CHAPTER 1

Ostrowski's Theorem

The field of real numbers \mathbb{R} is constructed from the field of the rational numbers by completion of the metric space $\left(\mathbb{Q}, d_{\infty}\right)$ for d_{∞} the distance induced by the usual (archimedean) absolute value

$$
d_{\infty}(x, y)=|x-y|_{\infty},|x|_{\infty}:=\max (x,-x)
$$

This absolute value is one way to measure the size (or complexity) of the rational numbers, but there are many others.

Definition 1.1. An absolute value (or valuation) on \mathbb{Q} is a map

$$
|\cdot|: \mathbb{Q} \rightarrow \mathbb{R} \geqslant 0
$$

satisfying

- (non-degeneracy) $|x|=0 \Leftrightarrow x=0$,
- (multiplicativity) $|x y|=|x||y|$; in particular for every $x \in \mathbb{Q},|-x|=|x|$.
- (triangle inequality) $|x+y| \leqslant|x|+|y|$.

Examples of absolute values include the usual archimedean absolute value $|\cdot|_{\infty}$; another example is the trivial absolute value

$$
|x|_{0}=|x|_{\infty}^{0}=\delta_{x \neq 0} .
$$

By the non-degeneracy and multiplicativity, one sees that $|1|=1$. If $|$.$| is an absolute value,$ then so is $\left|\left.\right|^{a}\right.$ for any $\left.\left.a \in\right] 0,1\right]$. This fact prompts the following definition:

Definition 1.2. Two absolute values $\left.|\cdot|\right|_{1},|\cdot|_{2}$ are said to be equivalent if there exists $a>0$ such that $|\cdot|_{2}=|\cdot|{ }_{1}^{a}$.

This defines an equivalence relation and the equivalence class of the trivial absolute value is reduced to itself.

Definition 1.3. A place of \mathbb{Q} is an equivalence class of non-trivial absolute values. The set of places of \mathbb{Q} is denoted $\mathcal{V}_{\mathbb{Q}}$.

Theorem 1.1 (Ostrowski). The set $\mathcal{V}_{\mathbb{Q}}$ is in bijection with

$$
\mathcal{P} \cup\{\infty\},
$$

where $\mathcal{P}=\{2,3,5,7, \cdots\}$ denotes the set of prime numbers. A representative for each place is given by

- The archimedean absolute value $|\cdot|_{\infty}$
- For p a prime number, $|x|_{p}=p^{-v_{p}(x)}$ where $v_{p}(x)$ denote the p-adic valuation

$$
\begin{aligned}
v_{p}(x) & =\sup \left\{k \in \mathbb{Z}, \exists a, b \in \mathbb{Z},(b, p)=1, p^{-k} x=\frac{a}{b}\right\} \in \mathbb{Z} \cup\{+\infty\} \\
& = \begin{cases}+\infty & \text { if } x=0, \\
k & \text { if } x=p^{k} a / b \text { for some nonzero } a, b \in \mathbb{Z} \text { with } p \nmid a, p \nmid b .\end{cases}
\end{aligned}
$$

Proof. Let $|\cdot|$ be a non-trivial absolute value on \mathbb{Q}. Since $|$.$| is multiplicative and$ satisfies $|1|=1$, it suffices to determine $|m|$ for each $m \in \mathbb{N}_{>1}$.

We begin by establishing, for each $m, m^{\prime}>1$, a relationship between $\left|m^{\prime}\right|$ and $|m|$. For each $n \geqslant 1$, we have

$$
\left|m^{\prime}\right|=\left|\left(m^{\prime}\right)^{n}\right|^{1 / n}
$$

We decompose $m^{\prime n}$ in base m as the sum

$$
m^{\prime n}=\sum_{k=0}^{K} r_{k} m^{k} \quad \text { for some } 0 \leqslant r_{k}<m
$$

where $K \leqslant 1+\frac{\log \left(m^{\prime n}\right)}{\log m}=1+\frac{n \log m^{\prime}}{\log m}$. Let $R=\max \{|r|, r=0, \ldots, m-1\}$, which is an upper bound for the absolute values of the coefficients appearing in this sum. By the triangle inequality, we have

$$
\left|m^{\prime}\right| \leqslant R^{1 / n}(1+K)^{1 / n} \max (1,|m|)^{K / n} \leqslant R^{1 / n}\left(2+\frac{n \log m^{\prime}}{\log m}\right)^{1 / n} \max (1,|m|)^{1 / n+\frac{\log m^{\prime}}{\log m}}
$$

Letting $n \rightarrow+\infty$, it follows that

$$
\left|m^{\prime}\right| \leqslant \max (1,|m|)^{\frac{\log m^{\prime}}{\log m}}
$$

