
CHAPTER 3

The ring of Adèles

1. The strong approximation theorem

Let v 2 VQ = V be a place of Q; we have seen that the inclusion

�v : Q ,! Qv

has dense image. One may now consider this question for several places simultaneously:
let S ⇢ VQ be a set and let QS =

Q
v2S Qv; the field Q embeds into QS via the diagonal

embedding

�S : x 2 Q ,! (x, · · · , x) 2 QS .

Theorem 3.1 (The weak approximation theorem). For any finite set S ⇢ VQ, the image
of Q under the diagonal embedding is dense for the product topology on QS.

This theorem states that given any S-uple (xv)v2S one can find a rational number x 2 Q
such that x is simultaneously close to each xv in the v-adic sense.

Proof. We may assume that 1 ⇢ S. It su�ce to show that for any r > 0 and any
uple (xv)v2S 2 QS

Q \
Y

v

⌦v 6= ;, where ⌦v = Bc(xv, p
�r
v )v, p1 = e, pp = p.

Actually we may assume that xv 2 Q for every v (by density of Q ⇢ Qv). Shifting by
x1 2 Q and replacing xp by xp � x1 for p 2 S � {1}, it is su�cient to show that for any
(xp)p2S�{1} 2

Q
p2S Q and any integer r > 0

Q \Bc(0, e
�r)1

Y

p2S
Bc(xp, p

�r)p 6= ;.

We start with the simpler problem of showing that

Q \
Y

p2S
Bc(xp, p

�r)p 6= ;.

Multiplying by the product of the denominators of the xp and changing r, if necessary, it
su�ce to show that for any (xp)p2S 2 Q

p2S Z and any r > 0

Z \
Y

p2S
Bc(xp, p

�r)p 6= ;.

but this is equivalent to finding a solution to the system of congruences

x ⌘ xp (mod pr) for every p 2 S.
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26 3. THE RING OF ADÈLES

By the Chinese reminder theorem such a solution always exists and can be choosen in the
interval [0,

Q
p2S pr]. Let q 6⇢ S be another prime. By the above reasonning the system of

congruences

x ⌘ qkxp (mod pr) for every p 2 S

admits an integral solution;let xqk ⇢ [0,
Q

p2S pr] be such a solution: we have

xqk

qk
2

Y

p2S
Bc(xp, p

�r)p

and in addition

|xqk
qk

|1 6
Q

p2S pr

qk
< e�r

if k is taken su�ciently large.
⇤

1.1. The strong approximation theorem. In fact the proof given above yields a
somewhat stronger statement:

Theorem 3.2 (The strong approximation theorem). Let S ⇢ V be a finite set of places
of Q, v0 62 S, and for each v 2 S let ⌦v ⇢ Qv be a non-empty open set. There exists x 2 Q
such that

x 2 ⌦v 8v 2 S, and x 2 Zv for all v 62 S [ {v0}.
In particular if 1 62 S one may choose v0 = 1.

Proof. Exercise. ⇤
This theorem is stronger than the preceeding one because it states that, given any finite

set of places S, any S-uple (xv)v2S , one can always find a rational number x 2 Q such that
x is simultaneously

• close to each xv in the v-adic sense, for each place v 2 S
• a v-adic integer at all places v not in S, with at most one exception (which can be
choosen at desired).

Our goal will be to reformulate this theorem in a more uniform way, in which the set of
places S is less apparent. For this we consider the full infinite product rings

QV =
Y

v2V
Qv = R⇥

Y

p

Qp = Q1 ⇥QV
f

.

The field of rational numbers Q imbeds as a subring of QV via the diagonal embedding

�V : x 2 Q 7! �(x) = (x1 = x, x2 = x, x3 = x, · · · , xp = x, · · · ) 2 R⇥
Y

p

Qp.

The strong approximation theorem in that case can be reformulated as follows:

Theorem. For any place v let ⌦v ⇢ Qv be a non-empty open subset and ⌦ =
Q

v ⌦v ⇢
QV . We assume that for all but finitely many primes p, ⌦p = Zp, and also that for at least
one v 2 V, ⌦v = Qv, then

�V(Q) \ ⌦ 6= ;.
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2. The ring of Adèles

We would like to interpret this result as a sort of density result for �V(Q):

(1) that would be possible if we declared the subsets
Q

v ⌦v with ⌦p = Zp for a.e. v
a basis of open neighborhoods of

Q
v Qv but this is not possible since there exist

elements of
Q

v Qv which are not contained in any of these sets (take for instance
(0, xp)p, xp = p�p).

