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EXERCISE 4.2.1. Show that SU(C) = {g € SLy(C), g¢'g = Id} is a compact subgroup
of SLy(C) which is maximal for this property; show the same for K = SO2(R) < SLa(R).

EXERCISE 4.2.2. Show that the Cartan decomposition
N x Ax K — SLy(R)

is an homeomorphism (of course not a group morphism !).

DEFINITION 2.3. A topological group action, G O X, is an action of a topological group
on a topological space such that the map

GxX — X x X
(9,2) — (z,9.)
18 continuous.

EXERCISE 4.2.3. Verify that the action GLy(C) x P}(C) — P1(C) is a topological group
action.

5. Elements of hyperbolic geometry

The upper-half plane H = H™, as a open subset of C is a complex variety equipped
with two 1-forms
dz = dz + idy, dz = dx —idy
and one has
dz — dz

5.1. The hyperbolic metric. In particular (since I(gz) = |cz +d|723z) the positive
definite symmetric 2-forms

dr @ dz + dy @ dy
Y2

1
ds® = —dz® dz =
Y

is invariant under the action of GL3 (R):
ez +d* detgPdz@dz dz®dz
~detg2y? (cz +d)2(cz+d)2 y2

1
y(gz)zdgz ® dgz
In particular the corresponding Riemannian metric is GLj (R)-invariant; it is called the
hyperbolic metric.
This give H the structure of a metric space for the geodesic distance by minimizing the
length:
dp(z,2') == irLlféh(L), L eC>(]0,1] - H), L(0) =z, L(1) = w,

iy = [ EO SOV,
0 y(t) ’
and by invariance the group GLj (R) act by isometries.

REMARK 5.1. One can in fact show that PGLy(R) is the group of orientation preserving
isometries of H.

REMARK 5.2. The topology induced by this metric is the same as the one induced by the
euclidean metric dz? + dy? (since both metrics are comparable when restricted to compact
sets).
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5.2. Shape of balls for the hyperbolic metric. We will now describe explicitly the
hyperbolic circle and balls of hyperbolic radius r and center z € H.

Sp(z,7) ={2 € H, dy(z,2') =1}, Dp(z,7) = {7 € H, dp(z,7") <r}.

The hyperbolic metric is invariant by N(R) which is the group of horizontal translation
on H; so it is natural to look at the distance along a set of representatives of the space of
N-orbits N\H, that is along a vertical half-line:

LEMMA 2.1. Let z = x + iy, 2 = x + 1y’ € H with the same real part, then the geodesic
segment between these two points is unique and is the vertical segment joining them and

dt
dn(z,2") 7| = |logy/y'|.

= |
[y,9']
In particular for any r > 0, dp(z,x + iyexp(£r)) = r.

Proor. Consider the vertical path joining z and 2/,
Lg(t) =z +i(ty’ + (1 — t)y) = ag(t) + iy (t);
its length is given by

dt = |log(y'/y)|.

Lyt / /
wo- | (/1) + 5/ ()%)"/2

y(t)
Conversely, given any other path joining z to 2/, since (Il(t)QZ?;)(t)z)l/Q > l‘Z((:))" one has
10 (4)2 /(+)2)1/2 1,/ 1,7
[V WOy Oy gy
0 y(t) o y(t) o y(t)

Moreover equality holds iff /() = 0 V¢ that is iff x(¢) is constant equal to x. This prove that
dp(z,7") = |logy/y'| and the the vertical segment joining z to 2’ is the geodesic segment. [

PROPOSITION 2.6. For z,2' € H, let r = dp(z,7'), one has
Sh(z,r) = SLa(R),.2".
Moreover Sp(z,7) is a (Euclidean) circle whose diameter is the segment with end-points
x + 1y exp(£r).
PROOF. Since g € SLy(R),
dn(g.2', 2z) = dp(g.2', 9.2) = dp(z,2") = r, ie. SLa(R),.2" C Sp(z,7).

For the converse: we observe that the stabilizer SLa(R), is conjugate to SLa(R), =
SO2(R) so is compact. Thus the orbit SL2(R),.2" is compact and let z+ = x4 +iys €
SLy(R),.2" be such that y4 (resp. y—) is maximal (resp. minimal). We will show that

is an isometry fixing z, one has

zy = x + iy exp(£r).

