CHAPTER 2

p-adic numbers

1. Different absolute values, different distances

An absolute value $|\cdot| v$ defines a distance on \mathbb{Q} by setting

$$
d_{v}(x, y)=|x-y|_{v}
$$

This gives \mathbb{Q} the structure of a topological metric space. Different absolute values yield rather different topologies:

- the trivial valuation gives the discrete topology;
- the archimedean valuation $|.|_{\infty}$ gives the usual topology;
- the p-adic absolute value yields the p-adic topology. This topology is rather different from the usual one. For instance, one has $p^{n} \rightarrow \infty$ (as $\left.n \rightarrow \infty\right)$ in the usual topology, but $p^{n} \rightarrow 0$ in the p-adic topology. More generally, an integer m has small p-adic absolute value if and only if it is divisible by a large power of p : for $k \geqslant 0$, one has

$$
|m|_{p} \leqslant p^{-k} \Longleftrightarrow p^{k} \mid m
$$

Similarly, two integers are close to each other p-adically if and only if they are congruent to each other modulo a large power of p :

$$
d_{p}(m, n)=|m-n|_{p} \leqslant p^{-k} \Longleftrightarrow p^{k} \mid m-n \Leftrightarrow m \equiv n\left(\bmod p^{k}\right)
$$

In particular, integers can be arbitrarily close to one other for the p-adic distance, while they are always separated by at least 1 for the usual distance.

Exercise 2.1. Prove that equivalent valuations yield the same topology on \mathbb{Q} and that inequivalent valuation yield distinct topologies.

As we know already the field of real numbers \mathbb{R} is obtained by completion of the metric space $\left(\mathbb{Q}, d_{\infty}\right)$. In this chapter, we discuss what happens when we replace the usual distance by a p-adic distance.

2. Normed rings and their ompletion

Let us first recall the following
Definition 2.1. Let $\left(X, d_{X}\right)$ be metric space. A completion of $\left(X, d_{X}\right)$, is a metric space $\left(\bar{X}, d_{\bar{X}}\right)$ with is complete (i.e., every Cauchy sequence in \bar{X} is convergent in \bar{X}) together with an isometry $\left(X, d_{X}\right) \hookrightarrow\left(\bar{X}, d_{\bar{X}}\right)$ with dense image.

A completion always exists, and is unique up to isometry. It can be constructed as the space of equivalence classes of Cauchy sequences $\left(x_{n}\right)_{n \geqslant 1}, x_{n} \in X$, two Cauchy sequences $\left(x_{n}\right)_{n}, \quad\left(y_{n}\right)_{n}$ being equivalent if and only if $d_{X}\left(x_{n}, y_{n}\right) \rightarrow 0$. The inclusion $X \hookrightarrow \bar{X}$ is then given by the map
$x \in X \mapsto$ equivalence class of the constant sequence $(x)_{n}$.

The completion has the following property
Proposition 2.1. Any (uniformly) continuous map $X \rightarrow Y$ to a complete metric space $\left(Y, d_{Y}\right)$ extends uniquely to a (uniformly) continuous map $\bar{X} \rightarrow Y$.
2.1. Normed rings. A normed ring $(R,||$.$) is a unital ring equipped with a norm,$ that is a map
such that

- $|x|=0 \Leftrightarrow x=0$,
- $|x+y| \leqslant|x|+|y|$,
- $|x y| \leqslant|x||y|$.

The norm defines a distance on R given by

$$
d_{R}(x, y)=|x-y| .
$$

Let $\left(R^{\times}, \times\right)$denote the group of units (i.e., invertible elements) of R. Recall that R is a field if $R^{\times}=R-\{0\}$.

Proposition 2.2. The addition, multiplication, and inversion maps

$$
\begin{gathered}
+, \times: R \times R \rightarrow R, \\
(\cdot)^{-1}: R^{\times} \rightarrow R^{\times}
\end{gathered}
$$

are continuous with respect to to the corresponding topology.
Exercise 2.1. Prove the above proposition.
We may give the completion \bar{R} of a normed ring $(R,|\cdot|)$ the structure of a ring by defining the addition and multiplication laws on \bar{R} to be those induced by elementwise addition and multiplication on the space of Cauchy sequences, i.e.,

$$
\left(a_{n}\right)_{n}+\left(b_{n}\right)_{n}=\left(a_{n}+b_{n}\right)_{n},\left(a_{n}\right)_{n} \times\left(b_{n}\right)_{n}=\left(a_{n} \times b_{n}\right)_{n} .
$$

Proposition 2.3. The completion of a normed ring $(R,|\cdot|)$ is a normed ring for the norm

$$
|x|=d_{\bar{R}}(0, x) .
$$

If R is a field, then \bar{R} is also a field.
Proof. This is a consequence of Proposition 2.1 applied to the addition, multiplication and inversion maps using Proposition 2.2.

One reason to work with rings is that one can also consider series. Let us say that a series $\sum_{n} a_{n}$ with terms $a_{n} \in R$ (taken over $n \in \mathbb{N}$, say) is absolutely convergent if $\sum_{n}\left|a_{n}\right|<\infty$. Recall also that $\sum a_{n}$ is convergent (in R) if its partial sums converge to some element of R.

