CHAPTER 3

The ring of Adèles

1. The strong approximation theorem

Let $v \in \mathcal{V}_{\mathbb{Q}} = \mathcal{V}$ be a place of \mathbb{Q} ; we have seen that the inclusion

$$\delta_v: \mathbb{Q} \hookrightarrow \mathbb{Q}_v$$

has dense image. One may now consider this question for several places simultaneously: let $S \subset \mathcal{V}_{\mathbb{Q}}$ be a set and let $\mathbb{Q}_S = \prod_{v \in S} \mathbb{Q}_v$; the field \mathbb{Q} embeds into \mathbb{Q}_S via the diagonal embedding

$$\delta_S: x \in \mathbb{Q} \hookrightarrow (x, \cdots, x) \in \mathbb{Q}_S.$$

THEOREM 3.1 (The weak approximation theorem). For any finite set $S \subset \mathcal{V}_{\mathbb{Q}}$, the image of \mathbb{Q} under the diagonal embedding is dense for the product topology on \mathbb{Q}_S .

This theorem states that given any S-uple $(x_v)_{v \in S}$ one can find a rational number $x \in \mathbb{Q}$ such that x is *simultaneously* close to each x_v in the v-adic sense.

PROOF. We may assume that $\infty \subset S$. It suffice to show that for any r > 0 and any uple $(x_v)_{v \in S} \in \mathbb{Q}_S$

$$\mathbb{Q} \cap \prod_{v} \Omega_{v} \neq \emptyset$$
, where $\Omega_{v} = B_{c}(x_{v}, p_{v}^{-r})_{v}, \ p_{\infty} = e, \ p_{p} = p.$

Actually we may assume that $x_v \in \mathbb{Q}$ for every v (by density of $\mathbb{Q} \subset \mathbb{Q}_v$). Shifting by $x_\infty \in \mathbb{Q}$ and replacing x_p by $x_p - x_\infty$ for $p \in S - \{\infty\}$, it is sufficient to show that for any $(x_p)_{p \in S - \{\infty\}} \in \prod_{p \in S} \mathbb{Q}$ and any integer r > 0

$$\mathbb{Q} \cap B_c(0, e^{-r})_{\infty} \prod_{p \in S} B_c(x_p, p^{-r})_p \neq \emptyset.$$

We start with the simpler problem of showing that

$$\mathbb{Q} \cap \prod_{p \in S} B_c(x_p, p^{-r})_p \neq \emptyset.$$

Multiplying by the product of the denominators of the x_p and changing r, if necessary, it suffice to show that for any $(x_p)_{p\in S} \in \prod_{p\in S} \mathbb{Z}$ and any r > 0

$$\mathbb{Z} \cap \prod_{p \in S} B_c(x_p, p^{-r})_p \neq \emptyset.$$

but this is equivalent to finding a solution to the system of congruences

$$x \equiv x_p \pmod{p^r}$$
 for every $p \in S$.

By the Chinese reminder theorem such a solution always exists and can be choosen in the interval $[0, \prod_{p \in S} p^r]$. Let $q \not\subset S$ be another prime. By the above reasonning the system of congruences

$$x \equiv q^k x_p \pmod{p^r}$$
 for every $p \in S$

admits an integral solution; let $x_{q^k} \subset [0, \prod_{p \in S} p^r]$ be such a solution: we have

$$\frac{x_{q^k}}{q^k} \in \prod_{p \in S} B_c(x_p, p^{-r})_p$$

and in addition

$$|\frac{x_{q^k}}{q^k}|_{\infty} \leqslant \frac{\prod_{p \in S} p^r}{q^k} < e^{-t}$$

if k is taken sufficiently large.

1.1. The strong approximation theorem. In fact the proof given above yields a somewhat stronger statement:

THEOREM 3.2 (The strong approximation theorem). Let $S \subset \mathcal{V}$ be a finite set of places of \mathbb{Q} , $v_0 \notin S$, and for each $v \in S$ let $\Omega_v \subset \mathbb{Q}_v$ be a non-empty open set. There exists $x \in \mathbb{Q}$ such that

$$x \in \Omega_v \ \forall v \in S, \ and \ x \in \mathbb{Z}_v \ for \ all \ v \notin S \cup \{v_0\}.$$

In particular if $\infty \notin S$ one may choose $v_0 = \infty$.