This imply that SLy(R), acts transitively on Sp(z,r) and that Si(z,7) = SLa(R),.2".
By definition we have y_ < yexp(—r); on the other hand, for L : [0,1] — H any path
between z and z_, we have

[ EOR e, ) _
nn) = [ s [T > flog(y- )] = tog(u/u-).

Thus r = log(y/y—); moreover ¢,(L) = log(y/y—) if only if 2/(t) = 0 so x— = z and
z_ = x +iyexp(—r). Similarly, z4 = z + iy exp(r).
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Let us show that the hyperbolic circle is an euclidean circle: we may assume that z = ;
indeed writing z = ¢g.7 and v = g.2, then dj(z, ') = dp(4,v) and
SLy(R),.2" = gSLQ(R)ig_l.gv = gSLa(R),.v

is the transform by g of the orbit SLa(R),.v hence is a circle if SLy(R);.v is. This later orbit
is parametrized by k(6):

~cos(@)v —sin(0)  e(0)(iv — 1)+ e(—0)(iv + 1)

k(8).v = = = .e(20),
)= @)+ oos(®) ~ el@)(v i) —e—)w—q W)
C(iv—1 w+1
g(v) = ( v+i v—i ) € GL2(C),
thus this orbit is the transform of the unit circle by the fractional linear transformation
g(v) hence is a circle. O

COROLLARY 2.3 (Cartan decomposition). One has SLa2(R) = KAK.

PROOF. given g € SLa(R), let z = g.i and let k € K such that ®(k.z) = R(i) = 0, then
there is a € A such that k.z = a.i = kg.i so that a 'kg =k’ € K. O
Observe that the Cartan decomposition is not unique. We have also the following:

PROPOSITION 2.7. The group SLa(R) acts 2-transitively on H: if dp(z,2") = dp(w,w’)
there exists g € SLa(R) such that

/ /
gz =w, gz =w.

PROOF. Set r = dj(w,w’). Take g such that gz = w, then g.z2’ € Sy(w,r), then there
exist k € SL2(R),, such that kg.z’ = w’ and kg answer the question. O
From this we deduce

PROPOSITION 2.8. The geodesic segment joining two points z # 2z’ € H is unique and
either the wvertical segment between these two points if their real part agree or the arc of
the unique half-circle centered on R containing these two points . Moreover, one has the
formula

|z — 2'|?

4yy’
PROOF. By the previous proposition if ®z # Rz’ one can find g such that gz, gz’ are
vertically aligned and at the same distance. The geodesic segment joining z and 2’ is the

transform by ¢! of the vertical segment between [gz, g2']. The verification of the formula
for the hyperbolic distance is left to the reader. O

cosh(dp(z,2") =1+2

5.3. The hyperbolic metric in the disk model. Under the Cayley transform z —
9C,2-2 = U = re’ the hyperbolic metric transform into a metric proportional to the

du ® du
(1= |uf?)?
This metric is radially invariant: invariant under euclidean rotations around 0, u + e?u.
in particular the Cayley transform maps hyperbolic disks centered at zy to Fuclidean disk

centered at 0, geodesic segments passing through zp to Euclidean segment passing through
0.
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5.4. The Hyperbolic measure. Similarly the alternating 2-form
—2idx N dy
Y2
is GLJ (R)-invariant. Remove the —2i-factor, on obtainsf fmro this 2-form a measure on H
of density

1
Yy

dxdy
dlufh(z) = y2

called the hyperbolic measure. This measure is GLJ (R)-invariant: for f(z) continuous
compactly supported and g € SLy(R)

/ F(2)dun(z) = / F(g2)dpn(2).
H H

This measure is called the hyperbolic measure.






CHAPTER 3

The action of SLy(Z)

We examine now the action of the subgroup SLa(Z) in H and more generally the action
of certain subgroups (congruence subgroups to be defined below) I' C SLy(Z) of finite
index. In particular we will explain how the structures on H (topological space, Riemannian
manifold, complex manifold) descent to the space of orbits

Y([)=T\H={Tz, z € H}.
We will show the following

THEOREM 3.1. For I' C SLa(Z) a congruence subgroup, the space Y (I') has a structure
of (non-compact) Riemann surface such that the projection map

mr: He— Y(I)

is a local holomorphic homeomorphism at all but finitely many points (and at all points
if T' = T(q), ¢ = 3). Moreover, there exist a Compact Riemann surface, X(T') and an
holomorphic embedding Y (I') — X (T') such that X (I') — Y(T') is finite.