Proposition 2.4. In a complete normed ring ($R,|$.$|), an absolutely convergent series$ is convergent.
2.2. p-adic numbers. We apply the above results to the normed ring $(\mathbb{Q},|\cdot| v)$ and its subring $(\mathbb{Z},|\cdot| v)$ for $v=0, \infty$ or p a prime number.

We denote the corresponding normed field and ring by $\left(\mathbb{Q}_{v},|\cdot|_{v}\right)$ and $\left(\mathbb{Z}_{v},|\cdot| v\right)$. Note that \mathbb{Z}_{v} is naturally a subring of \mathbb{Q}_{v} : in fact, it is the closure of \mathbb{Z} in \mathbb{Q}_{v}.

We have

$$
\mathbb{Z}_{0}=\mathbb{Z}, \mathbb{Q}_{0}=\mathbb{Q}, \mathbb{Z}_{\infty}=\mathbb{Z}, \mathbb{Q}_{\infty}=\mathbb{R}
$$

For the p-adic valuation $|\cdot|_{p}$ one obtains a new type of ring and field:
Definition 2.2. The completion \mathbb{Q}_{p} of \mathbb{Q} relative to $|.|_{p}$ is called the field of p-adic numbers. The subring $\mathbb{Z}_{p} \subset \mathbb{Q}_{p}$ is the ring of p-adic integers.

3. Arithmetic and analysis on p-adic numbers

In this section we discuss in greater detail the topology and the arithmetic of \mathbb{Q}_{p} and \mathbb{Z}_{p}. We make the following

Definition 2.3. For $r>0$ and $x \in \mathbb{Q}_{p}$, the open ball of radius r centered at x is the set

$$
B_{o}(x, r)=\left\{y \in \mathbb{Q}_{p},|y-x|_{p}<r\right\}=x+B_{o}(0, r)
$$

and the closed ball is the set

$$
B_{c}(x, r)=\left\{y \in \mathbb{Q}_{p},|y-x|_{p} \leqslant r\right\}=x+B_{c}(0, r) .
$$

Thus for $x \in \mathbb{Q}_{p}$ and $r>0$, the open and closed balls $B_{o}(x, r), B_{c}(x, r)$ form a basis of respectively open and compact neighborhoods of \mathbb{Q}_{p}. In fact, since \mathbb{Q} is dense in \mathbb{Q}_{p}, it suffices to consider only those $x \in \mathbb{Q}$.
3.1. p-adic expansion. Let us make the completion process a bit more explicit. Let $\left(x_{n}\right)$ (taken over $n \geqslant 0$, say) be a Cauchy sequence in $(\mathbb{Z},|\cdot| p)$; by definition, this sequence represents some element $x \in \mathbb{Q}_{p}$. For each $k \geqslant 1$, there exists $N_{k} \geqslant 0$ such that for $m, n \geqslant N_{k}$, one has $\left|x_{m}-x_{n}\right|_{p} \leqslant p^{-k}$, or in other words,

$$
x_{m} \equiv x_{n}\left(\bmod p^{k}\right)
$$

We expand the integers x_{m}, x_{n} in base p, as follows:

$$
x_{m}=\sum_{j \geqslant 0} a_{m, j} p^{j}, x_{n}=\sum_{j \geqslant 0} a_{n, j} p^{j}, a_{m, j}, a_{n, j} \in[0, p-1] .
$$

The above congruence then implies that

$$
\sum_{j \leqslant k-1} a_{m, j} p^{j}=\sum_{j \leqslant k-1} a_{n, j} p^{j}
$$

or in other words, that $a_{m, j}=a_{n, j}$ for all $m, n \geqslant N_{k}$ and $j \leqslant k-1$. In particular, for each $j \geqslant 0$, the sequence $\left(a_{n, j}\right)_{n}$ (which takes values in the finite set $\{0, \cdots, p-1\}$) is eventually stationary. We let a_{j} denote its limit. Consider the series

$$
\sum_{j \geqslant 0} a_{j} p^{j}
$$

This series is absolutely convergent, since

$$
\sum_{j \geqslant 0}\left|a_{j} p^{j}\right|_{p} \leqslant \sum_{j \geqslant 0} p^{-j}<\infty
$$

We claim that

$$
\sum_{j \geqslant 0} a_{j} p^{j}=x .
$$

Indeed, from the above discussion we have that for every $k \geqslant 1$ and $j \leqslant k-1$, there exists N_{k} such that for $n \geqslant N_{k}, a_{n, j}=a_{j}$, hence for such n,

$$
\left|x_{n}-\sum_{j \leqslant k-1} a_{j} p^{j}\right|_{p}=\left|\sum_{j \geqslant k} a_{n, j} p^{j}\right|_{p} \leqslant p^{-k}
$$

In particular

$$
x_{k+N_{k}}-\sum_{j \leqslant k-1} a_{j} p^{j} \rightarrow 0, k \rightarrow \infty
$$

Since $x_{N_{k}+k} \rightarrow x$, the claim follows. We have proven the main part of the following result:
Proposition 2.5. Any p-adic integer x can be written in a unique way as a convergent series

$$
x=\sum_{j \geqslant v_{p}(x)} a_{j}(x) p^{j}, a_{j}(x) \in\{0, \cdots, p-1\}, a_{v_{p}(x)}(x) \neq 0
$$

Here $v_{p}(x)$ is the p-adic valuation of x and is defined by the formula

$$
|x|_{p}=p^{-v_{p}(x)}
$$

This series is called the p-adic expansion of x and the $a_{j}(x)$ are the coefficients of this expansion.