Suppose now that $\left|m^{\prime}\right|>1$ for some $m^{\prime} \in \mathbb{Z}$. Since $\left|m^{\prime}\right| \leqslant 1$ for $m^{\prime} \in\{-1,0,1\}$ and $\left|m^{\prime}\right|=\left|-m^{\prime}\right|$, we may and shall assume that $m^{\prime}>1$. The above inequality implies that for every $m>1$, one has $|m|>1$. Reversing the roles of m and m^{\prime}, we deduce that

$$
\left|m^{\prime}\right|=|m|^{\frac{\log m^{\prime}}{\log m}}
$$

In other words, the function $m \mapsto|m|^{1 / \log m}$ is constant. Let us write the value it takes as e^{a}, which is >1 by our supposition. Then

$$
|m|=|m|_{\infty}^{a}
$$

for each $m>1$. By the reduction noted above, it follows that $|$.$| is equivalent to \left.\left.\right|_{.}\right|_{\infty}$.
It remains to consider the case that every $m \in \mathbb{Z}$ satisfies $|m| \leqslant 1$. In that case, we observe that for $a, b \in \mathbb{Q}$ and $n \geqslant 1$, one has

$$
|a+b|=\left|(a+b)^{n}\right|^{1 / n} \leqslant\left(\sum_{k=0}^{n}\left|C_{n}^{k}\right||a|^{k}|b|^{n-k}\right)^{1 / n} \leqslant(n+1)^{1 / n} \max \left(|a|^{n},|b|^{\prime} n\right)^{1 / n} .
$$

Letting $n \rightarrow+\infty$, we obtain

$$
\begin{equation*}
|a+b| \leqslant \max (|a|,|b|) \tag{0.1}
\end{equation*}
$$

Since $|$.$| is non-trivial, there exists m>1$ such that $|m|<1$. We choose such an m of minimal size with respect to the usual archimedean absolute value. If m factors as $m=l n$ with $l, n>1$, then $|l n|=|l||n|<1$, so that either $|l|$ or $|n|$ is <1, contradicting minimality. Therefore $m=p$ is a prime.

With p as above, consider any other value of $m \in \mathbb{Z}$ satisfying $|m|<1$. We wish to show that p divides m. By division with remainder, we may write $m=k p+r$ for some integers k, r with $0 \leqslant r<p$. Suppose $r \neq 0$. Our earlier assumption $(|r| \leqslant 1)$ and the minimality of p imply that $|r|=1$. By (0.1) and the inequality $|k||p| \leqslant|p|<1$, we deduce

$$
1=|r| \leqslant \max (|k||p|,|m|)<1
$$

Therefore $r=0$, i.e., p divides m. In summary,

$$
\{m \in \mathbb{Z},|m|<1\}=p \mathbb{Z}
$$

or put another way,

$$
|m|=1 \text { if and only if }(m, p)=1
$$

We may factor a general $m \neq 0, \pm 1$ as

$$
m=a p^{v_{p}(m)},(a, p)=1
$$

where

$$
v_{p}(m)=\max \left\{k \in \mathbb{N}, p^{k} \mid m\right\}
$$

is the p-adic valuation of m. Then

$$
|m|=|a||p|^{v_{p}(m)}=|m|^{-\frac{\log |p|}{\log p}} .
$$

Observe that this identity remain valid for $m=0, \pm 1$ since $v_{p}(0)=\infty, v_{p}(\pm 1)=0$.
It remains to verify that $|\cdot|_{p}$ is indeed an absolute value. This is a consequence of the following easily verified properties of the p-adic valuation v_{p} :

- $v_{p}(x)=+\infty \Leftrightarrow x=0$,
- $v_{p}(x y)=v_{p}(x)+v_{p}(y)$,
- $v_{p}(x+y) \geqslant \inf \left(v_{p}(x), v_{p}(y)\right)$.

The valuation $|\cdot|_{p}$ is called the normalized p-adic valuation, or simply "the p-adic valuation." Its called equivalence class is called the p-adic place; any valuation in this class will be called " p-adic." Observe that the set of p-adic valuations is precisely

$$
\left\{|\cdot|_{p}^{a}, a \in \mathbb{R}_{>0}\right\}
$$

As we have seen from the proof, the absolute values in the class of $|.|_{p}$ satisfy the
(Ultrametric inequality). For all $x, y \in \mathbb{Q}$

$$
|x+y| \leqslant \max (|x|,|y|) .
$$

This is stronger than the triangle inequality. It may also be seen to follow from the third property of the p-adic valuation $v_{p}($.$) .$

Definition 1.4. The absolute values equivalent to $\left.\right|_{\mid}$are called archimedean and the corresponding place is called archimedean or infinite while those equivalent to some $|\cdot|_{p}$ are called non-archimedean and the corresponding place non-archimedean or finite.