This will mainly come from the fact that action of SLy(R) on H is topological and that
SL2(Z) is a large discrete subgroup of SLa(R).
1. Congruence subgroups

DEFINITION 3.1. For q > 1 an integer, the principal congruence subgroup of level q is
the subgroup of SLa(Z) of matrices congruent to the identity modulo q:

T(q) = {y= < ‘CL Z > €SLy(Z), a=d=1(q), b=c=0(q)}.

['(q) is is a finite index normal subgroup of SLa(Z) and
[SL2(Z) : T(q)] = | SLa(Z/q)| = ¢* [[(1 - 1/p%).

plg

EXERCISE 1.0.1. Prove the claim.

DEFINITION 3.2. A subgroup I' < SLy(Z) is congruence or arithmetic if it contains some
principal congruence subgroup. In particular it is of finite index in SLa(Z)

Example of congruence subgroups are the Hecke-Iwahori subgroups

roo) = 1( & 5 )esta@, (& 5)= (5 1) modq)

Other important examples of arithmetic subgroups are

i =1( & 5 )est@, (¢ 5)=(5 7 )amodn)

39
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raa) = (¢ ) esta@. (¢ )= (5 ") moda).

Note however that not all the finite index subgroups of SLa(Z) are arithmetic.
EXERCISE 1.0.2. Compute the indexes of I'g(q), I'i(q), T'a(q).
For specific congruence subgroups we use the following standard notations:
Y(q) :=Y(I'(q), Y1(q) := Y (I'1(q)), Yo(q) := Y (To(q))-
2. The fundamental domains

For the maximal congruence subgroup SLy(Z) we have the following

THEOREM 3.2. SLa(Z) is generated by n(l) = ( (1) 1 ) and w = < (1] _01 >

PROOF. Notice that w? = —Id.
Let v = < Z Z € SLa(Z). We proceed by recurrence on |c|: if ¢ = 0 we are done

since v = £n(b); if ¢ # 0, we have for k € Z

n(k)(ccl Z>:<(1) ’f)(i Z):<a+ckc b—i—dk:d>.

so if ¢ # 0 multiplying by a proper power of n(1) we reduce to the case where |a| < |c|; next
applying w we have

0 -1 a b\ ([ —c b=d\ _ (dV
1 0 c d) \ a b S\ d d
since |¢/| < |¢| we conclude by recurrence. O

DEFINITION 3.3. Let I' < SLo(R) be a discrete subgroup. A fundamental domain for T,
D C H say, is an open subset whose closure meets every I'-orbit in at least one point: ie.
such that

VzeH, T.2ND # 0,
and which meet every orbit in at most one point : i.e.
VzeH, T.zND| < 1.
Observe that the above conditions are equivalent to
H=TI.D, andVyeT, v#+Id, DN~y.D =
THEOREM 3.3. A fundamental domain for Sle(Z) is given by the set
Dgr,zy = {2z € H, |z] <1/2, [2] > 1}.
More generally for T' < SLa(Z) a subgroup of finite index:

SLy(Z) =| |
Vi

a fundamental domain for I is given by

Dr = U YiDPsL,(z)-

Vi
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PROOF. Let z € H, we claim that there exist v € SLa(Z) such that J(y.z) is maximal:
since 3(7.2) = 3(2)/|cz +d|? this amount to find « such that |cz + d| is minimal. The map
(¢,d) € R? = |cz +d| is a norm on R? and since Z? C R? is discrete there exists (c,d) # 0
such that |cz+d| > 0 is minimal. Observe that the ged (¢,d) = 1: if ¢ = (¢,d)d, d = (¢,d)d’
then |cz + d| = (¢,d)|dz + d'| contradicting minimality if (¢,d) > 1. Given such (¢, d), by

Bezout’s theorem, there exist 7 € SLa(Z) of the shape g = ( i b > Replacing z by 7.z we

d
may assume that $(z) is maximal within its orbit. In particular S(w.z) = 3(2)/]z|? < Sz
so |z| = 1 and applying n(1)* for a suitable k € Z, we have n(1)¥.z = z + k which does
not change the imaginary part, we may always assume that Rez €] —1/2,1/2]. This proves
that for any z € H, SLa(Z).z N Dy, (z) # 0.