PROOF. Exercise.

This theorem is stronger than the preceeding one because it states that, given any finite set of places S, any S-uple $(x_v)_{v\in S}$, one can always find a rational number $x \in \mathbb{Q}$ such that x is simultaneously

- close to each x_v in the v-adic sense, for each place $v \in S$
- a v-adic integer at all places v not in S, with at most one exception (which can be choosen at desired).

Our goal will be to reformulate this theorem in a more uniform way, in which the set of places S is less apparent. For this we consider the full infinite product rings

$$\mathbb{Q}_{\mathcal{V}} = \prod_{v \in \mathcal{V}} \mathbb{Q}_v = \mathbb{R} \times \prod_p \mathbb{Q}_p = \mathbb{Q}_\infty \times \mathbb{Q}_{\mathcal{V}_f}.$$

The field of rational numbers \mathbb{Q} imbeds as a subring of $\mathbb{Q}_{\mathcal{V}}$ via the diagonal embedding

$$\delta_{\mathcal{V}}: x \in \mathbb{Q} \mapsto \delta(x) = (x_{\infty} = x, x_2 = x, x_3 = x, \cdots, x_p = x, \cdots) \in \mathbb{R} \times \prod_p \mathbb{Q}_p.$$

The strong approximation theorem in that case can be reformulated as follows:

THEOREM. For any place v let $\Omega_v \subset \mathbb{Q}_v$ be a non-empty open subset and $\Omega = \prod_v \Omega_v \subset$ $\mathbb{Q}_{\mathcal{V}}$. We assume that for all but finitely many primes $p, \Omega_p = \mathbb{Z}_p$, and also that for at least one $v \in \mathcal{V}$, $\Omega_v = \mathbb{Q}_v$, then

$$\delta_{\mathcal{V}}(\mathbb{Q}) \cap \Omega \neq \emptyset.$$

26

2. THE RING OF ADÈLES

2. The ring of Adèles

We would like to interpret this result as a sort of density result for $\delta_{\mathcal{V}}(\mathbb{Q})$:

- (1) that would be possible if we declared the subsets $\prod_v \Omega_v$ with $\Omega_p = \mathbb{Z}_p$ for a.e. va basis of open neighborhoods of $\prod_v \mathbb{Q}_v$ but this is not possible since there exist elements of $\prod_v \mathbb{Q}_v$ which are not contained in any of these sets (take for instance $(0, x_p)_p, x_p = p^{-p}$).
- (2) We could instead equip $\prod_v \mathbb{Q}_v$ with the *product* or *Tychonoff* topology: the topology for which a basis of open sets is given by set of the shape $\prod_v \Omega_v$ with $\Omega_v \subset \mathbb{Q}_v$ non-empty open and $\Omega_v = \mathbb{Q}_v$ for a.e. v but then the density of $\delta_{\mathcal{V}}(\mathbb{Q})$ for this topology would be equivalent only to the weak approximation theorem and not to the strong one.

We observe that $\delta(\mathbb{Q})$ is contained in a significantly smaller subring of $\mathbb{Q}_{\mathcal{V}}$, namely

$$\mathbb{A} := \mathbb{R} \times \prod_{p}' \mathbb{Q}_{p} \text{ where } \prod_{p}' \mathbb{Q}_{p} = \{(x_{p})_{p}, x_{p} \in \mathbb{Q}_{p}, x_{p} \in \mathbb{Z}_{p} \text{ for a.e. } p\}.$$

Indeed any $x \in \mathbb{Q}$ belong to \mathbb{Z}_p for all but finitely many p, namely the p which do not divide the denominator of p.

DEFINITION 3.1. The ring \mathbb{A} is called the ring of adèles of \mathbb{Q} . It factors as

$$\mathbb{A} := \mathbb{R} \times \mathbb{A}_f$$

where

$$\mathbb{A}_{f} := \prod_{p}^{\prime} \mathbb{Q}_{p} = \{ (x_{p})_{p}, \ x_{p} \in \mathbb{Q}_{p}, \ x_{p} \in \mathbb{Z}_{p} \ for \ a.e. \ p \} \subset \mathbb{Q}_{\mathcal{V}_{f}}$$

is the restricted product of the \mathbb{Q}_p with respect to the sequence of subsets $(\mathbb{Z}_p)_p$ and is called the ring of finites adèles of \mathbb{Q} .

