
CHAPTER 2

p-adic numbers

1. Di↵erent absolute values, di↵erent distances

An absolute value |.|v defines a distance on Q by setting

dv(x, y) = |x� y|v.
This gives Q the structure of a topological metric space. Di↵erent absolute values yield
rather di↵erent topologies:

• the trivial valuation gives the discrete topology;
• the archimedean valuation |.|1 gives the usual topology;
• the p-adic absolute value yields the p-adic topology. This topology is rather di↵erent
from the usual one. For instance, one has pn ! 1 (as n ! 1) in the usual
topology, but pn ! 0 in the p-adic topology. More generally, an integer m has
small p-adic absolute value if and only if it is divisible by a large power of p: for
k > 0, one has

|m|p 6 p�k () pk|m.

Similarly, two integers are close to each other p-adically if and only if they are
congruent to each other modulo a large power of p:

dp(m,n) = |m� n|p 6 p�k () pk|m� n, m ⌘ n (mod pk).

In particular, integers can be arbitrarily close to one other for the p-adic distance,
while they are always separated by at least 1 for the usual distance.

Exercise 2.1. Prove that equivalent valuations yield the same topology on Q and that
inequivalent valuation yield distinct topologies.

As we know already the field of real numbers R is obtained by completion of the metric
space (Q, d1). In this chapter, we discuss what happens when we replace the usual distance
by a p-adic distance.

2. Normed rings and their ompletion

Let us first recall the following

Definition 2.1. Let (X, dX) be metric space. A completion of (X, dX), is a metric space
(X, dX) with is complete (i.e., every Cauchy sequence in X is convergent in X) together
with an isometry (X, dX) ,! (X, dX) with dense image.

A completion always exists, and is unique up to isometry. It can be constructed as the
space of equivalence classes of Cauchy sequences (xn)n>1, xn 2 X, two Cauchy sequences
(xn)n, (yn)n being equivalent if and only if dX(xn, yn)! 0. The inclusion X ,! X is then
given by the map

x 2 X 7! equivalence class of the constant sequence (x)n.

9
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The completion has the following property

Proposition 2.1. Any (uniformly) continuous map X ! Y to a complete metric space
(Y, dY ) extends uniquely to a (uniformly) continuous map X ! Y .

2.1. Normed rings. A normed ring (R, |.|) is a unital ring equipped with a norm,
that is a map

|.| : R 7! R>0

such that

• |x| = 0, x = 0,
• |x+ y| 6 |x|+ |y|,
• |xy| 6 |x||y|.

The norm defines a distance on R given by

dR(x, y) = |x� y|.

Let (R⇥,⇥) denote the group of units (i.e., invertible elements) of R. Recall that R is
a field if R⇥ = R� {0}.

Proposition 2.2. The addition, multiplication, and inversion maps

+,⇥ : R⇥R! R,

(·)�1 : R⇥ ! R⇥

are continuous with respect to to the corresponding topology.

Exercise 2.1. Prove the above proposition.

We may give the completion R of a normed ring (R, |.|) the structure of a ring by defining
the addition and multiplication laws on R to be those induced by elementwise addition and
multiplication on the space of Cauchy sequences, i.e.,

(an)n + (bn)n = (an + bn)n, (an)n ⇥ (bn)n = (an ⇥ bn)n.

Proposition 2.3. The completion of a normed ring (R, |.|) is a normed ring for the
norm

|x| = dR(0, x).

If R is a field, then R is also a field.

Proof. This is a consequence of Proposition 2.1 applied to the addition, multiplication
and inversion maps using Proposition 2.2. ⇤

One reason to work with rings is that one can also consider series. Let us say that a seriesP
n an with terms an 2 R (taken over n 2 N, say) is absolutely convergent if

P
n |an| <1.

Recall also that
P

an is convergent (in R) if its partial sums converge to some element of
R.

Proposition 2.4. In a complete normed ring (R, |.|), an absolutely convergent series
is convergent.
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2.2. p-adic numbers. We apply the above results to the normed ring (Q, |.|v) and its
subring (Z, |.|v) for v = 0,1 or p a prime number.

We denote the corresponding normed field and ring by (Qv, |.|v) and (Zv, |.|v). Note
that Zv is naturally a subring of Qv: in fact, it is the closure of Z in Qv.

