CHAPTER 3

The ring of Adèles

1. The strong approximation theorem

Let $v \in \mathcal{V}_{\mathbb{Q}}=\mathcal{V}$ be a place of \mathbb{Q}; we have seen that the inclusion

$$
\delta_{v}: \mathbb{Q} \hookrightarrow \mathbb{Q}_{v}
$$

has dense image. One may now consider this question for several places simultaneously: let $S \subset \mathcal{V}_{\mathbb{Q}}$ be a set and let $\mathbb{Q}_{S}=\prod_{v \in S} \mathbb{Q}_{v}$; the field \mathbb{Q} embeds into \mathbb{Q}_{S} via the diagonal embedding

$$
\delta_{S}: x \in \mathbb{Q} \hookrightarrow(x, \cdots, x) \in \mathbb{Q}_{S}
$$

ThEOREM 3.1 (The weak approximation theorem). For any finite set $S \subset \mathcal{V}_{\mathbb{Q}}$, the image of \mathbb{Q} under the diagonal embedding is dense for the product topology on \mathbb{Q}_{S}.

This theorem states that given any S-uple $\left(x_{v}\right)_{v \in S}$ one can find a rational number $x \in \mathbb{Q}$ such that x is simultaneously close to each x_{v} in the v-adic sense.

Proof. We may assume that $\infty \subset S$. It suffice to show that for any $r>0$ and any uple $\left(x_{v}\right)_{v \in S} \in \mathbb{Q}_{S}$

$$
\mathbb{Q} \cap \prod_{v} \Omega_{v} \neq \emptyset, \text { where } \Omega_{v}=B_{c}\left(x_{v}, p_{v}^{-r}\right)_{v}, p_{\infty}=e, p_{p}=p .
$$

Actually we may assume that $x_{v} \in \mathbb{Q}$ for every v (by density of $\mathbb{Q} \subset \mathbb{Q}_{v}$). Shifting by $x_{\infty} \in \mathbb{Q}$ and replacing x_{p} by $x_{p}-x_{\infty}$ for $p \in S-\{\infty\}$, it is sufficient to show that for any $\left(x_{p}\right)_{p \in S-\{\infty\}} \in \prod_{p \in S} \mathbb{Q}$ and any integer $r>0$

$$
\mathbb{Q} \cap B_{c}\left(0, e^{-r}\right)_{\infty} \prod_{p \in S} B_{c}\left(x_{p}, p^{-r}\right)_{p} \neq \emptyset
$$

We start with the simpler problem of showing that

$$
\mathbb{Q} \cap \prod_{p \in S} B_{c}\left(x_{p}, p^{-r}\right)_{p} \neq \emptyset
$$

Multiplying by the product of the denominators of the x_{p} and changing r, if necessary, it suffice to show that for any $\left(x_{p}\right)_{p \in S} \in \prod_{p \in S} \mathbb{Z}$ and any $r>0$

$$
\mathbb{Z} \cap \prod_{p \in S} B_{c}\left(x_{p}, p^{-r}\right)_{p} \neq \emptyset
$$

but this is equivalent to finding a solution to the system of congruences

$$
x \equiv x_{p}\left(\bmod p^{r}\right) \text { for every } p \in S
$$

By the Chinese reminder theorem such a solution always exists and can be choosen in the interval $\left[0, \prod_{p \in S} p^{r}\right]$. Let $q \not \subset S$ be another prime. By the above reasonning the system of congruences

$$
x \equiv q^{k} x_{p}\left(\bmod p^{r}\right) \text { for every } p \in S
$$

admits an integral solution;let $x_{q^{k}} \subset\left[0, \prod_{p \in S} p^{r}\right]$ be such a solution: we have

$$
\frac{x_{q^{k}}}{q^{k}} \in \prod_{p \in S} B_{c}\left(x_{p}, p^{-r}\right)_{p}
$$

and in addition

$$
\left|\frac{x_{q^{k}}}{q^{k}}\right|_{\infty} \leqslant \frac{\prod_{p \in S} p^{r}}{q^{k}}<e^{-r}
$$

if k is taken sufficiently large.
1.1. The strong approximation theorem. In fact the proof given above yields a somewhat stronger statement:

