental domain is obtained by considering
points z with the greatest possible imaginary part within their orbit SL2(Z).z. That is
points in the orbit which are, in a certain sense, the ”closest” to 1. There are other similar
(somewhat canonical) ways to produce nice fundamental domains in general; the following is
due to Dirichlet: given z0 2 H and � < SL2(Z) a finite index subgroup then if �z

0

⇢ {±Id}
D�,z

0

= {z 2 H, dh(z0, z) = min
�2��{±Id}

dh(z0, �.z)}

is the closure of a fundamental domain.

3. The quotient topology

The reason why �\H inherit many structures from H is that the action of SL2(R)
preserve these structures: the maps

�. : z 2 H 7! �.z
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Figure 1. The fundamental domain for SL2(Z) and the points i, j

are continuous, isometric (for the hyperbolic metric) and even holomorphic. The topological
structure we’ll put on X(�) is the so-called quotient topology.

Let X be a locally compact separated space.

Definition 3.4. Let G  X be a group acting continuously on X, the quotient topology
on the space of orbit G\X is the finest topology on G\X for which the projection map

⇡G : X 7! G\X
is continuous.

Therefore a set on G\X is open if and only if its preimage under ⇡G is an open set.
Moreover ⌦ ⇢ X is open

⇡�1
G (⇡g(⌦)) =

[

g2G
g.⌦

is open so ⇡G is open. In particular the image under ⇡G of a basis of neighborhoods of a
point x form a basis of neighborhoods of G.x. in particular, since the image under ⇡G of a
compact is compact, G\X is locally compact.

3.1. Proper actions.

Definition 3.5. Let G  X be a topological group action on a topological space. G act
properly on X if the (continuous)map

G⇥X ! X ⇥X
(g, x) ! (x, g.x)

is proper: the preimage of a compact is compact.

Remark 3.1. If G act properly, any closed subgroup � < G also acts properly. A
compact group acts properly.
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An important consequence is

Proposition 3.1. If G  X properly then G\X endowed with the quotient topology is
separated.

Proof. Suppose that Gx 6= Gx0 we want to find open sets x 2 ⌦, x0 2 ⌦0 such
that G⌦ \ G⌦0 = ;. Since x 6= x0 and X is locally compact, there exist precompact open
neighborhoodsK,K 0 of x, x0 which are disjoint. Since the action is proper there is a compact
subset H ⇢ G such that

8g 2 G�H, gK \K 0 = ;.
Indeed the preimage of K ⇥K 0 in G ⇥ X is compact and we take for H its projection to
G. Since H is compact, Hx is compact and does not contain x0 so we may take an open
set x0 2 ⌦0 ⇢ K 0 such that Hx \ ⌦0 = ; hence x 62 H�1⌦0. H�1⌦0 is precompact so we
may choose a neighborhood x 2 ⌦ ⇢ K such that H.⌦ \ ⌦0 = ;. Then G⌦ \K 0 = ; and
G⌦ \G.K 0 = ;. ⇤

Proposition 3.2. SL2(R) acts properly on H.

Proof. Let ⌦ ⇥ ⌦0 ⇢ H ⇥H be a product of compact subsets. We may assume that
⌦0 = ⌦. The preimage is

{(g, x) 2 SL2(R)⇥ ⌦, gx ⇢ ⌦} ⇢ {g 2 SL2(R), g⌦ \ ⌦ 6= ;}⇥ ⌦

but

{g 2 SL2(R), g⌦ \ ⌦ 6= ;} ⇢ {g 2 SL2(R), gm(⌦)SO2(R) \m(⌦)SO2(R) 6= ;}
= m(⌦)SO2(R)(m(⌦)SO2(R))�1

which is compact (here m : z 2 H 7! m(z) 2 B1 < SL2(R)). ⇤
In general, has the following necessary condition for properness:

Proposition 3.3. If G  X is proper, for any pair of compact sets K,K 0 ⇢ X, the set

{g 2 G, gK \K 0 6= ;}
is compact. In particular for any x 2 X (taking K = K 0 = {x})

Gx = {g 2 G, gx = x}
is compact.

Corollary 3.1. SL2(R) does not act properly on P1(R): the stabilizer of 1 is not
compact.

Exercise 3.1.1. Show that the maps

n(x)a(y) 2 NA 7! n(x)a(y)K 2 SL2(R)/K, gK 2 SL2(R)/K 7! g.i 2 H

are homeomorphisms.