Suppose that z € Dgr,,(z) we claim that for any coprime integers ¢, d,

lcz +d| > 1.

Indeed, if ¢ or d = 0 (then d or ¢ = £1), the inequality is obvious; suppose cd # 0, we have
lcz+d* = (cx+d)* + Py = A(2® +y?) +2cdr+d* > ¢ —|ed|+d* = 2|cd| —|ed| = |cd] > 1.
In particular for any v € SLa(Z) we have
.2 = ¥2/|cz +d|* < Sz

so Sz is maximal within its orbit. Hence if z and 2’ = ~.2 # z are both in Dg,,(z) then
3(2) = S(y.2) and |ez +d| =1. If ¢ =0, v = +n(k) for k € Z and 2/ = 2z + k. Hence
k| =1, Rz = £1/2 and Rz’ = F1/2. If d = 0 then ¢ = 1 and |2| = 1 so z € 0Dgy,,(z). If
cd # 0, then |c| = |d| =1, 2 = —cd/2 = £1/2, |z| =1 and y = L*i and 2 = j or —j and n
any case it belongs to dDgr,,(z)

The final part of the statement is immediate from the equivalent definition of a funda-
mental domain. O

REMARK 2.1. From the above proof one see that under the SLa(Z)-action the boundary
segments [j,j + ioo| and [—j, —j + ioo[ are identified (by n(41)) and that the boundary
segments [i, j] is identified to [i, —j] via w. Moreover these are the only ways by which two
distinct elements of the boundary of Dgr,,(z) can be identified.

REMARK 2.2. The construction of this fundamental domain is obtained by considering
points z with the greatest possible imaginary part within their orbit SLy(Z).z. That is
points in the orbit which are, in a certain sense, the ”closest” to co. There are other similar
(somewhat canonical) ways to produce nice fundamental domains in general; the following is
due to Dirichlet: given zp € H and I' < SL2(Z) a finite index subgroup then if I',, C {£Id}

Dr, ={z € H, dn(20,2) = Werﬂ_li{ljlﬂd} dn(20,7.2)}

is the closure of a fundamental domain.

3. The quotient topology

The reason why I'\H inherit many structures from H is that the action of SLy(R)
preserve these structures: the maps

v.:z€Hw— 7.2
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TR

FIGURE 1. The fundamental domain for SLy(Z) and the points i, j

are continuous, isometric (for the hyperbolic metric) and even holomorphic. The topological
structure we’ll put on X (I') is the so-called quotient topology.
Let X be a locally compact separated space.

DEFINITION 3.4. Let G O X be a group acting continuously on X, the quotient topology
on the space of orbit G\X is the finest topology on G\X for which the projection map
g X — G\X

18 continuous.

Therefore a set on G\ X is open if and only if its preimage under 7 is an open set.
Moreover ) C X is open
g (mg(Q) = [ 9.2
geqG
is open so mg is open. In particular the image under wg of a basis of neighborhoods of a
point x form a basis of neighborhoods of G.z. in particular, since the image under ng of a
compact is compact, G\ X is locally compact.

3.1. Proper actions.
DEFINITION 3.5. Let G O X be a topological group action on a topological space. G act
properly on X if the (continuous)map
GxX — X x X
(9.2) — (z,9.7)
is proper: the preimage of a compact is compact.

REMARK 3.1. If G act properly, any closed subgroup I' < G also acts properly. A
compact group acts properly.
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An important consequence is

ProprosITION 3.1. If G O X properly then G\X endowed with the quotient topology is
separated.

PROOF. Suppose that Gx # Gz’ we want to find open sets x € Q, 2/ € Q' such
that GANGQ = (. Since x # 2’ and X is locally compact, there exist precompact open
neighborhoods K, K’ of x, ' which are disjoint. Since the action is proper there is a compact
subset H C G such that

VgeG—H, gKNK' =0.
Indeed the preimage of K x K’ in G x X is compact and we take for H its projection to
G. Since H is compact, Hz is compact and does not contain 2’ so we may take an open
set o € ' C K’ such that Hx N Q' = () hence x ¢ H'QY. H~'Y is precompact so we
may choose a neighborhood z € Q C K such that HQNQ = (. Then G2 N K’ = () and
GONG.K' =10. O

PROPOSITION 3.2. SLy(R) acts properly on H.