(2) We could instead equip
Q

v Qv with the product or Tychono↵ topology: the topol-
ogy for which a basis of open sets is given by set of the shape

Q
v ⌦v with ⌦v ⇢ Qv

non-empty open and ⌦v = Qv for a.e. v but then the density of �V(Q) for this
topology would be equivalent only to the weak approximation theorem and not to
the strong one.

We observe that �(Q) is contained in a significantly smaller subring of QV , namely

A := R⇥
Y0

p

Qp where
Y0

p

Qp = {(xp)p, xp 2 Qp, xp 2 Zp for a.e. p}.

Indeed any x 2 Q belong to Zp for all but finitely many p, namely the p which do not divide
the denominator of p.

Definition 3.1. The ring A is called the ring of adèles of Q. It factors as

A := R⇥ Af

where

Af :=
Y0

p

Qp = {(xp)p, xp 2 Qp, xp 2 Zp for a.e. p} ⇢ QV
f

is the restricted product of the Qp with respect to the sequence of subsets (Zp)p and is called
the ring of finites adèles of Q.

More generally, for S ⇢ V a set of places we denote by AS and A(S) = AV�S

AS =
Y0

v2S
Qv = {(xv)v2S , xv 2 Qv, xp 2 Zp for a.e. p 2 S} ⇢ QS ,

and

A(S) =
Y0

v 62S
Qv{(xv)v2S , xv 2 Qv, xp 2 Zp for a.e. p 62 S} ⇢ QV�S .

For instance, AV = A, Ap = Qp, AV
f

= A(1) = Af . These are subrings of the corresponding

products for the pointwise addition and multiplication. Moreover AS and A(S) embeds into
as A as A-modules via

(2.1) AS ' {(xv)v 2 A, xv = 0 for all v 62 S},
A(S) = AV�S = {(xv)v 2 A, xv = 0 for all v 2 S}.

Remark 2.1. The set A is indeed a subring of QV for the pointwise addition and
multiplication: if (xv)v and (yv)v are such that xp, yp 2 Zp a.e. p, then xp + yp, xpyp 2 Zp

a.e. p.

Remark 2.2. The field Q embeds into AS and A(S) via the diagonal embeddings �S
and �(S) = �V�S giving these rings the structure of Q-algebras.
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2.1. The adelic topology. We now equip these rings with an adequate restricted
product topology

Definition 3.2. The adelic topology on AS ⇢ QS is the restriction to AS of the product
topology on QS. A basis of open neighborhoods is composed of the subsets of the shape

⌦ =
Y

v2S
⌦v ⇢ AS , ⌦v ⇢ Qv open , ⌦p = Zp a.e. p 2 S .

Exercise 3.1. Prove that addition and multiplication are continuous for the adelic
topology. Prove that the adelic topology on AS is the one obtained by restricting of the
adelic topology on A to the image of the embedding (2.1) and that this image is closed in
A.

With this definition the strong approximation theorem is equivalent to

Theorem. For any place v0 2 V, Q (embeded by �(v0)) is dense in A(v
0

). In particular
Q is dense in Af .

This result is optimal since we have

Theorem. Q is discrete in A.

Proof. Since additive translations are homeomorphisms it is su�cient to show that 0
is isolated: there exists an open set ⌦ =

Q
v ⌦v such that

Q \ ⌦ = {0}.
One take

⌦ = [�1/2, 1/2]⇥p Zp

so that if x 2 Q \ ⌦ we have

|x|1 6 1/2, x 2 Zp for all p , |x|1 6 1/2, x 2 Z
and therefore x = 0. ⇤

2.2. The ring of adelic integers. Let bZ be the product of all p-adic integers

bZ =
Y

p

Zp ⇢ Af

this is an open subring of Af .

Proposition 3.1. The ring bZ is open, compact and locally compact.

Proof.

bZ is clearly open (since the Zp are open). It is also closed being the complement
of the union of the open sets (because Zp is closed in Qp)

(Qp � Zp)
Y0

p0 6=p

Qp0 .

Observe that the topology induced by the inclusion bZ ⇢ Af is precisely the product (or

Tychono↵) topology on bZ =
Q

p Zp: the topology whose basis of open subsets is given by
the sets of the shape

⌦ =
Y

p

⌦p, ⌦p ⇢ Zp open , ⌦p = Zp a.e. p .
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The rings Zp being compact, and locally compact, by Tychono↵ theorem bZ is compact,
locally compact. Let R ⇢ Af be a compact subring and let Rp be its projection to Qp; this
is a compact subring of Qp hence is contained in Zp. ⇤

Since translations are homeomorphism we obtain that

Theorem 3.3. Af and A are locally compact topological rings.