More generally, for $S \subset \mathcal{V}$ a set of places we denote by \mathbb{A}_S and $\mathbb{A}^{(S)} = \mathbb{A}_{\mathcal{V}-S}$

$$\mathbb{A}_S = \prod_{v \in S} \mathbb{Q}_v = \{ (x_v)_{v \in S}, \ x_v \in \mathbb{Q}_v, \ x_p \in \mathbb{Z}_p \ for \ a.e. \ p \in S \} \subset \mathbb{Q}_S,$$

and

$$\mathbb{A}^{(S)} = \prod_{v \notin S}^{'} \mathbb{Q}_{v}\{(x_{v})_{v \in S}, \ x_{v} \in \mathbb{Q}_{v}, \ x_{p} \in \mathbb{Z}_{p} \text{ for a.e. } p \notin S\} \subset \mathbb{Q}_{\mathcal{V}-S}.$$

For instance, $\mathbb{A}_{\mathcal{V}} = \mathbb{A}$, $\mathbb{A}_p = \mathbb{Q}_p$, $\mathbb{A}_{\mathcal{V}_f} = \mathbb{A}^{(\infty)} = \mathbb{A}_f$. These are subrings of the corresponding products for the pointwise addition and multiplication. Moreover \mathbb{A}^S and $\mathbb{A}^{(S)}$ embeds into as \mathbb{A} as \mathbb{A} -modules via

(2.1)
$$\mathbb{A}_{S} \simeq \{ (x_{v})_{v} \in \mathbb{A}, \ x_{v} = 0 \ \text{for all } v \notin S \},$$
$$\mathbb{A}^{(S)} = \mathbb{A}_{\mathcal{V}-S} = \{ (x_{v})_{v} \in \mathbb{A}, \ x_{v} = 0 \ \text{for all } v \in S \}.$$

REMARK 2.1. The set A is indeed a subring of $\mathbb{Q}_{\mathcal{V}}$ for the pointwise addition and multiplication: if $(x_v)_v$ and $(y_v)_v$ are such that $x_p, y_p \in \mathbb{Z}_p$ a.e. p, then $x_p + y_p$, $x_p y_p \in \mathbb{Z}_p$ a.e. p.

REMARK 2.2. The field \mathbb{Q} embeds into \mathbb{A}_S and $\mathbb{A}^{(S)}$ via the diagonal embeddings δ_S and $\delta^{(S)} = \delta_{\mathcal{V}-S}$ giving these rings the structure of \mathbb{Q} -algebras.

2.1. The adelic topology. We now equip these rings with an adequate restricted product topology

DEFINITION 3.2. The adelic topology on $\mathbb{A}_S \subset \mathbb{Q}_S$ is the restriction to \mathbb{A}_S of the product topology on \mathbb{Q}_S . A basis of open neighborhoods is composed of the subsets of the shape

$$\Omega = \prod_{v \in S} \Omega_v \subset \mathbb{A}_S, \ \Omega_v \subset \mathbb{Q}_v \ open \ , \ \Omega_p = \mathbb{Z}_p \ a.e. \ p \in S \ .$$

EXERCISE 3.1. Prove that addition and multiplication are continuous for the adelic topology. Prove that the adelic topology on \mathbb{A}_S is the one obtained by restricting of the adelic topology on \mathbb{A} to the image of the embedding (2.1) and that this image is closed in \mathbb{A} .

With this definition the strong approximation theorem is equivalent to

THEOREM. For any place $v_0 \in \mathcal{V}$, \mathbb{Q} (embedded by $\delta^{(v_0)}$) is dense in $\mathbb{A}^{(v_0)}$. In particular \mathbb{Q} is dense in \mathbb{A}_f .

This result is optimal since we have

THEOREM. \mathbb{Q} is discrete in \mathbb{A} .

PROOF. Since additive translations are homeomorphisms it is sufficient to show that 0 is isolated: there exists an open set $\Omega = \prod_{v} \Omega_{v}$ such that

$$\mathbb{Q} \cap \Omega = \{0\}.$$

One take

$$\Omega = [-1/2, 1/2] \times_p \mathbb{Z}_p$$

so that if $x \in \mathbb{Q} \cap \Omega$ we have

$$|x|_{\infty} \leq 1/2, x \in \mathbb{Z}_p$$
 for all $p \Leftrightarrow |x|_{\infty} \leq 1/2, x \in \mathbb{Z}$

and therefore x = 0.