PROOF. Let 2 x ¥ € H x H be a product of compact subsets. We may assume that
Q' = Q. The preimage is

{(g,2) € SLy(R) x Q, gz C Q} C {g € SLy(R), gQNQ 0} x Q
but
{g € SLy(R), gQNQ # 0} C {g € SLy(R), gm(Q)SO2(R) N m(2)SO2(R) # 0}
= m(2)SOz(R)(m(2)SO2(R)) ™

which is compact (here m : z € H — m(z) € B! < SLy(R)). O
In general, has the following necessary condition for properness:

PROPOSITION 3.3. If G O X is proper, for any pair of compact sets K, K' C X, the set
{9 G,gKNK' #0}
is compact. In particular for any x € X (taking K = K' = {x})
G:={g9€ G, gz =1z}
1$ compact.

COROLLARY 3.1. SL2(R) does not act properly on PY(R): the stabilizer of oo is not
compact.

EXERCISE 3.1.1. Show that the maps
n(z)a(y) € NA— n(x)a(y)K € SLeo(R)/K, gK € SLuo(R)/K — g.i € H
are homeomorphisms.

3.2. Passing to a subgroup. Let G’ < G be a closed subgroup, we have a natural
surjective projection map
CG\X — G\X
TeNG @y v Gz
It follows immediately from the definition of the quotient topology that this map is contin-
uous; in particular G'\ X is separated if G\ X is.
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4. Application to the modular group
Since SLy(Z) < SL2(R) is discrete hence closed one obtain:

COROLLARY 3.2. The group SLa(Z) and any of its subgroup T' acts properly on H. In
particular Y (T') = T\H equipped with the quotient topology is separated locally compact.

Moreover, since a compact subset of a discrete group is finite, one obtain:
COROLLARY 3.3. Let I' < SLy(Z) be a finite subgroup; For any z,z" € H one has:
(1) for any balls r,7’ >0, the set
{~ € T such that yDp(z,7) N Dy(2',7") # 0}

is finite.
(2) In particular, the stabilizer of z, T, is finite.
(3) If 2/ € T.z, there exist v > 0 such that I'.Dy(z,7) N Dy(',r) = 0.
(4) there exists r > 0 such that

{v €T s.t. yDy(z,7) N\ Dy(z,7) # 0} =T,.

Observe that since elements of I', are hyperbolic rotations around z, one has for r small
enough

(4.1) T, ={y el s.t. vDp(z,7) N Dyp(z,r) # 0}
= {vy €T such that yDy(z,7) N Dy(2,7) = Dp(z,7)}

4.1. Stabilizer of SLy(Z). From the previous discussion it is important to understand
the shape of the stabilizers in SLa(Z) and its congruence subgroups:

PROPOSITION 3.4. For any z € H, SLy(Z),

second and third possibilities occur if and only if z € SLa(Z).i or z € SLa(Z).7, j =€
—14iv3
5.

s a finite cyclic group of order 2,4,6. The
2mi/3 _

PRrROOF. Observe that SLa(Z), = SLa(Z) N SLa(R), is the intersection of a discrete
and a compact subgroup so is finite. Moreover SLy(R), is conjugate to SO2(R) ~ S; so
any finite subgroup of it is cyclic (given a finite subgroup G < Sy, let zy = €% € G with
0o € [0,27] of minimal size, then zy generate G.) Given z € H; from the determination of
the fundamental domain, we may assume that |Rz| < 1/2, |2| > 1. Under this assumption,
let us solve the equation

g.z:z,g:<z 2>€SL2(Z)

where g is a generator of SLa(Z),. As we have seen, if g # +Id, it has exactly two fixed
points (z and Z) hence g is elliptic and |tr(g)| = |a + d| < 2. Thus, either tr(g) = 0 or
tr(g) = +1. In the former case, g has minimal polynomial

X241
and the subgroup generated by g is {Id, g,—Id, —g}. Up to replacing g by —g we may
assume that ¢ > 0. One has det g = —a?2—bec=1s0c¢>0and
2+ (d—a)z—b=0=(cz)? = 2a(cz) —bc = Z*> — 2aZ + 1 + d?,
a=xi

Z=cz=a*ti, z= .
c
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Necessarily |c| = 1 (since Sz > v/3/2) and therefore a = 0 and z = 1.