Proof. Given $x \neq 0$, we have proven that there exists a sequence $\left(a_{k}(x)\right)_{k} \geqslant 0 \in$ $\{0, \cdots, p-1\}^{\mathbb{N}}$ such that

$$
x=\lim _{k \rightarrow \infty} x_{k}, x_{k}=\sum_{j \leqslant k} a_{j}(x) p^{j}
$$

Let $k_{0}=\inf \left\{k \geqslant 0, a_{k}(x) \neq 0\right\}$; for $k \geqslant k_{0}$ we have

$$
v_{p}\left(x_{k}\right)=k_{0},\left|x_{k}\right|_{p}=p^{-k_{0}}=|x|_{p}
$$

which prove that the expansion of x starts precisely at the index $v_{p}(x)$ defined above.
Let us show that this expansion is unique. Suppose that x has two distinct expansions

$$
x=\sum_{j \geqslant 0} a_{j} p^{j}=\sum_{j \geqslant 0} a_{j}^{\prime} p^{j}
$$

and let $j_{0}=\inf \left\{j, a_{j} \neq a_{j}^{\prime}\right\} \geqslant 0$. We consider the partial sums of these series

$$
x_{k}=\sum_{j \leqslant k} a_{j} p^{j}, x_{k}^{\prime}=\sum_{j \leqslant k} a_{j}^{\prime} p^{j}
$$

for $k \geqslant j_{0}$ we have $\left|x_{k}-x_{k}^{\prime}\right|_{p}=p^{-j_{0}}$ contradicting that $\lim _{k \rightarrow \infty}\left|x_{k}-x_{k}^{\prime}\right|_{p}=0$.
We can extend this result to a full p-adic expansion of p-adic numbers:
Proposition 2.6. Any p-adic number x can be represented in a unique way by a convergent series

$$
x=\sum_{k \in \mathbb{Z}} a_{k}(x) p^{k}, a_{k}(x) \in\{0 \cdots, p-1\}
$$

in this summation, it is understood that the coefficient $a_{k}(x)$ are zero for all $k \leqslant K_{x}$ for some value K_{x} depending on x. More precisely one has

$$
|x|_{p}=p^{-v_{p}(x)}, v_{p}(x)=\inf \left\{j \geqslant 0, a_{j}(x) \neq 0\right\} \in \mathbb{Z} .
$$

The proof follows immediately from the following important
Theorem 2.1. One has the equality

$$
\mathbb{Z}_{p}=B_{c}(0,1)
$$

where $B_{c}(0,1)=\left\{x \in \mathbb{Q}_{p},|x|_{p} \leqslant 1\right\}$ denote the closed unit ball of \mathbb{Q}_{p}.
Proof. (of Prop. 2.6) Since multiplication by a power of p result in a shift in a p-adic expansion:

$$
p^{m} \sum_{k \in \mathbb{Z}} a_{k}(x) p^{k}=\sum_{k \in \mathbb{Z}} a_{k-m}(x) p^{k},
$$

we may assume that $|x|_{p}=1$ and therefore that x belongs to \mathbb{Z}_{p} hence admits a unique p-adic expansion.

Corollary 2.1. For $x \in \mathbb{Q}_{p}$ we have

$$
|x|_{p}=p^{-v_{p}(x)}, v_{p}(x)=\sup \left\{k \in \mathbb{Z}, p^{-k} x \in \mathbb{Z}_{p}\right\} .
$$

Exercise 2.1.
3.2. The structure of the ring of p-adic integers. In this section, we prove Theorem 2.1: obviously one has $\mathbb{Z}_{p} \subset B_{c}(0,1)$ (since $\left.\mathbb{Z} \subset B_{c}(0,1)\right)$. To prove the converse we note that

$$
\mathbb{Q} \cap B_{c}(0,1)=\mathbb{Z}_{(p)}=\left\{\frac{a}{b}, a, b \in \mathbb{Z},(b, p)=1\right\}
$$

Since $\mathbb{Z}_{(p)}$ is dense in $B_{c}(0,1)$ it will suffice to show that any element of this set can be approximated by an element of \mathbb{Z} to arbitrary precision. Since is coprime with p it is coprime with p^{n} for any $n \geq 1$ and there exist (Bezout) $u, v \in \mathbb{Z}$ such that

$$
u b+v p^{n}=1
$$

and hence

$$
\frac{1}{b}=u+\frac{v}{b} p^{n}
$$

and

$$
\frac{a}{b}=a u+\frac{v}{b} p^{n} .
$$

therefore

$$
\left|\frac{a}{b}-a u\right|_{p}=\left|\frac{v}{b} p^{n}\right| \leqslant p^{-n}
$$

Remark 3.1. The set $\mathbb{Z}_{(p)}=\mathbb{Q} \cap B_{c}(0,1)$ of rational numbers whose denominator is prime to p is a ring (this is the intersection of two rings): this is the localization of \mathbb{Z} at the prime ideal $p \mathbb{Z}$. As such this is a local ring (it has only one maximal ideal $p \mathbb{Z}_{(p)}$).