2.2. The ring of adelic integers. Let $\widehat{\mathbb{Z}}$ be the product of all *p*-adic integers

$$\widehat{\mathbb{Z}} = \prod_p \mathbb{Z}_p \subset \mathbb{A}_f$$

this is an open subring of \mathbb{A}_f .

PROPOSITION 3.1. The ring $\widehat{\mathbb{Z}}$ is open, compact and locally compact.

PROOF. \mathbb{Z} is clearly open (since the \mathbb{Z}_p are open). It is also closed being the complement of the union of the open sets (because \mathbb{Z}_p is closed in \mathbb{Q}_p)

$$(\mathbb{Q}_p - \mathbb{Z}_p) \prod_{p' \neq p} \mathbb{Q}_{p'}.$$

Observe that the topology induced by the inclusion $\widehat{\mathbb{Z}} \subset \mathbb{A}_f$ is precisely the *product (or Tychonoff)* topology on $\widehat{\mathbb{Z}} = \prod_p \mathbb{Z}_p$: the topology whose basis of open subsets is given by the sets of the shape

$$\Omega = \prod_{p} \Omega_{p}, \ \Omega_{p} \subset \mathbb{Z}_{p} \text{ open }, \ \Omega_{p} = \mathbb{Z}_{p} \text{ a.e. } p \text{ .}$$

The rings \mathbb{Z}_p being compact, and locally compact, by Tychonoff theorem $\widehat{\mathbb{Z}}$ is compact, locally compact. Let $R \subset \mathbb{A}_f$ be a compact subring and let R_p be its projection to \mathbb{Q}_p ; this is a compact subring of \mathbb{Q}_p hence is contained in \mathbb{Z}_p .

Since translations are homeomorphism we obtain that

THEOREM 3.3. \mathbb{A}_f and \mathbb{A} are locally compact topological rings.

REMARK 2.3. Observe that if S is infinite, the product ring \mathbb{Q}_S is NOT locally compact. This is another reason why the adeles equipped with adelic topology is the right space to consider.

Since $\widehat{\mathbb{Z}}$ is open, by the strong approximation theorem for \mathbb{A}_f one has

PROPOSITION 3.2. One has the decompositions

$$\mathbb{A}_f = \mathbb{Q} + \widehat{\mathbb{Z}}, \ \mathbb{A} = \mathbb{Q} + \mathbb{R} + \widehat{\mathbb{Z}}.$$

REMARK 2.4. In the above expression, \mathbb{Q} should be understood as $\delta_{\mathcal{V}_f}(\mathbb{Q})$ for the first equality and $\delta_{\mathcal{V}}(\mathbb{Q})$ for the second. In the second $\mathbb{R} = \mathbb{A}_{\infty} = (\mathbb{R}, 0, 0 \cdots)_v$ and $\widehat{\mathbb{Z}} = (0, \mathbb{Z}_2, \mathbb{Z}_3, \cdots)$.

PROOF. Since \mathbb{Q} is dense and $\widehat{\mathbb{Z}}$ is open in \mathbb{A}_f , the union of translates of $\widehat{\mathbb{Z}}$ by the elements of \mathbb{Q} covers all of \mathbb{A}_f : $\mathbb{Q} + \widehat{\mathbb{Z}} = \mathbb{A}_f$; the second result follows immediately. \Box Since $\mathbb{Q} \cap \widehat{\mathbb{Z}} = \mathbb{Z}$ we obtain the following version of the

THEOREM (Chinese Reminder Theorem). \mathbb{Z} is dense in $\widehat{\mathbb{Z}}$ for the adelic topology.

EXERCISE 3.2. Prove this result directly.

EXERCISE 3.3. Prove that $\widehat{\mathbb{Z}}$ is maximal for the compactness property: more precisely any compact subring of \mathbb{A}_f is contained in $\widehat{\mathbb{Z}}$.

EXERCISE 3.4. Prove that as a group $\widehat{\mathbb{Z}}$ is the profinite completion of \mathbb{Z} .

EXERCISE 3.5. Prove that if $K_f \subset \mathbb{A}_f$ is a compact subset, there exist $m \in \mathbb{Z} - \{0\}$ such that K_f is a finite disjoint unions of points and of translates of $m\widehat{\mathbb{Z}}$.