3.2. Passing to a subgroup. Let G0 < G be a closed subgroup, we have a natural
surjective projection map

⇡G0\G :
G0\X 7! G\X
G0x 7! Gx

.

It follows immediately from the definition of the quotient topology that this map is contin-
uous; in particular G0\X is separated if G\X is.
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4. Application to the modular group

Since SL2(Z) < SL2(R) is discrete hence closed one obtain:

Corollary 3.2. The group SL2(Z) and any of its subgroup � acts properly on H. In
particular Y (�) = �\H equipped with the quotient topology is separated locally compact.

Moreover, since a compact subset of a discrete group is finite, one obtain:

Corollary 3.3. Let � < SL2(Z) be a finite subgroup; For any z, z0 2 H one has:

(1) for any balls r, r0 > 0, the set

{� 2 � such that �Dh(z, r) \Dh(z
0, r0) 6= ;}

is finite.
(2) In particular, the stabilizer of z, �z is finite.
(3) If z0 62 �.z, there exist r > 0 such that �.Dh(z, r) \Dh(z0, r) = ;.
(4) there exists r > 0 such that

{� 2 � s.t. �Dh(z, r) \Dh(z, r) 6= ;} = �z.

Observe that since elements of �z are hyperbolic rotations around z, one has for r small
enough

(4.1) �z = {� 2 � s.t. �Dh(z, r) \Dh(z, r) 6= ;}
= {� 2 � such that �Dh(z, r) \Dh(z, r) = Dh(z, r)}

4.1. Stabilizer of SL2(Z). From the previous discussion it is important to understand
the shape of the stabilizers in SL2(Z) and its congruence subgroups:

Proposition 3.4. For any z 2 H, SL2(Z)z is a finite cyclic group of order 2, 4, 6. The
second and third possibilities occur if and only if z 2 SL2(Z).i or z 2 SL2(Z).j, j = e2⇡i/3 =
�1+i

p
3

2 .

Proof. Observe that SL2(Z)z = SL2(Z) \ SL2(R)z is the intersection of a discrete
and a compact subgroup so is finite. Moreover SL2(R)z is conjugate to SO2(R) ' S1 so
any finite subgroup of it is cyclic (given a finite subgroup G < S1, let z0 = ei✓0 2 G with
✓0 2 [0, 2⇡] of minimal size, then z0 generate G.) Given z 2 H; from the determination of
the fundamental domain, we may assume that |<z| 6 1/2, |z| > 1. Under this assumption,
let us solve the equation

g.z = z, g =

✓
a b
c d

◆
2 SL2(Z)

where g is a generator of SL2(Z)z. As we have seen, if g 6= ±Id, it has exactly two fixed
points (z and z) hence g is elliptic and |tr(g)| = |a + d| < 2. Thus, either tr(g) = 0 or
tr(g) = ±1. In the former case, g has minimal polynomial

X2 + 1

and the subgroup generated by g is {Id, g,�Id,�g}. Up to replacing g by �g we may
assume that c > 0. One has det g = �a2 � bc = 1 so c > 0 and

cz2 + (d� a)z � b = 0 = (cz)2 � 2a(cz)� bc = Z2 � 2aZ + 1 + a2,

Z = cz = a± i, z =
a± i

c
.
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Necessarily |c| = 1 (since =z > p
3/2) and therefore a = 0 and z = i.

In the later case, up to changing g to �g we may assume that tr(g) = 1 and g has
characteristic polynomial

X2 �X + 1 = 0;

this is an irreducible polynomial adn therefore this is the minimal polynomial of g. Therefore
g generate the subgroup

{Id, g, g2 = g � Id, g3 = �Id, g4 = �g, g5 = �g2}.
One has det g = 1 = a(1� a)� bc and

cz2 + (1� 2a)z� b = 0 = (cz)2 + (1� 2a)(cz) + 1� a(1� a) = Z2 + (1� 2a)Z +1� a+ a2,

Z = cz =
2a� 1 +

p
(1� 2a)2 � 4(1� a+ a2)

2
=

2a� 1 +
p�3

2
, z =

2a� 1± i
p
3

2c
.

Again |c| = 1 (since =z > p
3/2) and since |<z| = |a � 1/2| 6 1/2 and a = 0 or 1 so that

z = j or j � 1 = n(�1)j. ⇤
If � < SL2(Z) is a congruence subgroup �z < SL2(Z)z. In particular for the principal

congruence subgroups we have

Corollary 3.4. For q > 3, �(q)z = {Id} for all z 2 H.