Theorem 2.1 is an illustration of how different the p-adic topology is from the usual one: this theorem shows the equality of two objects of fairly different nature: the ring \mathbb{Z}_{p} which is an algebraic object and the unit ball $B_{c}(0,1)$ which is of a more geometric nature (but still is invariant under addition!)

This theorem is consequence of two rather distinguished features of $|\cdot|_{p}$ by comparison with the usual absolute value which we now spell out:

- $|\cdot|_{p}$ satisfies the ultrametric inequality

$$
\begin{equation*}
\forall x, y \in \mathbb{Q}_{p},|x+y|_{p} \leqslant \max \left(|x|_{p},|y|_{p}\right) . \tag{3.1}
\end{equation*}
$$

Note that if $|x|_{p} \neq|y|_{p}$ this inequality is an equality.

- The restriction to \mathbb{Q}_{p}^{\times}of $|\cdot|_{p}$ takes discrete values:

$$
\begin{equation*}
\left|\mathbb{Q}_{p}^{\times}\right|_{p}=p^{\mathbb{Z}} . \tag{3.2}
\end{equation*}
$$

Using these we complete our study of the structure of \mathbb{Z}_{p} :
Theorem 2.2. The ring \mathbb{Z}_{p} enjoy the following properties:
(1) \mathbb{Z}_{p} is a compact subring of \mathbb{Q}_{p} and is maximal for this property (any compact subring of \mathbb{Q}_{p} is contained in \mathbb{Z}_{p}).
(2) \mathbb{Z}_{p} is open.
(3) The group of units \mathbb{Z}_{p}^{\times}is precisely the unit circle $C(0,1)=\left\{x \in \mathbb{Z}_{p},|x|_{p}=1\right\}$.
(4) The ideals of \mathbb{Z}_{p} are exactly the closed balls

$$
B_{c}(0, r)=\left\{x \in \mathbb{Q}_{p},|x|_{p} \leqslant r\right\}
$$

for some $r \leqslant 1$. More generally, the \mathbb{Z}_{p}-module $M \subset \mathbb{Q}_{p}$ distinct from \mathbb{Q}_{p} are exactly the closed balls $B_{c}(0, r)$ for some $r \geqslant 0$.
(5) \mathbb{Z}_{p} is a principal ideal domain with a unique maximal ideal,

$$
p \mathbb{Z}_{p}=B_{c}(0,1 / p)
$$

and any \mathbb{Z}_{p}-module contained in -but distinct from- \mathbb{Q}_{p} is generated by p^{k} for some $k \in \mathbb{Z}$.
(6) For any $k \geqslant 0$, the inclusion $\mathbb{Z} \hookrightarrow \mathbb{Z}_{p}$ induce the isomorphism

$$
\mathbb{Z}_{p} / p^{k} \mathbb{Z}_{p} \simeq \mathbb{Z} / p^{k} \mathbb{Z}
$$

In particular $\mathbb{Z}_{p} / p \mathbb{Z}_{p}$ is the finite field $\mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}$.
Proof. - Since $\mathbb{Z}_{p}=B_{c}(0,1), \mathbb{Z}_{p}$ is closed, bounded, hence compact. Let $R \subset \mathbb{Q}_{p}$ be a compact subring, then it is bounded. Suppose that there exist $x \in R$ with $|x|_{p}>1$ then $\left|x^{n}\right|_{p}=|x|_{p}^{n} \rightarrow \infty$ contradicting the boundedness of R, therefore $R \subset B_{c}(0,1)=\mathbb{Z}_{p}$.

- $\mathbb{Z}_{p}=B_{c}(0,1)=B_{o}(0, p)$ is open.
- Since $\left|x^{-1}\right|_{p}=|x|_{p}^{-1}, C(0,1) \subset \mathbb{Z}_{p}$ is stable under multiplicative inversion and therefore contained in \mathbb{Z}_{p}^{\times}. Conversely given $x, y \in \mathbb{Z}_{p}$ such that $x y=1$, we have $|x|_{p}|y|_{p}=1$ and $|x|_{p},|y|_{p} \leqslant 1$ which imply that $|x|_{p}=\left|y_{p}\right|=1$; this implies that $\mathbb{Z}_{p}^{\times}=C(0,1)$.
- Let $M \subset \mathbb{Q}_{p}$ be a \mathbb{Z}_{p}-module distinct from $\{0\}$ and \mathbb{Q}_{p} and let $x \in \mathbb{Q}_{p}-M$. Given $y \in M-\{0\}$ we have $\mathbb{Z}_{p} . y \subset M$ and $\mathbb{Z}_{p} . y=B_{c}\left(0,|y|_{p}\right)$. This imply that $|x|_{p}>|y|_{p}$ and therefore $M \subset B_{c}\left(0,\left|x_{p}\right| / p\right)$. If $M \neq\{0\}$ (otherwise we are done), $|x|_{p}$ is bounded from below by a positive number and since $|x|_{p} \in p^{\mathbb{Z}}$ we may assume that $x \in \mathbb{Q}_{p}-M$ is of minimal absolute value with this property and if follows that

$$
M=\mathbb{Z}_{p} y=B_{c}\left(0,|y|_{p}\right)
$$

for any y of valuation $|x|_{p} / p$.