EXERCISE 3.6. Prove the finer decomposition

(2.2) $\mathbb{A} = \mathbb{Q} + [-1/2, 1/2] + \widehat{\mathbb{Z}}$

Since \mathbb{Q} is discrete in \mathbb{A} it is also closed and we may consider the quotient $\mathbb{Q}\setminus\mathbb{A}$ space; equipped with the quotient topology this quotient is locally compact separated space (Cf. the Appendix). Since $\widehat{\mathbb{Z}}$ is compact the same is true for the quotient $(\mathbb{Q} + \widehat{\mathbb{Z}})\setminus\mathbb{A}$. We have the following

THEOREM 3.4. The quotient $\mathbb{Q}\setminus\mathbb{A}$ is compact. We have an homeomorphism

$$(\mathbb{Q} + \widehat{\mathbb{Z}}) \setminus \mathbb{A} \simeq \mathbb{R}/\mathbb{Z} \simeq S^1$$

PROOF. The images of

$$\widehat{\mathbb{Z}} \to \mathbb{Q} \backslash \mathbb{A}, \ [-1/2, 1/2] \to \mathbb{Q} \backslash \mathbb{A}$$

under the (continuous) projection map are compact images and their sum is $\mathbb{Q}\setminus\mathbb{A}$ (by (2.2)). We leave the second statement as an exercise (observe that $\mathbb{Q}\cap\widehat{\mathbb{Z}}=\mathbb{Z}$).

3. THE RING OF ADÈLES

3. The group of Idèles

The group of idèles, \mathbb{A}^{\times} is the multiplicative group of invertible elements (or units) of the ring \mathbb{A} . It decompose as the *restricted product* of the multiplicative groups $(\mathbb{Q}_v^{\times})_{v \in \mathcal{V}}$ with respect to the sequence of subgroups $(\mathbb{Z}_p^{\times})_p$:

$$\mathbb{A}^{\times} = \{ (x_v)_v \in \mathbb{A}, \ x_v \in \mathbb{Q}_v^{\times}, \ x_p \in \mathbb{Z}_p^{\times} \text{ for a.e. } p \} = \prod_v^{'} \mathbb{Q}_v^{\times} \subset \mathbb{Q}_v^{\times} = \prod_{v \in \mathcal{V}} \mathbb{Q}_v^{\times}$$

In the same way, for $S \subset \mathcal{V}$, the group of units of \mathbb{A}_S is given by

$$\mathbb{A}_{S}^{\times} = \{(x_{v})_{v \in S}, \ x_{v} \in \mathbb{Q}_{v}^{\times}, \ x_{p} \in \mathbb{Z}_{p}^{\times} \text{ for a.e. } p \in S\} = \prod_{v \in S} \mathbb{Q}_{v}^{\times} \subset \mathbb{Q}_{S}^{\times} = \prod_{v \in S} \mathbb{Q}_{v}^{\times}.$$

In particular $\mathbb{A}_{f}^{\times} = \mathbb{A}_{\mathcal{V}_{f}}^{\times} = \mathbb{A}^{\times(\infty)}$ is called the group of finite ideles. We will realize the group \mathbb{A}_{S}^{\times} as a subgroup of \mathbb{A}^{\times} via

$$\mathbb{A}_{S}^{\times} \simeq \{ (x_{v})_{v} \in \mathbb{A}^{\times}, \ x_{v} = 1 \ \forall \ v \notin S \};$$

3.1. The topology of idèles. What is called the *adelic topology* on the group of idèles \mathbb{A}^{\times} or any \mathbb{A}_{S}^{\times} is NOT a priori the restriction of the adelic topology relative the inclusion $\mathbb{A}^{\times} \subset \mathbb{A}$ (or $\mathbb{A}_{S}^{\times} \subset \mathbb{A}_{S}$).

DEFINITION 3.3. The adelic topology on \mathbb{A}^{\times} (and similarly for \mathbb{A}_{S}^{\times}) is either (prove that the two definitions are the same)

• The restriction of the product topology relative to the inclusion

$$\prod_{v}' \mathbb{Q}_{v}^{\times} \subset \prod_{v} \mathbb{Q}_{v}^{\times}.$$

In other terms a basis of open sets for \mathbb{A}^{\times} is given by set of the shape

$$\Omega = \prod_{v} \Omega_{v}, \ \Omega_{v} \subset \mathbb{Q}_{v}^{\times} \ open, \ \Omega_{p} = \mathbb{Z}_{p}^{\times} \ a.e. \ p$$

(observe that \mathbb{Z}_p^{\times} is an open compact subgroup of \mathbb{Q}_p^{\times} equipped with the p-adic topology).