In the later case, up to changing g to —g we may assume that tr(g) = 1 and g has
characteristic polynomial

X?-X+1=0;
this is an irreducible polynomial adn therefore this is the minimal polynomial of g. Therefore
g generate the subgroup
{Id, 9,9 = g —1d,¢° = -1d,¢" = —g,¢° = —¢°}.

One has detg =1 = a(1 — a) — bc and
24+ (1-2a)z—b=0=(c2)*+(1—2a)(cz) +1—a(l—a) = Z*+ (1 -2a)Z +1—a+d?

20—1++/(1-2a)2—4(1-a+a®) 2a—1++-3 Z_2a—1ii\/§

Z: =
“ 2 2 2
Again |c| = 1 (since Sz > /3/2) and since |Rz| = |a — 1/2] < 1/2 and a = 0 or 1 so that
z=jorj—1=n(-1)j. O

If I' < SLa(Z) is a congruence subgroup I'; < SLa(Z),. In particular for the principal
congruence subgroups we have

COROLLARY 3.4. For q >3, I'(q), = {Id} for all z € H.
PRrROOF. For any v € I'(q), tr(y) =2 # 0, £1(q). O

5. Complex structure

The upper-half plane as an open subset of C has a natural complex structure (i.e.
meromorphic functions on H are well defined); this structure indeed descent to Y (I') (and
in particular Y (I') has a structure of differentiable variety). For this, is suffice to provide
an holomorphic atlas for Y (I'): that is a collection

{Ui, i)ier}
of local charts: {U;}ier is an open covering of Y (I') and
is an homeomorphism of U; onto its image such that for U; N U; # () the transition map
piow; L wiUinUy) = ¢;(UinU;)
is an holomorphic diffeomorphism. If z € U;, the variable
ti = i(¢), el
is called a local parameter (or local uniformizer) at z

5.1. Local parameters. It follows from Cor. 3.3 that for any z € H there exists
r = r(z) > 0 such that for any subgroup I' < SLy(Z), the projection map 7r : H — I'\H
induces an homeomorphism (recall the I', is finite)

LA\, Dp(z,r) ~ mp(Dp(z,1));
actually T, preserve the ball Dp(z,r) so we have
(5.1) L A\Dp(z,7) =~ 7p(Dp(z,71)).
In particular when I', C {£Id}
Dy (z,r) ~ nr(Dp(z,71)).
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In other terms Y (I") is locally homeomorphic to H at any z such that I, C {£Id}. This is
the case if z & SLa(Z){4,j} or for any z if I' = I'(¢) for ¢ > 3 by Cor. 3.4.

To reveal the structure of I',\ Dy, (z,r) we compose (5.1) with the Cayley transform at
Z, gc,»: we obtain

7r(Dp(z,7)) = T \Dp(z,7) =~ T\ D(0,7")
for some 7’ > 0 and where I, is a finite cyclic subgroup of complex rotations centered at 0:
Iy = e(0,)% with 0, = 27/l, | € {1,2,3}. The later quotient is homeomorphic to the disc
D(0, (r")!) via the map
w e D(0,r") — w' e D0, ().

In other terms we have obtained for any z € H and r = r(z) > 0 sufficiently small, a local
homeomorphism

(5.2) ©op t Urzy =m0 (Dp(z,1)) D(0,7").

Such an homeomorphism will be called a local uniformizer for Y (I") at I.z.
An holomorphic atlas is provided by the local uniformizers (5.2)

{(UF.Z,TZ ) @z,rz)}z

for z varying over a set of representatives of Y'(I'). Therefore Y (I") has a natural structure
of non-compact Riemann surface. We explain below how to compactify it.

5.2. Compactification of X (I'). From the description of the fundamental domain we
see that Y (1) is not compact: a sequence of orbits or the shape SLa(Z)z, with y, — 400
has no converging subsequences. The shape of the fundamental domain suggest at least
two possible compactifications : by adding a single point or by adding a circle. However
two points in the fundamental domain with the same imaginary part y are at (hyperbolic)
distance < 1/y from each other so are becoming closer as y gets large; suggest to consider
the one point compactification. We will denote it by

X(1) = Y(1) U {5}

and describe now its topology.