- The isomorphism $\mathbb{Z}_{p} / p^{k} \mathbb{Z}_{p}=\mathbb{Z} / p^{k} \mathbb{Z}$ follows from the density of \mathbb{Z} in \mathbb{Z}_{p}.

Exercise 2.2. Show that if $A=\left\{a_{0}, \cdots, a_{p-1}\right\} \subset \mathbb{Z}_{p}$ is a set of representatives of $\mathbb{Z}_{p} / p \mathbb{Z}_{p}$, any $x \in \mathbb{Q}_{p}$ can be represented in a unique way as a series of the shape

$$
\sum_{k \geqslant v_{p}(x)} a_{k}(x ; A) p^{k}, a_{k}(x ; A) \in A, a_{v_{p}(x)}(x ; A) \not \equiv 0\left(p \mathbb{Z}_{p}\right)
$$

Exercise 2.2. Compute the 7 -adic expansion of $-6,-1,1 / 3$ for the usual set of representatives; same question for $-2 / 3$.
3.3. \mathbb{Z}_{p} as an inverse limit. The ring \mathbb{Z}_{p} can be given a purely algebraic construction as an inverse limit: Let (N, \leqslant) be a partially ordered set and let $\left(R_{n}\right)_{n \in N}$ be a colection of rings indexed by N; for each pair $(m, n) \in N^{2}$ with $m \leqslant n$ we are given a map

$$
r_{n, m}: R_{n} \rightarrow R_{m}
$$

such that

$$
r_{m, m}=\operatorname{Id}_{R_{m}}, \text { for each } k \leqslant m \leqslant n \in N, f_{n, k}=f_{n, m} \circ f_{m, k}
$$

then the inverse limit of the $\left(R_{n}\right)_{n \in N}$ with respect to the system of maps $\left(r_{n, m}\right)_{\substack{(m, n) \in N^{2} \\ m \leqslant n}}$ is the following subring of the direct product ring $\prod_{n \in N} R_{n}$

$$
{\underset{n}{6 \in N}}^{\lim _{n}} R_{n}=\left\{\left(x_{n}\right)_{n \in N} \in \prod_{n \in N} R_{n}, \forall m \leqslant n, x_{m}=r_{n, m} x_{n}\right\} \subset \prod_{n \in N} R_{n} .
$$

If $N=\mathbb{N}$ (equipped with the natural ordering) we have setting $r_{n}=r_{n+1, n}$

EXERCISE 2.3. Prove that $\mathbb{Z}_{p} \simeq \lim _{幺} \geqslant 1 \mathbb{Z} / p^{n} \mathbb{Z}$ where $r_{n, m}: \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbb{Z} / p^{m} \mathbb{Z}$ is the reduction modulo p^{m} map.
3.3.1. The profinite completion. The above construction of \mathbb{Z}_{p} as an additive group is also a special case of another example of inverse limit: the profinite completion of a group: given G a group, let $N=\{H \subset G, H$ normal, $|G / H|<\infty\}$ be the partially ordered set of the normal subgroups of G of finite index inversely ordered by inclusion (for $H, H^{\prime} \subset G$ two normal subgroups of finite index, we declare that $H \leqslant H^{\prime}$ iff $H \supset H^{\prime}$). For $H \leqslant H^{\prime}$ ($H^{\prime} \subset H$) we let

$$
r_{H^{\prime}, H}: G / H^{\prime} \mapsto G / H
$$

be the canonical map. The inverse limit
is the profinite completion of G.

3.4. Further surprises with the p-adic topology.

Proposition 2.7. Open balls are closed and closed ball are open (for the p-adic topology). In particular \mathbb{Q}_{p} is totally disconnected (the only connected subsets are points). Every point of an open ball is a center of that ball:

$$
\forall y \in B_{o}(x, r), B_{o}(x, r)=B_{o}(y, r),
$$

Any ball is of the shape

$$
x+p^{k} B_{c}(0,1), k \in \mathbb{Z}
$$

Exercise 2.4. Prove the proposition.
Concerning suite and series p-analysis look like a "student dream":
Proposition 2.8. A sequence in $\mathbb{Q}_{p},\left(a_{n}\right)_{n}$ is Cauchy if and only if $a_{n+1}-a_{n} \rightarrow 0$. A series in $\mathbb{Q}_{p}, \sum_{n=1}^{\infty} a_{n}$ is convergent if and only if $\lim _{n} a_{n}=0$.