We have
Z0 = Z,Q0 = Q, Z1 = Z, Q1 = R.

For the p-adic valuation | · |p one obtains a new type of ring and field:

Definition 2.2. The completion Qp of Q relative to |.|p is called the field of p-adic
numbers. The subring Zp ⇢ Qp is the ring of p-adic integers.

3. Arithmetic and analysis on p-adic numbers

In this section we discuss in greater detail the topology and the arithmetic of Qp and
Zp. We make the following

Definition 2.3. For r > 0 and x 2 Qp, the open ball of radius r centered at x is the
set

Bo(x, r) = {y 2 Qp, |y � x|p < r} = x+Bo(0, r)

and the closed ball is the set

Bc(x, r) = {y 2 Qp, |y � x|p 6 r} = x+Bc(0, r).

Thus for x 2 Qp and r > 0, the open and closed balls Bo(x, r), Bc(x, r) form a basis
of respectively open and compact neighborhoods of Qp. In fact, since Q is dense in Qp, it
su�ces to consider only those x 2 Q.

3.1. p-adic expansion. Let us make the completion process a bit more explicit. Let
(xn) (taken over n > 0, say) be a Cauchy sequence in (Z, |.|p); by definition, this sequence
represents some element x 2 Qp. For each k > 1, there exists Nk > 0 such that for
m,n > Nk, one has |xm � xn|p 6 p�k, or in other words,

xm ⌘ xn (mod pk).

We expand the integers xm, xn in base p, as follows:

xm =
X

j>0

am,jp
j , xn =

X

j>0

an,jp
j , am,j , an,j 2 [0, p� 1].

The above congruence then implies that
X

j6k�1

am,jp
j =

X

j6k�1

an,jp
j ,

or in other words, that am,j = an,j for all m,n > Nk and j 6 k � 1. In particular, for each
j > 0, the sequence (an,j)n (which takes values in the finite set {0, · · · , p� 1}) is eventually
stationary. We let aj denote its limit. Consider the series

X

j>0

ajp
j .

This series is absolutely convergent, since
X

j>0

|ajpj |p 6
X

j>0

p�j <1.
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We claim that X

j>0

ajp
j = x.

Indeed, from the above discussion we have that for every k > 1 and j 6 k � 1, there exists
Nk such that for n > Nk, an,j = aj , hence for such n,

|xn �
X

j6k�1

ajp
j |p = |

X

j>k

an,jp
j |p 6 p�k.

In particular

xk+Nk
�

X

j6k�1

ajp
j ! 0, k !1.

Since xNk+k ! x, the claim follows. We have proven the main part of the following result:

Proposition 2.5. Any p-adic integer x can be written in a unique way as a convergent
series

x =
X

j>vp(x)

aj(x)p
j , aj(x) 2 {0, · · · , p� 1}, avp(x)(x) 6= 0.

Here vp(x) is the p-adic valuation of x and is defined by the formula

|x|p = p�vp(x).

This series is called the p-adic expansion of x and the aj(x) are the coe�cients of this
expansion.

Proof. Given x 6= 0, we have proven that there exists a sequence (ak(x))k > 0 2
{0, · · · , p� 1}N such that

x = lim
k!1

xk, xk =
X

j6k

aj(x)p
j .

Let k0 = inf{k > 0, ak(x) 6= 0}; for k > k0 we have

vp(xk) = k0, |xk|p = p�k
0 = |x|p,

which prove that the expansion of x starts precisely at the index vp(x) defined above.
Let us show that this expansion is unique. Suppose that x has two distinct expansions

x =
X

j>0

ajp
j =

X

j>0

a0jp
j

and let j0 = inf{j, aj 6= a0j} > 0. We consider the partial sums of these series

xk =
X

j6k

ajp
j , x0k =

X

j6k

a0jp
j ;

for k > j0 we have |xk � x0k|p = p�j
0 contradicting that limk!1 |xk � x0k|p = 0. ⇤

We can extend this result to a full p-adic expansion of p-adic numbers:

Proposition 2.6. Any p-adic number x can be represented in a unique way by a con-
vergent series

x =
X

k2Z
ak(x)p

k, ak(x) 2 {0 · · · , p� 1};
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in this summation, it is understood that the coe�cient ak(x) are zero for all k 6 Kx for
some value Kx depending on x. More precisely one has

|x|p = p�vp(x), vp(x) = inf{j > 0, aj(x) 6= 0} 2 Z.
The proof follows immediately from the following important

Theorem 2.1. One has the equality

Zp = Bc(0, 1)

where Bc(0, 1) = {x 2 Qp, |x|p 6 1} denote the closed unit ball of Qp.

