
CHAPTER 1

Ostrowski’s Theorem

The field of real numbers R is constructed from the field of the rational numbers by com-
pletion of the metric space (Q, d∞) for d∞ the distance induced by the usual (archimedean)
absolute value

d∞(x, y) = |x− y|∞, |x|∞ := max(x,−x).

This absolute value is one way to measure the size (or complexity) of the rational numbers,
but there are many others.

Definition 1.1. An absolute value (or valuation) on Q is a map

| · | : Q→ R>0

satisfying

• (non-degeneracy) |x| = 0⇔ x = 0,
• (multiplicativity) |xy| = |x||y|; in particular for every x ∈ Q, | − x| = |x|.
• (triangle inequality) |x+ y| 6 |x|+ |y|.

Examples of absolute values include the usual archimedean absolute value | · |∞; another
example is the trivial absolute value

|x|0 = |x|0∞ = δx 6=0.

By the non-degeneracy and multiplicativity, one sees that |1| = 1. If |.| is an absolute value,
then so is |.|a for any a ∈]0, 1]. This fact prompts the following definition:

Definition 1.2. Two absolute values |.|1, |.|2 are said to be equivalent if there exists
a > 0 such that |.|2 = |.|a1.

This defines an equivalence relation and the equivalence class of the trivial absolute
value is reduced to itself.

Definition 1.3. A place of Q is an equivalence class of non-trivial absolute values. The
set of places of Q is denoted VQ.

Theorem 1.1 (Ostrowski). The set VQ is in bijection with

P ∪ {∞},
where P = {2, 3, 5, 7, · · · } denotes the set of prime numbers. A representative for each place
is given by

• The archimedean absolute value |.|∞
• For p a prime number, |x|p = p−vp(x) where vp(x) denote the p-adic valuation

vp(x) = sup{k ∈ Z, ∃a, b ∈ Z, (b, p) = 1, p−kx =
a

b
} ∈ Z ∪ {+∞}

=

{
+∞ if x = 0,

k if x = pka/b for some nonzero a, b ∈ Z with p - a, p - b.
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Proof. Let | · | be a non-trivial absolute value on Q. Since |.| is multiplicative and
satisfies |1| = 1, it suffices to determine |m| for each m ∈ N>1.

We begin by establishing, for each m,m′ > 1, a relationship between |m′| and |m|. For
each n > 1, we have

|m′| = |(m′)n|1/n.
We decompose m′n in base m as the sum

m′
n

=
K∑
k=0

rkm
k for some 0 6 rk < m,

where K 6 1 + log(m′n)
logm = 1 + n logm′

logm . Let R = max{|r|, r = 0, . . . ,m − 1}, which is

an upper bound for the absolute values of the coefficients appearing in this sum. By the
triangle inequality, we have

|m′| 6 R1/n(1 +K)1/n max(1, |m|)K/n 6 R1/n(2 +
n logm′

logm
)1/n max(1, |m|)1/n+ logm′

logm .

Letting n→ +∞, it follows that

|m′| 6 max(1, |m|)
logm′
logm .

Suppose now that |m′| > 1 for some m′ ∈ Z. Since |m′| 6 1 for m′ ∈ {−1, 0, 1} and
|m′| = | −m′|, we may and shall assume that m′ > 1. The above inequality implies that for
every m > 1, one has |m| > 1. Reversing the roles of m and m′, we deduce that

|m′| = |m|
logm′
logm .

In other words, the function m 7→ |m|1/ logm is constant. Let us write the value it takes as
ea, which is > 1 by our supposition. Then

|m| = |m|a∞
for each m > 1. By the reduction noted above, it follows that |.| is equivalent to |.|∞.

It remains to consider the case that every m ∈ Z satisfies |m| 6 1. In that case, we
observe that for a, b ∈ Q and n > 1, one has

|a+ b| = |(a+ b)n|1/n 6 (
n∑
k=0

|Ckn||a|k|b|n−k)1/n 6 (n+ 1)1/n max(|a|n, |b|′n)1/n.

Letting n→ +∞, we obtain

(0.1) |a+ b| 6 max(|a|, |b|).

Since |.| is non-trivial, there exists m > 1 such that |m| < 1. We choose such an m of
minimal size with respect to the usual archimedean absolute value. If m factors as m = ln
with l, n > 1, then |ln| = |l||n| < 1, so that either |l| or |n| is < 1, contradicting minimality.
Therefore m = p is a prime.

With p as above, consider any other value of m ∈ Z satisfying |m| < 1. We wish to show
that p divides m. By division with remainder, we may write m = kp+ r for some integers
k, r with 0 6 r < p. Suppose r 6= 0. Our earlier assumption (|r| 6 1) and the minimality of
p imply that |r| = 1. By (0.1) and the inequality |k||p| 6 |p| < 1, we deduce

1 = |r| 6 max(|k||p|, |m|) < 1.
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Therefore r = 0, i.e., p divides m. In summary,

{m ∈ Z, |m| < 1} = pZ,
or put another way,

|m| = 1 if and only if (m, p) = 1.

We may factor a general m 6= 0,±1 as

m = apvp(m), (a, p) = 1

where
vp(m) = max{k ∈ N, pk|m}

is the p-adic valuation of m. Then

|m| = |a||p|vp(m) = |m|
− log |p|

log p
p .

Observe that this identity remain valid for m = 0,±1 since vp(0) =∞, vp(±1) = 0.
It remains to verify that |.|p is indeed an absolute value. This is a consequence of the

following easily verified properties of the p-adic valuation vp:

• vp(x) = +∞⇔ x = 0,
• vp(xy) = vp(x) + vp(y),
• vp(x+ y) > inf(vp(x), vp(y)).

�
The valuation | · |p is called the normalized p-adic valuation, or simply “the p-adic

valuation.” Its called equivalence class is called the p-adic place; any valuation in this class
will be called “p-adic.” Observe that the set of p-adic valuations is precisely

{| · |ap, a ∈ R>0}.
As we have seen from the proof, the absolute values in the class of |.|p satisfy the

(Ultrametric inequality). For all x, y ∈ Q
|x+ y| 6 max(|x|, |y|).

This is stronger than the triangle inequality. It may also be seen to follow from the
third property of the p-adic valuation vp(.).

Definition 1.4. The absolute values equivalent to |.|∞ are called archimedean and the
corresponding place is called archimedean or infinite while those equivalent to some | · |p are
called non-archimedean and the corresponding place non-archimedean or finite.