Remark 2.3. Observe that if S is infinite, the product ring QS is NOT locally compact.
This is another reason why the adeles equipped with adelic topology is the right space to
consider.

Since bZ is open, by the strong approximation theorem for Af one has

Proposition 3.2. One has the decompositions

Af = Q+ bZ, A = Q+ R+ bZ.

Remark 2.4. In the above expression, Q should be understood as �V
f

(Q) for the
first equality and �V(Q) for the second. In the second R = A1 = (R, 0, 0 · · · )v and
bZ = (0,Z2,Z3, · · · ).

Proof. Since Q is dense and bZ is open in Af , the union of translates of bZ by the

elements of Q covers all of Af : Q+ bZ = Af ; the second result follows immediately. ⇤
Since Q \ bZ = Z we obtain the following version of the

Theorem (Chinese Reminder Theorem). Z is dense in bZ for the adelic topology.

Exercise 3.2. Prove this result directly.

Exercise 3.3. Prove that bZ is maximal for the compactness property: more precisely
any compact subring of Af is contained in bZ.

Exercise 3.4. Prove that as a group bZ is the profinite completion of Z.

Exercise 3.5. Prove that if Kf ⇢ Af is a compact subset, there exist m 2 Z � {0}
such that Kf is a finite disjoint unions of points and of translates of mbZ.

Exercise 3.6. Prove the finer decomposition

(2.2) A = Q+ [�1/2, 1/2] + bZ

Since Q is discrete in A it is also closed and we may consider the quotient Q\A space;
equipped with the quotient topology this quotient is locally compact separated space (Cf.
the Appendix). Since bZ is compact the same is true for the quotient (Q+ bZ)\A. We have
the following

Theorem 3.4. The quotient Q\A is compact. We have an homeomorphism

(Q+ bZ)\A ' R/Z ' S1

Proof. The images of

bZ ! Q\A, [�1/2, 1/2] ! Q\A
under the (continuous) projection map are compact images and their sum is Q\A (by (2.2)).
We leave the second statement as an exercise (observe that Q \ bZ = Z). ⇤
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3. The group of Idèles

The group of idèles, A⇥ is the multiplicative group of invertible elements (or units) of
the ring A. It decompose as the restricted product of the multiplicative groups (Q⇥

v )v2V
with respect to the sequence of subgroups (Z⇥

p )p:

A⇥ = {(xv)v 2 A, xv 2 Q⇥
v , xp 2 Z⇥

p for a.e. p} =
Y0

v

Q⇥
v ⇢ Q⇥

V =
Y

v2V
Q⇥

v

In the same way, for S ⇢ V, the group of units of AS is given by

A⇥
S = {(xv)v2S , xv 2 Q⇥

v , xp 2 Z⇥
p for a.e. p 2 S} =

Y0

v2S
Q⇥

v ⇢ Q⇥
S =

Y

v2S
Q⇥

v .

In particular A⇥
f = A⇥

V
f

= A⇥(1) is called the group of finite ideles. We will realize the

group A⇥
S as a subgroup of A⇥ via

A⇥
S ' {(xv)v 2 A⇥, xv = 1 8 v 62 S};

3.1. The topology of idèles. What is called the adelic topology on the group of idèles
A⇥ or any A⇥

S is NOT a priori the restriction of the adelic topology relative the inclusion
A⇥ ⇢ A (or A⇥

S ⇢ AS).

Definition 3.3. The adelic topology on A⇥ (and similarly for A⇥
S ) is either (prove that

the two definitions are the same)

• The restriction of the product topology relative to the inclusion
Y0

v

Q⇥
v ⇢

Y

v

Q⇥
v .

In other terms a basis of open sets for A⇥ is given by set of the shape

⌦ =
Y

v

⌦v, ⌦v ⇢ Q⇥
v open, ⌦p = Z⇥

p a.e. p

(observe that Z⇥
p is an open compact subgroup of Q⇥

p equipped with the p-adic
topology).

• The restriction of the adelic topology on A2 when A⇥ is realized as the closed subset

A⇥ ' {(x, y) 2 A2, xy = 1} ⇢ A2

via the map x 2 A⇥ 7! (x, x�1) 2 A2.

Theorem 3.5. With this topology, A⇥ is a locally compact topological group (multipli-
cation and inversion are continuous) of which the A⇥

S are closed subgroups and bZ⇥ is an
open compact subgroup of A⇥

f .