Proof. (of Prop. 2.6) Since multiplication by a power of p result in a shift in a p-adic
expansion:

pm
X

k2Z
ak(x)p

k =
X

k2Z
ak�m(x)pk,

we may assume that |x|p = 1 and therefore that x belongs to Zp hence admits a unique
p-adic expansion. ⇤

Corollary 2.1. For x 2 Qp we have

|x|p = p�vp(x), vp(x) = sup{k 2 Z, p�kx 2 Zp}.
Exercise 2.1.

3.2. The structure of the ring of p-adic integers. In this section, we prove The-
orem 2.1: obviously one has Zp ⇢ Bc(0, 1) (since Z ⇢ Bc(0, 1)). To prove the converse we
note that

Q \Bc(0, 1) = Z(p) = {a
b
, a, b 2 Z, (b, p) = 1}.

Since Z(p) is dense in Bc(0, 1) it will su�ce to show that any element of this set can be
approximated by an element of Z to arbitrary precision. Since is coprime with p it is coprime
with pn for any n � 1 and there exist (Bezout) u, v 2 Z such that

ub+ vpn = 1

and hence
1

b
= u+

v

b
pn

and
a

b
= au+

v

b
pn.

therefore
|a
b
� au|p = |v

b
pn| 6 p�n.

⇤
Remark 3.1. The set Z(p) = Q \ Bc(0, 1) of rational numbers whose denominator is

prime to p is a ring (this is the intersection of two rings): this is the localization of Z at the
prime ideal pZ. As such this is a local ring (it has only one maximal ideal pZ(p)).

Theorem 2.1 is an illustration of how di↵erent the p-adic topology is from the usual one:
this theorem shows the equality of two objects of fairly di↵erent nature: the ring Zp which
is an algebraic object and the unit ball Bc(0, 1) which is of a more geometric nature (but
still is invariant under addition !)

This theorem is consequence of two rather distinguished features of | · |p by comparison
with the usual absolute value which we now spell out:
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• | · |p satisfies the ultrametric inequality

(3.1) 8x, y 2 Qp, |x+ y|p 6 max(|x|p, |y|p).

Note that if |x|p 6= |y|p this inequality is an equality.
• The restriction to Q⇥

p of | · |p takes discrete values:

(3.2) |Q⇥
p |p = pZ.

Using these we complete our study of the structure of Zp:

Theorem 2.2. The ring Zp enjoy the following properties:

(1) Zp is a compact subring of Qp and is maximal for this property (any compact
subring of Qp is contained in Zp).

(2) Zp is open.
(3) The group of units Z⇥

p is precisely the unit circle C(0, 1) = {x 2 Zp, |x|p = 1}.
(4) The ideals of Zp are exactly the closed balls

Bc(0, r) = {x 2 Qp, |x|p 6 r}

for some r 6 1. More generally, the Zp-module M ⇢ Qp distinct from Qp are
exactly the closed balls Bc(0, r) for some r > 0.

(5) Zp is a principal ideal domain with a unique maximal ideal,

pZp = Bc(0, 1/p)

and any Zp-module contained in -but distinct from- Qp is generated by pk for some
k 2 Z.

(6) For any k > 0, the inclusion Z ,! Zp induce the isomorphism

Zp/p
kZp ' Z/pkZ.

In particular Zp/pZp is the finite field Z/pZ = Fp.

Proof. - Since Zp = Bc(0, 1), Zp is closed, bounded, hence compact. Let R ⇢ Qp be
a compact subring, then it is bounded. Suppose that there exist x 2 R with |x|p > 1 then
|xn|p = |x|np !1 contradicting the boundedness of R, therefore R ⇢ Bc(0, 1) = Zp.