For instance

$$
\sum_{n=0}^{\infty} p^{n}=\frac{1}{1-p}
$$

while the series

$$
\sum_{n \geqslant 1} \frac{1}{n^{2}}
$$

is diverging.
Exercise 2.3. Show that the series

$$
\exp _{p}\left(x^{p-1}\right)=\sum_{n \geqslant 0} \frac{\left(x^{p-1}\right)^{n}}{n!} \log _{p}(x)=\sum_{n \geqslant 1} \frac{(-1)^{n-1} x^{n}}{n}
$$

converge for $|x|_{p}<p^{-1}$ and $|x|_{p}<1$ respectively.
3.5. Continuous functions. The space of continuous function on \mathbb{Q}_{p} or on an open subset of \mathbb{Q}_{p} is fairly rich: it contains obviously the polynomial as well as power series

$$
\sum_{n \geqslant 0} a_{n} x^{n}
$$

if $\left|a_{n} x^{n}\right|_{p} \rightarrow 0$ for some $x \neq 0$.
Another class of continuous functions are the locally constant functions:
Definition 2.4. Let $\Omega \subset \mathbb{Q}_{p}$ an open subset. A function $f: \Omega \rightarrow \mathbb{C}$ is locally constant if for any $x \in \Omega$ there exist an open neighborhood $\Omega_{x} \subset \Omega$ on which f is constant.

A locally constant function is clearly continuous however unlike over the reals, there are plenty of locally constant functions which are not constant. For instance the characteristic function of \mathbb{Z}_{p} in \mathbb{Q}_{p} is continuous !

4. Newton's method and Hensel's lemma

In archimedean analysis, Newton's method is a way to find approximation to a solution of the equation $P(x)=0$ for some function P starting from a point x_{0} close enough to that solution. The principle is to consider the intersection of tangent to the graph of f through the point ($x_{0}, P\left(x_{0}\right)$) with the horizontal axis which gives the point $\left(x_{1}, 0\right)$ and to iterate the process with $x_{1} \ldots$ In this section we provide an analog to Newton's method in the p-adic setting for $P \in \mathbb{Z}_{p}[X]$ is a polynomial and when we search for a root in \mathbb{Z}_{p}.

Theorem 2.3. Let $P \in \mathbb{Z}_{p}[X]$ and $x_{0} \in \mathbb{Z}_{p}$ such that

$$
\left|P\left(x_{0}\right)\right|_{p}<1,\left|P^{\prime}\left(x_{0}\right)\right|_{p}=1
$$

then the sequence defined recursively by

$$
x_{n+1}=x_{n}-\frac{P\left(x_{n}\right)}{P^{\prime}\left(x_{n}\right)}
$$

is well defined for every $n \geqslant 0$, belong to \mathbb{Z}_{p} and converge to a root x_{∞} of P in \mathbb{Z}_{p} which satisfy $\left|x_{\infty}-x_{0}\right|_{p}<1$.

Let us give an arithmetic interpretation of this result: consider the reduction modulo p map which takes value in the finite field \mathbb{F}_{p} :

$$
\cdot(\bmod p): \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p} / p \mathbb{Z}_{p}=\mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}
$$

Any polynomial $P \in \mathbb{Z}_{p}[X]$ define a polynomial $P(\bmod p) \in \mathbb{F}_{p}[X]$ by reduction of the coefficient modulo p. The condition

$$
\left|P\left(x_{0}\right)\right|_{p}<1,\left|P^{\prime}\left(x_{0}\right)\right|_{p}=1
$$

is equivalent to

$$
x_{0}(\bmod p) \text { is a simple root of } P(\bmod p) \text {. }
$$

The above theorem says that a simple root $\bar{x} \in \mathbb{F}_{p}$ of a polynomial with integral coefficients $P(X) \in \mathbb{Z}_{p}[X]\left(\bar{P}(\bar{x})=0_{\mathbb{F}_{p}}\right)$ can be "lifted" to a root $x \in \mathbb{Z}_{p}(\operatorname{such}$ that $x(\bmod p)=\bar{x})$.

Proof. To give a fell of what is going on we start by checking that the sequence is well defined: let $h_{n}=-P\left(x_{n}\right) / P^{\prime}\left(x_{n}\right)$ whenever it is defined so that

$$
x_{n+1}=x_{n}+h_{n} .
$$

By assumption we have $\left|h_{0}\right|_{p}<1 \Leftrightarrow h_{0} \equiv 0(\bmod p)$ and therefore (since $\left.P, P^{\prime} \in \mathbb{Z}_{p}[X]\right)$

$$
P\left(x_{1}\right) \equiv P\left(x_{0}\right)(\bmod p), P^{\prime}\left(x_{1}\right) \equiv P^{\prime}\left(x_{0}\right)(\bmod p)
$$

showing that $\left|P\left(x_{1}\right)\right|_{p}<1,\left|P^{\prime}\left(x_{1}\right)\right|_{p}=1$. Clearly this generalize to any n showing that that $\left(x_{n}\right)_{n}$ is well defined. Let us assume that $\left|h_{n}\right|_{p} \leqslant p^{-k_{n}}$, we will evaluate $P\left(x_{n+1}\right)=$ $P\left(x_{n}+h_{n}\right)$ using the Taylor expansion of P. For this we use the general lemma:

Lemma 2.1. Let R be a ring and $P \in R[X]$, one has the following identity

$$
P(X+Y)=\sum_{k=0}^{\operatorname{deg} P} P^{[k]}(X) Y^{k}
$$

where

$$
P^{[k]}(X) \in R[X], P^{[0]}(X)=P(X), P^{[1]}(X)=P^{\prime}(X) .
$$

Remark 4.1. If R is contained in a field of characteristic 0 ,

$$
P^{[k]}(X)=P^{(k)}(X) / k!.
$$

By this lemma we have

$$
P\left(x_{n+1}\right)=P\left(x_{n}\right)-\frac{P\left(X_{n}\right)}{P^{\prime}\left(x_{n}\right)} P^{\prime}\left(x_{n}\right)+\sum_{k \geqslant 2} P^{[k]}\left(x_{n}\right) h_{n}^{k}=\sum_{k \geqslant 2} P^{[k]}\left(x_{n}\right) h_{n}^{k} \equiv 0(\bmod p)^{2 k_{n}} ;
$$

therefore we have proven that

$$
\left|P\left(x_{n+1}\right)\right|_{p}=\left|h_{n+1}\right|_{p}=\left|x_{n+1}-x_{n}\right|_{p} \leqslant\left|h_{n}\right|_{p}^{2} .
$$

It follows that for all $n \geqslant 0$

$$
\left|h_{n}\right|_{p}=\left|P\left(x_{n}\right)\right|_{p}=\left|x_{n+1}-x_{n}\right|_{p} \leqslant p^{-2^{n}} \rightarrow 0 .
$$

Therefore $\left(x_{n}\right)_{n}$ is a Cauchy sequence converging to x_{∞} satisfying

$$
\left|x_{\infty}-x_{n}\right|_{p} \leqslant p^{-2^{n}}, P\left(x_{\infty}\right)=0 .
$$

ExERCISE 2.4. Prove that $\sqrt{2}$ exists in \mathbb{Q}_{7} and compute its 7 -adic expansion up to 10 digits.
4.1. The Teichmueller character. We apply this to the polynomial

$$
P(X)=X^{p-1}-1
$$

Corollary 2.2. There exists an injective group homomorphism (called the Teichmueller character):

$$
\omega_{p}: \mathbb{F}_{p}^{\times} \hookrightarrow \mathbb{Z}_{p}^{\times}
$$

whose image is the group of $p-1$-roots of 1

$$
\omega_{p}\left(\mathbb{F}_{p}^{\times}\right)=\mu_{p-1}\left(\mathbb{Q}_{p}\right)=\left\{x \in \mathbb{Q}_{p}, x^{p-1}=1\right\} \subset \mathbb{Z}_{p}^{\times}
$$

which is an inverse for the reduction modulo p map on $\mu_{p-1}\left(\mathbb{Q}_{p}\right)$

$$
\forall u \in \mathbb{F}_{p}^{\times}, \omega_{p}(u)(\bmod p)=u
$$

In particular $\{0\} \cup \omega_{p}\left(\mathbb{F}_{p}^{\times}\right)$is a sytem of representatives of $\mathbb{Z}_{p} / p \mathbb{Z}_{p}$.
EXERCISE 2.5. Prove that for any $a \in \mathbb{Z}_{p}^{\times}$with $|a|_{p}=1$, the sequence $\left(a^{p^{n}}\right)_{n \geqslant 1}$ converge to $\omega_{p}(a(\bmod p))$.
4.2. Points on hypersurfaces. Hensel's lemma can be generalized in several dimensions and makes it possible to prove the existence of point on algebraic varieties over \mathbb{Q}_{p}. We discuss here the case of hypersurfaces: given $P\left(X_{1}, \cdots X_{n}\right) \subset \mathbb{Q}_{p}\left[X_{1}, \cdots, X_{n}\right]$, the set of \mathbb{Q}_{p}-point of the hypersurface defined by P is the set

$$
V_{P}\left(\mathbb{Q}_{p}\right)=\left\{\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{Q}_{p}^{n}, P(\mathbf{x})=0\right\} \subset \mathbb{Q}_{p}^{n}
$$

We denote by

$$
V_{P}\left(\mathbb{Z}_{p}\right)=V_{P}\left(\mathbb{Q}_{p}\right) \cap \mathbb{Z}_{p}^{n}
$$

the set of \mathbb{Z}_{p}-point. We are looking for sufficient condition to guaranty that

$$
V_{P}\left(\mathbb{Q}_{p}\right) \neq \emptyset
$$

Obviously it is sufficient to show that $V_{P}\left(\mathbb{Z}_{p}\right) \neq \emptyset$; up to multipliying P by a scalar we may assume that $P \in \mathbb{Z}_{p}\left[X_{1}, \cdots, X_{n}\right]$. If $\mathbf{x} \in V_{P}\left(\mathbb{Z}_{p}\right)$ we have $P(\mathbf{x})=0$ and in particular, considering reduction modulo $p, \bar{x}=\mathbf{x}(\bmod p) \in\left(\mathbb{Z}_{p} / p \mathbb{Z}_{p}\right)^{n}=\mathbb{F}_{p}^{n}$ and $\bar{P}=P(\bmod p)$ we have

$$
\bar{P}(\overline{\mathbf{x}})=0_{\mathbb{F}_{p}}
$$

In other terms we have

$$
V_{P}\left(\mathbb{Z}_{p}\right) \neq \emptyset \Rightarrow V_{\bar{P}}\left(\mathbb{F}_{p}\right) \neq \emptyset
$$

where

$$
V_{\bar{P}}\left(\mathbb{F}_{p}\right)=\left\{\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{F}_{p}^{n}, \bar{P}(\mathbf{x})=0\right\}
$$

is the set of \mathbb{F}_{p}-points of the hypersurface defined by the equation:

$$
\bar{P}(\mathbf{x})=0
$$

We would like to go in the reverse direction and find sufficient conditions to insure that

$$
V_{\bar{P}}\left(\mathbb{F}_{p}\right) \neq \emptyset \Rightarrow V_{P}\left(\mathbb{Z}_{p}\right) \neq \emptyset
$$