Proof. Since component-wise multiplication on A2 and the involution (x, y) ! (y, x)
are continuous multiplication and inversion are continuous on A⇥ (taking the second def-
inition of the adelic topology). Since Z⇥

p is an open and compact subgroup of Q⇥
p , bZ⇥

equipped with the adelic topology (which is nothing else than the Tychono↵ topology) is
open, compact and locally compact of subgroup Af ; from this the local compactness of A⇥

f

and A⇥ follow by a translation argument. ⇤
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Exercise 3.7. Prove that the relative topology on A⇥ ⇢ A is not the adelic topology
defined above

Exercise 3.8. Prove that Z⇥
p and bZ are maximal compact subgroups of Q⇥

p and A⇥
f

respectively: any compact subgroup is contained in it.

Exercise 3.9. Given qf 2 A⇥
f \ bZ, let

K(qf ) := {xf 2 bZ⇥, xf (mod qf ) = 1 2 bZ/qf bZ}.
Prove that K(qf ) is an open compact subgroup of bZ⇥ which depends only on the positive
integer

q :=
Y

p

pvp(qf ).

This group also noted K(q) is called the principal congruence subgroup of level q; prove that
as q varies, these groups form a basis of open neighborhoods of 1 in A⇥

f . Prove that

bZ⇥/K(qf ) ' (Z/qZ)⇥.

Let us now discuss how much ”space” the subgroup of rational elements Q⇥ occupies
into A⇥.

Proposition 3.3. The group Q⇥ is discrete in A⇥. One has the following decomposi-
tions

A⇥
f = Q⇥bZ⇥, A⇥ = Q⇥R⇥bZ⇥

and

Q⇥\Af/K(qf ) ' (Z/qZ)⇥.

On the other hand Q⇥ is not copmpact in A⇥. To see the obstruction we introduce

Definition 3.4. The adelic modulus (or adelic absolute value) is the map given by the
converging product

| · |A : x = (xv)v 2 A⇥ 7! |x|A :=
Y

v

|xv|v 2 R>0.

Indeed this is well defined since for since for a.e. p, |xp|p 6 1. Notice that | · |A is
identically 0 on A�A⇥ while on A⇥ the above infinite product is converging (to a non-zero
limit) since for a.e. p, |xp|p 6 1.

Exercise 3.10. Prove that | · |A : A⇥ ! R>0 is a continuous group homomorphism.

We denote by A1 the group of ideles of modulus 1 (the kernel of | · |A): this is a closed
subgroup. We have

Proposition 3.4 (Product formula). We have

A1 = Q⇥ ⇥ bZ.

In particular for any xQ 2 Q⇥ one has the

(Product formula) |x|A = |x|1
Y

p

|x|p = 1
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Proof. If is obvious that bZ⇥ ⇢ A1 while for xQ 2 Q⇥

|x|A = |x|1
Y

p

|x|p =
Y

p

pvp(x)
Y

p

p�v
p

(x) = 1.

Given x = (xR, xf ) 2 R⇥ ⇥ A⇥
f of modulus 1, we have xR = ±|xf |�1

A 2 Q⇥, therefore up to
multiplying x by a rational number we may assume that x = (1, xf ) and |xf |A = 1 which is

equivalent to |xp|p = 1 for every p or in other terms (xp)p 2 bZ⇥. ⇤Observe that

|Q⇥\A⇥|A = |R⇥|A = R>0

is not compact, therefore

The quotient Q⇥\A⇥ is not compact.

This is the only obstruction:

Theorem 3.6. The group Q⇥ is discrete in A1 and the quotient Q⇥\A1 is compact.

Proof. Since Q2 ⇢ A2 is discrete it follows (from the definition of the adelic topology
and the fact that A1 is closed that Q⇥ is discrete in A1. The compactness of Q⇥\A1 follows
from the decomposition A1 = Q⇥ ⇥ bZ and the compactness of bZ⇥. ⇤

Finally we observe that strong approximation does not hold for the ideles:

Exercise 3.11. Prove that

Q⇥\A⇥
f /K(qf ) ' (Z/qZ)⇥

where q =
Q

p p
v
p

(q
f

). In particular Q⇥ is not dense in A⇥
f .

Remark 3.1. As we will see in greater generality later the decomposition A⇥
f = Q⇥⇥bZ⇥

is equivalent to the fundamental

Theorem 3.7. The ring Z is a principal ideal ring: any ideal 0 6= I ⇢ Z is of the shape
mZ for some m 2 Z.