- Zp = Bc(0, 1) = Bo(0, p) is open.
- Since |x�1|p = |x|�1

p , C(0, 1) ⇢ Zp is stable under multiplicative inversion and therefore
contained in Z⇥

p . Conversely given x, y 2 Zp such that xy = 1, we have |x|p|y|p = 1 and
|x|p, |y|p 6 1 which imply that |x|p = |yp| = 1; this implies that Z⇥

p = C(0, 1).
- Let M ⇢ Qp be a Zp-module distinct from {0} and Qp and let x 2 Qp �M . Given

y 2 M � {0} we have Zp.y ⇢ M and Zp.y = Bc(0, |y|p). This imply that |x|p > |y|p and
therefore M ⇢ Bc(0, |xp|/p). If M 6= {0} (otherwise we are done), |x|p is bounded from
below by a positive number and since |x|p 2 pZ we may assume that x 2 Qp �M is of
minimal absolute value with this property and if follows that

M = Zpy = Bc(0, |y|p)

for any y of valuation |x|p/p.
- The isomorphism Zp/p

kZp = Z/pkZ follows from the density of Z in Zp. ⇤
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Exercise 2.2. Show that if A = {a0, · · · , ap�1} ⇢ Zp is a set of representatives of
Zp/pZp, any x 2 Qp can be represented in a unique way as a series of the shape

X

k>vp(x)

ak(x;A)pk, ak(x;A) 2 A, avp(x)(x;A) 6⌘ 0(pZp).

Exercise 2.2. Compute the 7-adic expansion of �6, �1, 1/3 for the usual set of rep-
resentatives; same question for �2/3.

3.3. Zp as an inverse limit. The ring Zp can be given a purely algebraic construction
as an inverse limit: Let (N,6) be a partially ordered set and let (Rn)n2N be a colection of
rings indexed by N ; for each pair (m,n) 2 N2 with m 6 n we are given a map

rn,m : Rn ! Rm

such that
rm,m = IdRm , for each k 6 m 6 n 2 N, fn,k = fn,m � fm,k

then the inverse limit of the (Rn)n2N with respect to the system of maps (rn,m)(m,n)2N2

m6n

is

the following subring of the direct product ring
Q

n2N Rn

lim �
n2N

Rn = {(xn)n2N 2
Y

n2N
Rn, 8m 6 n, xm = rn,mxn} ⇢

Y

n2N
Rn.

If N = N (equipped with the natural ordering) we have setting rn = rn+1,n

lim �
n2N

Rn = {(xn)n2N 2
Y

n2N
Rn, 8n > 0, xn = rnxn+1}.

Exercise 2.3. Prove that Zp ' lim �n>1
Z/pnZ where rn,m : Z/pnZ ! Z/pmZ is the

reduction modulo pm map.

3.3.1. The profinite completion. The above construction of Zp as an additive group is
also a special case of another example of inverse limit: the profinite completion of a group:
given G a group, let N = {H ⇢ G, H normal, |G/H| < 1} be the partially ordered set
of the normal subgroups of G of finite index inversely ordered by inclusion (for H,H 0 ⇢ G
two normal subgroups of finite index, we declare that H 6 H 0 i↵ H � H 0). For H 6 H 0

(H 0 ⇢ H) we let
rH0,H : G/H 0 7! G/H

be the canonical map. The inverse limit

bG = lim �
H

G/H

is the profinite completion of G.

3.4. Further surprises with the p-adic topology.

Proposition 2.7. Open balls are closed and closed ball are open (for the p-adic topol-
ogy). In particular Qp is totally disconnected (the only connected subsets are points). Every
point of an open ball is a center of that ball:

8y 2 Bo(x, r), Bo(x, r) = Bo(y, r),

Any ball is of the shape
x+ pkBc(0, 1), k 2 Z.
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Exercise 2.4. Prove the proposition.

Concerning suite and series p-analysis look like a ”student dream”:

Proposition 2.8. A sequence in Qp, (an)n is Cauchy if and only if an+1 � an ! 0. A
series in Qp,

P1
n=1 an is convergent if and only if limn an = 0.

For instance
1X

n=0

pn =
1

1� p

while the series X

n>1

1

n2

is diverging.

Exercise 2.3. Show that the series

expp(x
p�1) =

X

n>0

(xp�1)n

n!
logp(x) =

X

n>1

(�1)n�1xn

n

converge for |x|p < p�1 and |x|p < 1 respectively.