• The restriction of the adelic topology on \mathbb{A}^2 when \mathbb{A}^{\times} is realized as the closed subset

$$\mathbb{A}^{\times} \simeq \{(x, y) \in \mathbb{A}^2, \ xy = 1\} \subset \mathbb{A}^2$$

via the map $x \in \mathbb{A}^{\times} \mapsto (x, x^{-1}) \in \mathbb{A}^2$.

THEOREM 3.5. With this topology, \mathbb{A}^{\times} is a locally compact topological group (multiplication and inversion are continuous) of which the \mathbb{A}_{S}^{\times} are closed subgroups and $\widehat{\mathbb{Z}}^{\times}$ is an open compact subgroup of \mathbb{A}_{f}^{\times} .

PROOF. Since component-wise multiplication on \mathbb{A}^2 and the involution $(x, y) \to (y, x)$ are continuous multiplication and inversion are continuous on \mathbb{A}^{\times} (taking the second definition of the adelic topology). Since \mathbb{Z}_p^{\times} is an open and compact subgroup of \mathbb{Q}_p^{\times} , $\widehat{\mathbb{Z}}^{\times}$ equipped with the adelic topology (which is nothing else than the Tychonoff topology) is open, compact and locally compact of subgroup \mathbb{A}_f ; from this the local compactness of \mathbb{A}_f^{\times} and \mathbb{A}^{\times} follow by a translation argument.

EXERCISE 3.7. Prove that the relative topology on $\mathbb{A}^{\times} \subset \mathbb{A}$ is not the adelic topology defined above

EXERCISE 3.8. Prove that \mathbb{Z}_p^{\times} and $\widehat{\mathbb{Z}}$ are maximal compact subgroups of \mathbb{Q}_p^{\times} and \mathbb{A}_f^{\times} respectively: any compact subgroup is contained in it.

EXERCISE 3.9. Given $q_f \in \mathbb{A}_f^{\times} \cap \widehat{\mathbb{Z}}$, let

$$K(q_f) := \{ x_f \in \widehat{\mathbb{Z}}^{\times}, \ x_f \, (\mathrm{mod} \, q_f) = 1 \in \widehat{\mathbb{Z}}/q_f \widehat{\mathbb{Z}} \}$$

Prove that $K(q_f)$ is an open compact subgroup of $\widehat{\mathbb{Z}}^{\times}$ which depends only on the positive integer

$$q := \prod_p p^{v_p(q_f)}.$$

This group also noted K(q) is called the *principal congruence subgroup* of level q; prove that as q varies, these groups form a basis of open neighborhoods of 1 in \mathbb{A}_f^{\times} . Prove that

$$\widehat{\mathbb{Z}}^{\times}/K(q_f) \simeq (\mathbb{Z}/q\mathbb{Z})^{\times}.$$

Let us now discuss how much "space" the subgroup of rational elements \mathbb{Q}^{\times} occupies into \mathbb{A}^{\times} .

PROPOSITION 3.3. The group \mathbb{Q}^{\times} is discrete in \mathbb{A}^{\times} . One has the following decompositions

$$\mathbb{A}_{f}^{ imes}=\mathbb{Q}^{ imes}\widehat{\mathbb{Z}}^{ imes}, \ \mathbb{A}^{ imes}=\mathbb{Q}^{ imes}\mathbb{R}^{ imes}\widehat{\mathbb{Z}}^{ imes}$$

and

$$\mathbb{Q}^{\times} \setminus \mathbb{A}_f / K(q_f) \simeq (\mathbb{Z}/q\mathbb{Z})^{\times}.$$

On the other hand \mathbb{Q}^{\times} is not copmpact in \mathbb{A}^{\times} . To see the obstruction we introduce

DEFINITION 3.4. The adelic modulus (or adelic absolute value) is the map given by the converging product

$$|\cdot|_{\mathbb{A}} : x = (x_v)_v \in \mathbb{A}^{\times} \mapsto |x|_{\mathbb{A}} := \prod_v |x_v|_v \in \mathbb{R}_{>0}.$$

Indeed this is well defined since for since for a.e. $p, |x_p|_p \leq 1$. Notice that $|\cdot|_{\mathbb{A}}$ is identically 0 on $\mathbb{A} - \mathbb{A}^{\times}$ while on \mathbb{A}^{\times} the above infinite product is converging (to a non-zero limit) since for a.e. $p, |x_p|_p \leq 1$.

