CHAPTER 1

Ostrowski's Theorem

The field of real numbers \mathbb{R} is constructed from the field of the rational numbers by completion of the metric space (\mathbb{Q}, d_{∞}) for d_{∞} the distance induced by the usual (archimedean) absolute value

$$d_{\infty}(x,y) = |x-y|_{\infty}, \ |x|_{\infty} := \max(x,-x).$$

This absolute value is one way to measure the size (or complexity) of the rational numbers, but there are many others.

DEFINITION 1.1. An absolute value (or valuation) on \mathbb{Q} is a map

$$|\cdot|: \mathbb{Q} \to \mathbb{R}_{\geq 0}$$

satisfying

- (non-degeneracy) $|x| = 0 \Leftrightarrow x = 0$,
- (multiplicativity) |xy| = |x||y|; in particular for every $x \in \mathbb{Q}$, |-x| = |x|.
- (triangle inequality) $|x + y| \leq |x| + |y|$.

Examples of absolute values include the usual *archimedean* absolute value $|\cdot|_{\infty}$; another example is the *trivial* absolute value

$$|x|_0 = |x|_\infty^0 = \delta_{x\neq 0}$$

By the non-degeneracy and multiplicativity, one sees that |1| = 1. If |.| is an absolute value, then so is $|.|^a$ for any $a \in]0, 1]$. This fact prompts the following definition:

DEFINITION 1.2. Two absolute values $|.|_1$, $|.|_2$ are said to be equivalent if there exists a > 0 such that $|.|_2 = |.|_1^a$.

This defines an equivalence relation and the equivalence class of the trivial absolute value is reduced to itself.

DEFINITION 1.3. A place of \mathbb{Q} is an equivalence class of non-trivial absolute values. The set of places of \mathbb{Q} is denoted $\mathcal{V}_{\mathbb{Q}}$.

THEOREM 1.1 (Ostrowski). The set $\mathcal{V}_{\mathbb{Q}}$ is in bijection with

$$\mathcal{P} \cup \{\infty\},\$$

where $\mathcal{P} = \{2, 3, 5, 7, \dots\}$ denotes the set of prime numbers. A representative for each place is given by

- The archimedean absolute value $|.|_{\infty}$
- For p a prime number, $|x|_p = p^{-v_p(x)}$ where $v_p(x)$ denote the p-adic valuation

$$v_p(x) = \sup\{k \in \mathbb{Z}, \exists a, b \in \mathbb{Z}, (b, p) = 1, p^{-k}x = \frac{a}{b}\} \in \mathbb{Z} \cup \{+\infty\}$$
$$= \begin{cases} +\infty & \text{if } x = 0, \\ k & \text{if } x = p^k a/b \text{ for some nonzero } a, b \in \mathbb{Z} \text{ with } p \nmid a, p \nmid b \end{cases}$$

1. OSTROWSKI'S THEOREM

PROOF. Let $|\cdot|$ be a non-trivial absolute value on \mathbb{Q} . Since $|\cdot|$ is multiplicative and satisfies |1| = 1, it suffices to determine |m| for each $m \in \mathbb{N}_{>1}$.

We begin by establishing, for each m, m' > 1, a relationship between |m'| and |m|. For each $n \ge 1$, we have

$$|m'| = |(m')^n|^{1/n}$$

We decompose m'^n in base m as the sum

$$m'^n = \sum_{k=0}^{K} r_k m^k$$
 for some $0 \le r_k < m$,

where $K \leq 1 + \frac{\log(m'^n)}{\log m} = 1 + \frac{n \log m'}{\log m}$. Let $R = \max\{|r|, r = 0, \dots, m-1\}$, which is an upper bound for the absolute values of the coefficients appearing in this sum. By the triangle inequality, we have

$$|m'| \leqslant R^{1/n} (1+K)^{1/n} \max(1,|m|)^{K/n} \leqslant R^{1/n} (2 + \frac{n\log m'}{\log m})^{1/n} \max(1,|m|)^{1/n + \frac{\log m'}{\log m}}.$$