3.5. Continuous functions. The space of continuous function on Qp or on an open
subset of Qp is fairly rich: it contains obviously the polynomial as well as power series

X

n>0

anx
n

if |anxn|p ! 0 for some x 6= 0.
Another class of continuous functions are the locally constant functions:

Definition 2.4. Let ⌦ ⇢ Qp an open subset. A function f : ⌦! C is locally constant
if for any x 2 ⌦ there exist an open neighborhood ⌦x ⇢ ⌦ on which f is constant.

A locally constant function is clearly continuous however unlike over the reals, there are
plenty of locally constant functions which are not constant. For instance the characteristic
function of Zp in Qp is continuous !

4. Newton’s method and Hensel’s lemma

In archimedean analysis, Newton’s method is a way to find approximation to a solution
of the equation P (x) = 0 for some function P starting from a point x0 close enough to that
solution. The principle is to consider the intersection of tangent to the graph of f through
the point (x0, P (x0)) with the horizontal axis which gives the point (x1, 0) and to iterate
the process with x1... In this section we provide an analog to Newton’s method in the p-adic
setting for P 2 Zp[X] is a polynomial and when we search for a root in Zp.

Theorem 2.3. Let P 2 Zp[X] and x0 2 Zp such that

|P (x0)|p < 1, |P 0(x0)|p = 1

then the sequence defined recursively by

xn+1 = xn �
P (xn)

P 0(xn)
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is well defined for every n > 0, belong to Zp and converge to a root x1 of P in Zp which
satisfy |x1 � x0|p < 1.

Let us give an arithmetic interpretation of this result: consider the reduction modulo p
map which takes value in the finite field Fp:

· (mod p) : Zp ⇣ Zp/pZp = Z/pZ = Fp.

Any polynomial P 2 Zp[X] define a polynomial P (mod p) 2 Fp[X] by reduction of the
coe�cient modulo p. The condition

|P (x0)|p < 1, |P 0(x0)|p = 1

is equivalent to
x0 (mod p) is a simple root of P (mod p).

The above theorem says that a simple root x 2 Fp of a polynomial with integral coe�cients
P (X) 2 Zp[X] (P (x) = 0Fp) can be ”lifted” to a root x 2 Zp (such that x (mod p) = x ).

Proof. To give a fell of what is going on we start by checking that the sequence is well
defined: let hn = �P (xn)/P 0(xn) whenever it is defined so that

xn+1 = xn + hn.

By assumption we have |h0|p < 1, h0 ⌘ 0 (mod p) and therefore (since P, P 0 2 Zp[X])

P (x1) ⌘ P (x0) (mod p), P 0(x1) ⌘ P 0(x0) (mod p)

showing that |P (x1)|p < 1, |P 0(x1)|p = 1. Clearly this generalize to any n showing that
that (xn)n is well defined. Let us assume that |hn|p 6 p�kn , we will evaluate P (xn+1) =
P (xn + hn) using the Taylor expansion of P . For this we use the general lemma:

Lemma 2.1. Let R be a ring and P 2 R[X], one has the following identity

P (X + Y ) =
degPX

k=0

P [k](X)Y k

where
P [k](X) 2 R[X], P [0](X) = P (X), P [1](X) = P 0(X).

Remark 4.1. If R is contained in a field of characteristic 0,

P [k](X) = P (k)(X)/k!.

By this lemma we have

P (xn+1) = P (xn)�
P (Xn)

P 0(xn)
P 0(xn) +

X

k>2

P [k](xn)h
k
n =

X

k>2

P [k](xn)h
k
n ⌘ 0 (mod p)2kn ;

therefore we have proven that

|P (xn+1)|p = |hn+1|p = |xn+1 � xn|p 6 |hn|2p.
It follows that for all n > 0

|hn|p = |P (xn)|p = |xn+1 � xn|p 6 p�2n ! 0.

Therefore (xn)n is a Cauchy sequence converging to x1 satisfying

|x1 � xn|p 6 p�2n , P (x1) = 0.

⇤
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Exercise 2.4. Prove that
p
2 exists in Q7 and compute its 7-adic expansion up to 10

digits.

4.1. The Teichmueller character. We apply this to the polynomial

P (X) = Xp�1 � 1.

Corollary 2.2. There exists an injective group homomorphism (called the Teich-
mueller character):

!p : F⇥
p ,! Z⇥

p

whose image is the group of p� 1-roots of 1

!p(F⇥
p ) = µp�1(Qp) = {x 2 Qp, xp�1 = 1} ⇢ Z⇥

p

which is an inverse for the reduction modulo p map on µp�1(Qp)

8u 2 F⇥
p , !p(u) (mod p) = u.