For this we use an extension and Hensel's lemma and we make the following definitions:

Definition 2.5. A point $\mathbf{x} \in V_{\bar{P}}\left(\mathbb{F}_{p}\right)$ is critical if is satisfies

$$
\nabla \bar{P}(\mathbf{x})=\left(\frac{\partial P}{\partial x_{1}}(\mathbf{x}), \cdots, \frac{\partial P}{\partial x_{n}}(\mathbf{x})\right)=0 .
$$

The hypersurface $V_{\bar{P}}$ is non-singular over \mathbb{F}_{p} if $V_{\bar{P}}\left(\mathbb{F}_{p}\right)$ does not have any critical points.
Theorem 2.4 (Higher dimensional Hensel's Lemma). Let $P \in \mathbb{Z}_{p}[\mathbf{X}]$. We have the lower bound

$$
\left|V_{P}\left(\mathbb{Z}_{p}\right)\right| \geqslant\left|V_{P}^{n c}\left(\mathbb{F}_{p}\right)\right|
$$

where $V_{\bar{P}}^{n c}\left(\mathbb{F}_{p}\right)$ denote the set of non-critical points of $V_{\bar{P}}\left(\mathbb{F}_{p}\right)$.
Exercise 2.5. Prove the Theorem.
4.3. The Chevalley-Warning theorem. We now look for conditions to insure that $V_{\bar{P}}\left(\mathbb{F}_{p}\right) \neq \emptyset$ and a simple criterion comes from the

Theorem 2.5 (Chevalley-Warning). Let $P(\mathbf{x}) \in \mathbb{F}_{p}\left[x_{1}, \cdots, x_{n}\right]$ be a polynomial in n variables of degree $d<n$, then

$$
\left|V_{P}\left(\mathbb{F}_{p}\right)\right| \equiv 0(\bmod p) .
$$

in particular if $\left|V_{P}\left(\mathbb{F}_{p}\right)\right|>0$ then $\left|V_{P}\left(\mathbb{F}_{p}\right)\right| \geqslant p$.
Exercise 2.6. Prove the theorem. For this one introduce the polynomial

$$
Q(\mathbf{x})=1-P(\mathbf{x})^{p-1} \in \mathbb{F}_{p}\left[X_{1}, \cdots, X_{n}\right] ;
$$

it has degree $d(p-1)<n(p-1)$.
(1) Prove that

$$
Q(\mathbf{x})= \begin{cases}1_{\mathbb{F}_{p}} & \text { if } \mathbf{x} \in V_{P}\left(\mathbb{F}_{p}\right) \\ 0_{\mathbb{F}_{p}} & \text { if } \mathbf{x} \notin V_{P}\left(\mathbb{F}_{p}\right)\end{cases}
$$

(2) Deduce that

$$
\left|V_{P}\left(\mathbb{F}_{p}\right)\right| \equiv \sum_{\mathbf{x} \in \mathbb{F}_{p}^{n}} Q(\mathbf{x})(\bmod p) .
$$

(3) Prove the following

Lemma 2.2. Given $k \geqslant 0$ be an integer we have

$$
\sum_{x \in \mathbb{F}_{p}} x^{k}= \begin{cases}-1 & \text { if } p-1 \mid k \\ 0 & \text { if } p-1 \nmid k .\end{cases}
$$

(4) Prove that

$$
\sum_{\mathbf{x} \in \mathbb{F}_{p}^{n}} Q(\mathbf{x})=0
$$

and conclude. For the later, one can proceed by decomposing $Q\left(X_{1}, \cdots, X_{n}\right)$ into monomials and use the previous Lemma.

Corollary 2.3. Let $P \in \mathbb{F}_{p}\left[X_{1}, \cdots, X_{n}\right]$ be an homogeneous polynomial of degree $0<d<n$, then

$$
\left|V_{P}\left(\mathbb{F}_{p}\right)\right| \geqslant p
$$

Corollary 2.4. Let $P \in \mathbb{Z}_{p}\left[X_{1}, \cdots, X_{n}\right]$ be an homogeneous polynomial of degree $0<d<n$, such that $\bar{P} \in \mathbb{F}_{p}\left[X_{1}, \cdots, X_{n}\right]$ has no critical points except for $(0, \cdots, 0)$, then there exists $\mathbf{x} \in \mathbb{Z}_{p}^{n}-\{(0, \cdots, 0)\}$ such that $P(\mathbf{x})=0$.

Exercise 2.7. Prove these two corollaries