Proof. For any � 2 �(q), tr(�) ⌘ 2 6⌘ 0,±1(q). ⇤

5. Complex structure

The upper-half plane as an open subset of C has a natural complex structure (i.e.
meromorphic functions on H are well defined); this structure indeed descent to Y (�) (and
in particular Y (�) has a structure of di↵erentiable variety). For this, is su�ce to provide
an holomorphic atlas for Y (�): that is a collection

{(Ui,'i)i2I}
of local charts: {Ui}i2I is an open covering of Y (�) and

'i : Ui 7! 'i(Ui) = Vi ⇢ C

is an homeomorphism of Ui onto its image such that for Ui \ Uj 6= ; the transition map

'j � '�1
i : 'i(Ui \ Uj) 7! 'j(Ui \ Uj)

is an holomorphic di↵eomorphism. If z 2 Ui, the variable

ti := 'i(z
0), z0 2 Ui

is called a local parameter (or local uniformizer) at z

5.1. Local parameters. It follows from Cor. 3.3 that for any z 2 H there exists
r = r(z) > 0 such that for any subgroup � < SL2(Z), the projection map ⇡� : H 7! �\H
induces an homeomorphism (recall the �z is finite)

�z\�zDh(z, r) ' ⇡�(Dh(z, r));

actually �z preserve the ball Dh(z, r) so we have

(5.1) �z\Dh(z, r) ' ⇡�(Dh(z, r)).

In particular when �z ⇢ {±Id}
Dh(z, r) ' ⇡�(Dh(z, r)).



46 3. THE ACTION OF SL
2

(Z)

In other terms Y (�) is locally homeomorphic to H at any z such that �z ⇢ {±Id}. This is
the case if z 62 SL2(Z){i, j} or for any z if � = �(q) for q > 3 by Cor. 3.4.

To reveal the structure of �z\Dh(z, r) we compose (5.1) with the Cayley transform at
z, gC,z: we obtain

⇡�(Dh(z, r)) ' �z\Dh(z, r) ' �0
0\D(0, r0)

for some r0 > 0 and where �0
0 is a finite cyclic subgroup of complex rotations centered at 0:

�0
0 = e(✓z)Z with ✓z = 2⇡/l, l 2 {1, 2, 3}. The later quotient is homeomorphic to the disc

D(0, (r0)l) via the map

w 2 D(0, r0) 7! wl 2 D(0, (r0)l).

In other terms we have obtained for any z 2 H and r = r(z) > 0 su�ciently small, a local
homeomorphism

(5.2) 'z,r : U�.z,r := ⇡�(Dh(z, r)) ' D(0, r00).

Such an homeomorphism will be called a local uniformizer for Y (�) at �.z.
An holomorphic atlas is provided by the local uniformizers (5.2)

{(U�.z,rz ,'z,rz)}z
for z varying over a set of representatives of Y (�). Therefore Y (�) has a natural structure
of non-compact Riemann surface. We explain below how to compactify it.

5.2. Compactification of X(�). From the description of the fundamental domain we
see that Y (1) is not compact: a sequence of orbits or the shape SL2(Z)zn with yn ! +1
has no converging subsequences. The shape of the fundamental domain suggest at least
two possible compactifications : by adding a single point or by adding a circle. However
two points in the fundamental domain with the same imaginary part y are at (hyperbolic)
distance 6 1/y from each other so are becoming closer as y gets large; suggest to consider
the one point compactification. We will denote it by

X(1) = Y (1) [ {1}
and describe now its topology.

By definition of the one point compactification, the neighborhoods of 1 are the comple-
ments in X(1) of compact subsets of Y (1). A basis of neighborhoods is obtained by taking
the image in Y (1) of the upper half-spaces HY = {z 2 H,=z > Y } for Y > 0: we note
these neighborhoods

U1,Y := ⇡SL
2

(Z)(HY ).

Given z 2 H and r > 0, there exist Y = Y (z, r) > 0 such that

8� 2 SL2(Z), �HY \Dh(z, r) = ;;
indeed it su�ce to take Y > supz2D(z,r)=(z) as follows from the arguments leading to
the determination of the fundamental domain of SL2(Z). This implies that the resulting
topology is separated so X(SL2(Z)) is a separated compact space. Moreover (from the
determination of the fundamental domain), the map

±n(Z)\HY = SL2(Z)1\HY 7! SL2(Z)1\HY ' ⇡SL
2

(Z)(HY )

is an homeomorphism for Y > 1 and the map

q1 : z 2 H 7! exp(2⇡iz) 2 D(0, 1),



5. COMPLEX STRUCTURE 47

induces an homeomorphism

'1 : U1,Y ' D(0, exp(�2⇡Y ))

with
U1,Y := ⇡SL

2

(Z)(HY ) [ {1},
(indeed as =z ! +1, q1(z) ! 0). This is our the uniformizer at the point 1.