EXERCISE 3.10. Prove that $|\cdot|_{\mathbb{A}} : \mathbb{A}^{\times} \to \mathbb{R}_{>0}$ is a continuous group homomorphism.

We denote by \mathbb{A}^1 the group of ideles of modulus 1 (the kernel of $|\cdot|_{\mathbb{A}}$): this is a closed subgroup. We have

PROPOSITION 3.4 (Product formula). We have

$$\mathbb{A}^1 = \mathbb{Q}^{\times} \times \widehat{\mathbb{Z}}.$$

In particular for any $x_{\mathbb{Q}} \in \mathbb{Q}^{\times}$ one has the

(Product formula)
$$|x|_{\mathbb{A}} = |x|_{\infty} \prod_{p} |x|_{p} = 1$$

PROOF. If is obvious that $\widehat{\mathbb{Z}}^{\times} \subset \mathbb{A}^1$ while for $x_{\mathbb{Q}} \in \mathbb{Q}^{\times}$

$$|x|_{\mathbb{A}} = |x|_{\infty} \prod_{p} |x|_{p} = \prod_{p} p^{v_{p}(x)} \prod_{p} p^{-v_{p}(x)} = 1.$$

Given $x = (x_{\mathbb{R}}, x_f) \in \mathbb{R}^{\times} \times \mathbb{A}_f^{\times}$ of modulus 1, we have $x_{\mathbb{R}} = \pm |x_f|_{\mathbb{A}}^{-1} \in \mathbb{Q}^{\times}$, therefore up to multiplying x by a rational number we may assume that $x = (1, x_f)$ and $|x_f|_{\mathbb{A}} = 1$ which is equivalent to $|x_p|_p = 1$ for every p or in other terms $(x_p)_p \in \widehat{\mathbb{Z}}^{\times}$. \Box Observe that

$$|\mathbb{Q}^{\times} \setminus \mathbb{A}^{\times}|_{\mathbb{A}} = |\mathbb{R}^{\times}|_{\mathbb{A}} = \mathbb{R}_{>0}$$

is not compact, therefore

The quotient $\mathbb{Q}^{\times} \setminus \mathbb{A}^{\times}$ is not compact.

This is the only obstruction:

THEOREM 3.6. The group \mathbb{Q}^{\times} is discrete in \mathbb{A}^1 and the quotient $\mathbb{Q}^{\times} \setminus \mathbb{A}^1$ is compact.

PROOF. Since $\mathbb{Q}^2 \subset \mathbb{A}^2$ is discrete it follows (from the definition of the adelic topology and the fact that \mathbb{A}^1 is closed that \mathbb{Q}^{\times} is discrete in \mathbb{A}^1 . The compactness of $\mathbb{Q}^{\times} \setminus \mathbb{A}^1$ follows from the decomposition $\mathbb{A}^1 = \mathbb{Q}^{\times} \times \widehat{\mathbb{Z}}$ and the compactness of $\widehat{\mathbb{Z}}^{\times}$.

Finally we observe that strong approximation does not hold for the ideles:

EXERCISE 3.11. Prove that

$$\mathbb{Q}^{\times} \backslash \mathbb{A}_{f}^{\times} / K(q_{f}) \simeq (\mathbb{Z}/q\mathbb{Z})^{\times}$$

where $q = \prod_{p} p^{v_p(q_f)}$. In particular \mathbb{Q}^{\times} is not dense in \mathbb{A}_f^{\times} .

REMARK 3.1. As we will see in greater generality later the decomposition $\mathbb{A}_f^{\times} = \mathbb{Q}^{\times} \times \widehat{\mathbb{Z}}^{\times}$ is equivalent to the fundamental

THEOREM 3.7. The ring \mathbb{Z} is a principal ideal ring: any ideal $0 \neq I \subset \mathbb{Z}$ is of the shape $m\mathbb{Z}$ for some $m \in \mathbb{Z}$.