By definition of the one point compactification, the neighborhoods of 36 are the comple-
ments in X (1) of compact subsets of Y (1). A basis of neighborhoods is obtained by taking
the image in Y'(1) of the upper half-spaces Hy = {z € H,Sz > Y} for Y > 0: we note
these neighborhoods

Ussy = Tsp,(z)(Hy).
Given z € H and r > 0, there exist Y = Y (z,7) > 0 such that

V,Y € SLQ(Z)v WHY N Dh(Z,’f’) = @7

indeed it suffice to take Y > sup.cp(.,) S(2) as follows from the arguments leading to
the determination of the fundamental domain of SLo(Z). This implies that the resulting
topology is separated so X (SLy(Z)) is a separated compact space. Moreover (from the
determination of the fundamental domain), the map

:f:n(Z)\Hy = SLQ(Z)OO\HY — SLQ(Z)OO\HY ~ ﬂ—SLQ(Z) (Hy)
is an homeomorphism for ¥ > 1 and the map

doo : 2 € H— exp(2miz) € D(0,1),
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induces an homeomorphism
¢ Uss)y = D(0, exp(—27Y))
with
Uss,y := Tsr,(z)(Hy) U {55},
(indeed as 3z — +00, goo(2) — 0). This is our the uniformizer at the point 3c.
5.3. Compactification and cusps. This compactification is in fact compatible with

the SLa(Z)-action and we use this to compactify more generally the Y (I").
Observe that the orbit

ST (Z).00 = PL(Q) = Q U {o0}
the rational projective line : indeed if a,c € Z are coprime, any matrix in SLy(Z) of the

form < Z Z ) (which exists by Bezout’s theorem) map oo to a/c. Therefore for any finite

index subgroup I' < SL(Z), P'(Q) decomposes into finitely many orbits which are called
the cusps of I':

PIQ= || T
1€Cusp(T")
where x; € P1(Q) ranges over a set of representatives of Cusp(I)
Let H := HUPY(Q), we set

X (1) = SLy(Z)\H = SLy(Z)\H U {SLy(Z)\SLs(Z).00}
and more generally for I' < SLa(Z) with finite index
X() =T'\HU{I'\SL2(Z).co} = T"\H U Cusp(T")

A (separated) topology on H is given by defining a basis of neighborhoods of = € P1(Q),

Uzy, Y >0 to be
Usoy := {00} UHy, ifz =00
and if x # oo
Usy =7.Usy, for any v € SLy(Z) such that v.00 = z;

(the Ugy are disks in H tangent to R at z.)

as pointed out above, the group SLy(Z) (and any of its congruence subgroup) does NOT
act properly on H: the stabilizer of any € P}(Q) is conjugate to +n(Z) and consequently

is not finite: still we have the following extension of Cor. 3.3:
PROPOSITION 3.5. Let I' be congruence subgroup of SLa(Z), z,y € P1(Q) and z € H.
e For anyr,Y >0 the set

{verl, YW,y ND(z,r) # 0}
is finite for and empty if r and 1/Y are small enough.
o Ify &z, then
{’Y € Fa ’YUz,Y N Uy,Y 7é @}
is finite for any r > 0 and empty if Y is large enough (Y > 1 suffice).
o IfY is large enough (Y > 1 suffice),

{veTl, YU,y NU,y # 0} =T,.
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PRrROOF. Exercise U

This proposition implies that X (I') equipped with the quotient topology is a locally
compact separated topological space which is moreover compact because I' has finite index
in SLQ(Z).

5.4. Local uniformizer at the cusps. Let T = I'.x be a cusp. A local uniformizer
at T is defined as follows: let v € SLy(Z) such that v.00 = z, for Y > 1, by the previous
proposition, one has a local homeomorphism

UE,Y = 7'(-F(Uvaﬁ,Y) ~ F:c\U:r,Y = ’Y_IFJC’Y\UOO,Y
We claim that the subgroup
YTy C SLa(Z),, = £n(Z)

has finite index in SLy(Z)_: indeed 41Ty is a congruence subgroup (because if I' contain

the normal subgroup I'(q) so does y~'I'y, and I'(q) is of index ¢ in SLo(Z), . Therefore
41T is of the form

n(h)Z or {£Id}n(h)%
for a unique h € N+g. Then the map

1 1
gr:2€H— qoo(gfyfl.z) = exp(2m’E771.z) € D(0,1)
induces an homeomorphism

vz : Uzy ~ D(0,exp(—27Y/h))

and defines our local uniformizer at .
Indeed if suffice to check that the map ¢, is I';,-invariant: for any +' € ',

7y =4n(hk), ke Z
and
1 1
@:(y.2) = eXp(QTFZ'ﬁ +n(hk)y™1z) = exp(2mz('y_lz + hk)) = q.(2)
DEFINITION 3.6. The integer h depend only on the cusp T and is called the width of T.