5.3. Compactification and cusps. This compactification is in fact compatible with
the SL2(Z)-action and we use this to compactify more generally the Y (�).

Observe that the orbit

SL2(Z).1 = P1(Q) = Q [ {1}
the rational projective line : indeed if a, c 2 Z are coprime, any matrix in SL2(Z) of the

form

✓
a b
c d

◆
(which exists by Bezout’s theorem) map 1 to a/c. Therefore for any finite

index subgroup � < SL2(Z), P1(Q) decomposes into finitely many orbits which are called
the cusps of �:

P1(Q) =
G

i2Cusp(�)

�.xi

where xi 2 P1(Q) ranges over a set of representatives of Cusp(�)
Let bH := H [ P1(Q), we set

X(1) = SL2(Z)\ bH = SL2(Z)\H t {SL2(Z)\SL2(Z).1}
and more generally for � < SL2(Z) with finite index

X(�) = �\H [ {�\SL2(Z).1} = �\H t Cusp(�)

A (separated) topology on bH is given by defining a basis of neighborhoods of x 2 P1(Q),
Ux,Y , Y > 0 to be

U1,Y := {1} [HY , if x = 1
and if x 6= 1

Ux,Y = �.U1,Y , for any � 2 SL2(Z) such that �.1 = x;

(the Ux,Y are disks in H tangent to R at x.)
as pointed out above, the group SL2(Z) (and any of its congruence subgroup) does NOT

act properly on bH: the stabilizer of any x 2 P1(Q) is conjugate to ±n(Z) and consequently
is not finite: still we have the following extension of Cor. 3.3:

Proposition 3.5. Let � be congruence subgroup of SL2(Z), x, y 2 P1(Q) and z 2 H.

• For any r, Y > 0 the set

{� 2 �, �Ux,Y \D(z, r) 6= ;}
is finite for and empty if r and 1/Y are small enough.

• If y 62 �x, then
{� 2 �, �Ux,Y \ Uy,Y 6= ;}

is finite for any r > 0 and empty if Y is large enough (Y > 1 su�ce).
• If Y is large enough (Y > 1 su�ce),

{� 2 �, �Ux,Y \ Ux,Y 6= ;} = �x.
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Proof. Exercise ⇤
This proposition implies that X(�) equipped with the quotient topology is a locally

compact separated topological space which is moreover compact because � has finite index
in SL2(Z).

5.4. Local uniformizer at the cusps. Let x = �.x be a cusp. A local uniformizer
at x is defined as follows: let � 2 SL2(Z) such that �.1 = x, for Y > 1, by the previous
proposition, one has a local homeomorphism

Ux,Y := ⇡�(Ux,Y ) ' �x\Ux,Y ' ��1�x�\U1,Y

We claim that the subgroup

��1�x� ⇢ SL2(Z)1 = ±n(Z)

has finite index in SL2(Z)1: indeed ��1�� is a congruence subgroup (because if � contain
the normal subgroup �(q) so does ��1��, and �(q)1 is of index q in SL2(Z)1. Therefore
��1�x� is of the form

n(h)Z or {±Id}n(h)Z
for a unique h 2 N>0. Then the map

qx : z 2 H 7! q1(
1

h
��1.z) = exp(2⇡i

1

h
��1.z) 2 D(0, 1)

induces an homeomorphism

'x : Ux,Y ' D(0, exp(�2⇡Y/h))

and defines our local uniformizer at x.
Indeed if su�ce to check that the map qx is �x-invariant: for any �0 2 �x,

��1�0� = ±n(hk), k 2 Z

and

qx(�
0.z) = exp(2⇡i

1

h
± n(hk)��1z) = exp(2⇡i

1

h
(��1z + hk)) = qx(z)

Definition 3.6. The integer h depend only on the cusp x and is called the width of x.

Exercise 5.4.1. Show that a set of representative Cusp(�0(q)), is given by the fractions

u

v
, v|q, 0 < u 6 (v, q/v).

Compute their width.