In particular {0} [ !p(F⇥
p ) is a sytem of representatives of Zp/pZp.

Exercise 2.5. Prove that for any a 2 Z⇥
p with |a|p = 1, the sequence (ap

n
)n>1 converge

to !p(a (mod p)).

4.2. Points on hypersurfaces. Hensel’s lemma can be generalized in several dimen-
sions and makes it possible to prove the existence of point on algebraic varieties over Qp.
We discuss here the case of hypersurfaces: given P (X1, · · ·Xn) ⇢ Qp[X1, · · · , Xn], the set
of Qp-point of the hypersurface defined by P is the set

VP (Qp) = {x = (x1, · · · , xn) 2 Qn
p , P (x) = 0} ⇢ Qn

p .

We denote by
VP (Zp) = VP (Qp) \ Zn

p

the set of Zp-point. We are looking for su�cient condition to guaranty that

VP (Qp) 6= ;.

Obviously it is su�cient to show that VP (Zp) 6= ;; up to multipliying P by a scalar we
may assume that P 2 Zp[X1, · · · , Xn]. If x 2 VP (Zp) we have P (x) = 0 and in particular,
considering reduction modulo p, x = x (mod p) 2 (Zp/pZp)n = Fn

p and P = P (mod p) we
have

P (x) = 0Fp .

In other terms we have
VP (Zp) 6= ; ) VP (Fp) 6= ;

where
VP (Fp) = {x = (x1, · · · , xn) 2 Fn

p , P (x) = 0}
is the set of Fp-points of the hypersurface defined by the equation:

P (x) = 0

We would like to go in the reverse direction and find su�cient conditions to insure that

VP (Fp) 6= ; ) VP (Zp) 6= ;.

For this we use an extension and Hensel’s lemma and we make the following definitions:
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Definition 2.5. A point x 2 VP (Fp) is critical if is satisfies

rP (x) = (
@P

@x1
(x), · · · , @P

@xn
(x)) = 0.

The hypersurface VP is non-singular over Fp if VP (Fp) does not have any critical points.

Theorem 2.4 (Higher dimensional Hensel’s Lemma). Let P 2 Zp[X]. We have the
lower bound

|VP (Zp)| > |V nc
P

(Fp)|
where V nc

P
(Fp) denote the set of non-critical points of VP (Fp).

Exercise 2.5. Prove the Theorem.

4.3. The Chevalley-Warning theorem. We now look for conditions to insure that
VP (Fp) 6= ; and a simple criterion comes from the

Theorem 2.5 (Chevalley-Warning). Let P (x) 2 Fp[x1, · · · , xn] be a polynomial in n
variables of degree d < n, then

|VP (Fp)| ⌘ 0 (mod p).

in particular if |VP (Fp)| > 0 then |VP (Fp)| > p.

Exercise 2.6. Prove the theorem. For this one introduce the polynomial

Q(x) = 1� P (x)p�1 2 Fp[X1, · · · , Xn];

it has degree d(p� 1) < n(p� 1).

(1) Prove that

Q(x) =

(
1Fp if x 2 VP (Fp)

0Fp if x 62 VP (Fp)

(2) Deduce that

|VP (Fp)| ⌘
X

x2Fn
p

Q(x) (mod p).

(3) Prove the following

Lemma 2.2. Given k > 0 be an integer we have

X

x2Fp

xk =

(
�1 if p� 1|k
0 if p� 1 6 |k.

(4) Prove that X

x2Fn
p

Q(x) = 0

and conclude. For the later, one can proceed by decomposing Q(X1, · · · , Xn) into
monomials and use the previous Lemma.

Corollary 2.3. Let P 2 Fp[X1, · · · , Xn] be an homogeneous polynomial of degree
0 < d < n, then

|VP (Fp)| > p.
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Corollary 2.4. Let P 2 Zp[X1, · · · , Xn] be an homogeneous polynomial of degree
0 < d < n, such that P 2 Fp[X1, · · · , Xn] has no critical points except for (0, · · · , 0), then
there exists x 2 Zn

p � {(0, · · · , 0)} such that P (x) = 0.

Exercise 2.7. Prove these two corollaries