Letting $n \to +\infty$, it follows that

$$|m'| \leqslant \max(1, |m|)^{\frac{\log m'}{\log m}}.$$

Suppose now that |m'| > 1 for some $m' \in \mathbb{Z}$. Since $|m'| \leq 1$ for $m' \in \{-1, 0, 1\}$ and |m'| = |-m'|, we may and shall assume that m' > 1. The above inequality implies that for every m > 1, one has |m| > 1. Reversing the roles of m and m', we deduce that

$$|m'| = |m|^{\frac{\log m'}{\log m}}.$$

In other words, the function $m \mapsto |m|^{1/\log m}$ is constant. Let us write the value it takes as e^a , which is > 1 by our supposition. Then

$$|m| = |m|^a_{\propto}$$

for each m > 1. By the reduction noted above, it follows that |.| is equivalent to $|.|_{\infty}$.

It remains to consider the case that every $m \in \mathbb{Z}$ satisfies $|m| \leq 1$. In that case, we observe that for $a, b \in \mathbb{Q}$ and $n \geq 1$, one has

$$|a+b| = |(a+b)^n|^{1/n} \leq (\sum_{k=0}^n |C_n^k| |a|^k |b|^{n-k})^{1/n} \leq (n+1)^{1/n} \max(|a|^n, |b|'n)^{1/n}.$$

Letting $n \to +\infty$, we obtain

$$(0.1) |a+b| \leq \max(|a|,|b|).$$

Since |.| is non-trivial, there exists m > 1 such that |m| < 1. We choose such an m of minimal size with respect to the usual archimedean absolute value. If m factors as m = ln with l, n > 1, then |ln| = |l||n| < 1, so that either |l| or |n| is < 1, contradicting minimality. Therefore m = p is a prime.

With p as above, consider any other value of $m \in \mathbb{Z}$ satisfying |m| < 1. We wish to show that p divides m. By division with remainder, we may write m = kp + r for some integers k, r with $0 \leq r < p$. Suppose $r \neq 0$. Our earlier assumption $(|r| \leq 1)$ and the minimality of p imply that |r| = 1. By (0.1) and the inequality $|k||p| \leq |p| < 1$, we deduce

$$1 = |r| \leq \max(|k||p|, |m|) < 1.$$

Therefore r = 0, i.e., p divides m. In summary,

$$\{m \in \mathbb{Z}, \ |m| < 1\} = p\mathbb{Z},$$

or put another way,

$$|m| = 1$$
 if and only if $(m, p) = 1$.

We may factor a general $m \neq 0, \pm 1$ as

$$m = ap^{v_p(m)}, \ (a, p) = 1$$

where

$$v_p(m) = \max\{k \in \mathbb{N}, p^k | m\}$$

is the p-adic valuation of m. Then

$$|m| = |a||p|^{v_p(m)} = |m|_p^{-\frac{\log|p|}{\log p}}$$

Observe that this identity remain valid for $m = 0, \pm 1$ since $v_p(0) = \infty, v_p(\pm 1) = 0$.

It remains to verify that $|.|_p$ is indeed an absolute value. This is a consequence of the following easily verified properties of the *p*-adic valuation v_p :

•
$$v_p(x) = +\infty \Leftrightarrow x = 0,$$

• $v_p(xy) = v_p(x) + v_p(y),$

•
$$v_p(x+y) \ge \inf(v_p(x), v_p(y))$$
.

The valuation $|\cdot|_p$ is called the *normalized* p-adic valuation, or simply "the p-adic valuation." Its called equivalence class is called the *p-adic place*; any valuation in this class will be called "p-adic." Observe that the set of p-adic valuations is precisely

$$\{|\cdot|_{p}^{a}, a \in \mathbb{R}_{>0}\}.$$

As we have seen from the proof, the absolute values in the class of $|.|_p$ satisfy the

(Ultrametric inequality). For all $x, y \in \mathbb{Q}$

$$|x+y| \leq \max(|x|, |y|).$$

This is stronger than the triangle inequality. It may also be seen to follow from the third property of the *p*-adic valuation $v_p(.)$.

DEFINITION 1.4. The absolute values equivalent to $|.|_{\infty}$ are called archimedean and the corresponding place is called archimedean or infinite while those equivalent to some $|\cdot|_p$ are called non-archimedean and the corresponding place non-archimedean or finite.