We conclude this section with the following:

Theorem 3.4. The altas {(U�.z,rz ,'z,rz)}z2Y (�) [ {(Ux,Y ,'x)}x2Cusp(�) is an holomor-
phic atlas gives X(�) the structure of a compact Riemann surface. If �0 < �, the natural
projection map

⇡�0,� : X(�0) 7! X(�)

is a morphism of Riemann surfaces.



6. THE HYPERBOLIC MEASURE 49

6. The hyperbolic measure

We have see that H carries two natural 2-forms, the hyperbolic metric

dz ⌦ dz

y(z)2

and the hyperbolic measure
dz ^ dz

y(z)2
,

which are both SL2(R) invariant hence SL2(Z)-invariant. In particular these forms de-
scend to corresponding forms on the quotients Y (�). On the other hand these forms have
singularities at the cusps:

Consider the cusp c with �c = 1; an uniformizer is given by (h the width)

z ! qh = exp(2⇡i�z/h) 2 D(0, 1).

One has
dqh = (2⇡i/h)qhd(�z), dqh = (�2⇡i/h)qhd�z

so that the hyperbolic metric and hyperbolic measure are given in these coordinates by

(2⇡/h)2
dqh ⌦ dqh

(|qh| log(1/|qh|)/2⇡)2 , (2⇡/h)2
dqh ^ dqh

(|qh| log(1/|qh|)/2⇡)2
which are singular as qh ! 0.

6.1. The hyperbolic measure. The hyperbolic measure yields a corresponding hy-
perbolic measure on Y (�); abusing notations, we denote it by

dµ�(�.z) =
dxdy

y2
,

and for f a µ�-integrable function on Y (�) we write

µ�(f) =

Z

Y (�)
f(�.z)dµ�(�.z) =

Z

Y (�)
f(�.z)

dxdy

y2
.

A bit more concretely: the functions on Y (�) are canonically identified with the functions
on H which are �-invariant, through the map

f 2 F(Y (�)) 7! f̃ 2 F(H)�, f̃(z) := f(�.z),

and locally µ�-integrable function on Y (�) correspond to locally µh-integrable, �-invariant
functions on H. For such functions one has

µ�(f) =

Z

D
�

f̃(z)dµh(z).

Notice that continuous bounded functions in Y (�) are integrable: consider for instance the
constant function 1 on Y (�)

µ�(1) =

Z

D
�

dµ(z) =
X

�i

Z

�iD
SL

2

(Z)

dµ(z) = [SL2(Z) : �]

Z

D
SL

2

(Z)

dµ(z).

Now DSL
2

(Z) ⇢ {x+ iy 2 C, (x, y) 2 [�1/2, 1/2]⇥ [
p
3/2,+1[} and

Z

D
SL

2

(Z)

dµ(z) 6
Z

[�1/2,1/2]

Z

[
p
3/2,1)

dxdy

y2
< 1.
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We define vol(Y (�)) = µ�(1) a simple computation shows that vol(Y (1)) = ⇡
3 so that

vol(Y (�)) = [SL2(Z) : �]vol(Y (1)) = [SL2(Z) : �]
⇡

3
.

Remark 6.1. Let us see again that bounded functions are integrable near the cusps:
consider the disc coordinates

qh = re(✓), r = |qh|, dqhdqh = 4⇡rdrd✓

and the hyperbolic measure becomes proportional to

drd✓

r log(1/r)2
,

and bounded functions near 0 are locally integrable against that measure.

6.2. The normalized hyperbolic measure. If �0 ⇢ �, the space of integrable func-
tions on Y (�) inject naturally into the space of corresponding functions on Y (�0) via the
obvious surjection Y (�0) 7! Y (�): in simple terms if f is �-invariant it is also �0-invariant.
We reasoning we have done earlier for the constant function 1 shows that for any such
function f

µ�0(f) = [� : �0]µ�(f).

Therefore this lead us to define a normalized measure on the space of bounded functions on
H which are invariant by some congruence subgroup by setting: for f �-invariant

µn(f) = [SL2(Z) : �]
�1µ�(f).

This definition does not depend on the choice of the congruence subgroup by which f is
invariant: if f is � and �0-invariant then it is �00 = � \ �0 invariant and since

[SL2(Z) : �
00] = [SL2(Z) : �][� : �00], [SL2(Z) : �

00] = [SL2(Z) : �
0][�0 : �00]

one has

[SL2(Z) : �]
�1µ�(f) = [SL2(Z) : �

00]�1µ00
�(f) = [SL2(Z) : �

0]�1µ0
�(f).