EXERCISE 5.4.1. Show that a set of representative Cusp(I'g(q)), is given by the fractions
%, vlg, 0 <u < (v,q/v).
Compute their width.
We conclude this section with the following;:

THEOREM 3.4. The altas {(Ur.z., Pzr.) ey ) U{(Uzy ¢7) fzecusp(r) i an holomor-
phic atlas gives X (T') the structure of a compact Riemann surface. If T' < T, the natural
projection map

T/ [ - X(F/) — X(F)

is a morphism of Riemann surfaces.
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6. The hyperbolic measure

We have see that H carries two natural 2-forms, the hyperbolic metric
dz®dz
y(2)?

and the hyperbolic measure
dz Ndz

y(2)*
which are both SLy(R) invariant hence SLg(Z)-invariant. In particular these forms de-
scend to corresponding forms on the quotients Y (I'). On the other hand these forms have
singularities at the cusps:
Consider the cusp ¢ with yc¢ = co; an uniformizer is given by (h the width)

z — qn = exp(2miyz/h) € D(0,1).
One has
dqn = (2mi/h)qnd(vz), dg, = (—27i/h)q,dvz
so that the hyperbolic metric and hyperbolic measure are given in these coordinates by
dqn ® dgy, dqpn N\ dg,
(lgn|log(1/|gn|)/2m)?’ (lgn|log(1/]qnl)/2m)?
which are singular as ¢, — 0.

(2m/h)? (2m/h)?

6.1. The hyperbolic measure. The hyperbolic measure yields a corresponding hy-
perbolic measure on Y (I'); abusing notations, we denote it by

dzd
d,uF(FZ) == ?y,
and for f a pp-integrable function on Y (I') we write
dxdy
p(h = [ O = [ e
Y (T) Y (T) Y

A bit more concretely: the functions on Y (I') are canonically identified with the functions
on H which are I'-invariant, through the map

FEFY (D) feFE), f(2):= f(T-2),

and locally up-integrable function on Y (I") correspond to locally pp-integrable, I'-invariant
functions on H. For such functions one has

ur(f) = /D F(2)dun(2).

Notice that continuous bounded functions in Y (I") are integrable: consider for instance the
constant function 1 on Y (I")

)= [ auz) =% [ () = [51(2) ] [ )
r vi Y7 DPsLy(z

SL2(2)

Now DSLQ(Z) - {.73‘ +iy € C, (J")y) € [_1/27 1/2] X [\/5/27 +OO[} and

/ du(z) < / / dxgly < oo
DSLQ(Z) [_1/271/2] [\/5/2700) Y
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We define vol(Y (")) = ur(1) a simple computation shows that vol(Y'(1)) = % so that
s

vol(Y (I)) = [SLa(2) : Tlvol(Y (1)) = [SLa(2) : T

REMARK 6.1. Let us see again that bounded functions are integrable near the cusps:
consider the disc coordinates
qn = re(0), r = |qnl, dgndq, = 4mwrdrdd
and the hyperbolic measure becomes proportional to
drdf
rlog(1/r)2’
and bounded functions near 0 are locally integrable against that measure.

6.2. The normalized hyperbolic measure. If I" C T', the space of integrable func-
tions on Y (T') inject naturally into the space of corresponding functions on Y (I") via the
obvious surjection Y (I'') — Y(T"): in simple terms if f is T-invariant it is also I'-invariant.
We reasoning we have done earlier for the constant function 1 shows that for any such
function f

pre (f) = [T Tur(f).
Therefore this lead us to define a normalized measure on the space of bounded functions on
H which are invariant by some congruence subgroup by setting: for f I'-invariant

pn(f) = [SL2(Z) : T] " ur (f)-
This definition does not depend on the choice of the congruence subgroup by which f is
invariant: if f is I" and I-invariant then it is I/ = I' NI invariant and since

[SLo(Z) : T”] = [SLo(Z) : T)[T : T"], [SLa(Z) : T"] = [SLa(Z) : T'][T” : T”]
one has
[SL2(Z) : T] " pr (f) = [SL2(Z) : D)7 i (f) = [SL2(2Z) : ')~ ().