Theorem 3.2 (The strong approximation theorem). Let $S \subset \mathcal{V}$ be a finite set of places of $\mathbb{Q}, v_{0} \notin S$, and for each $v \in S$ let $\Omega_{v} \subset \mathbb{Q}_{v}$ be a non-empty open set. There exists $x \in \mathbb{Q}$ such that

$$
x \in \Omega_{v} \forall v \in S, \text { and } x \in \mathbb{Z}_{v} \quad \text { for all } v \notin S \cup\left\{v_{0}\right\}
$$

In particular if $\infty \notin S$ one may choose $v_{0}=\infty$.
Proof. Exercise.
This theorem is stronger than the preceeding one because it states that, given any finite set of places S, any S-uple $\left(x_{v}\right)_{v \in S}$, one can always find a rational number $x \in \mathbb{Q}$ such that x is simultaneously

- close to each x_{v} in the v-adic sense, for each place $v \in S$
- a v-adic integer at all places v not in S, with at most one exception (which can be choosen at desired).
Our goal will be to reformulate this theorem in a more uniform way, in which the set of places S is less apparent. For this we consider the full infinite product rings

$$
\mathbb{Q}_{\mathcal{V}}=\prod_{v \in \mathcal{V}} \mathbb{Q}_{v}=\mathbb{R} \times \prod_{p} \mathbb{Q}_{p}=\mathbb{Q}_{\infty} \times \mathbb{Q}_{\mathcal{V}_{f}}
$$

The field of rational numbers \mathbb{Q} imbeds as a subring of $\mathbb{Q} \mathcal{V}$ via the diagonal embedding

$$
\delta_{\mathcal{V}}: x \in \mathbb{Q} \mapsto \delta(x)=\left(x_{\infty}=x, x_{2}=x, x_{3}=x, \cdots, x_{p}=x, \cdots\right) \in \mathbb{R} \times \prod_{p} \mathbb{Q}_{p}
$$

The strong approximation theorem in that case can be reformulated as follows:
ThEOREM. For any place v let $\Omega_{v} \subset \mathbb{Q}_{v}$ be a non-empty open subset and $\Omega=\prod_{v} \Omega_{v} \subset$ $\mathbb{Q} \mathcal{V}$. We assume that for all but finitely many primes $p, \Omega_{p}=\mathbb{Z}_{p}$, and also that for at least one $v \in \mathcal{V}, \Omega_{v}=\mathbb{Q}_{v}$, then

$$
\delta_{\mathcal{V}}(\mathbb{Q}) \cap \Omega \neq \emptyset
$$

2. The ring of Adèles

We would like to interpret this result as a sort of density result for $\delta_{\mathcal{V}}(\mathbb{Q})$:
(1) that would be possible if we declared the subsets $\prod_{v} \Omega_{v}$ with $\Omega_{p}=\mathbb{Z}_{p}$ for a.e. v a basis of open neighborhoods of $\prod_{v} \mathbb{Q}_{v}$ but this is not possible since there exist elements of $\prod_{v} \mathbb{Q}_{v}$ which are not contained in any of these sets (take for instance $\left.\left(0, x_{p}\right)_{p}, x_{p}=p^{-p}\right)$.
(2) We could instead equip $\prod_{v} \mathbb{Q}_{v}$ with the product or Tychonoff topology: the topology for which a basis of open sets is given by set of the shape $\prod_{v} \Omega_{v}$ with $\Omega_{v} \subset \mathbb{Q}_{v}$ non-empty open and $\Omega_{v}=\mathbb{Q}_{v}$ for a.e. v but then the density of $\delta_{\mathcal{V}}(\mathbb{Q})$ for this topology would be equivalent only to the weak approximation theorem and not to the strong one.
We observe that $\delta(\mathbb{Q})$ is contained in a significantly smaller subring of $\mathbb{Q}_{\mathcal{V}}$, namely

$$
\mathbb{A}:=\mathbb{R} \times \prod_{p}^{\prime} \mathbb{Q}_{p} \text { where } \prod_{p}^{\prime} \mathbb{Q}_{p}=\left\{\left(x_{p}\right)_{p}, x_{p} \in \mathbb{Q}_{p}, x_{p} \in \mathbb{Z}_{p} \text { for a.e. } p\right\}
$$

Indeed any $x \in \mathbb{Q}$ belong to \mathbb{Z}_{p} for all but finitely many p, namely the p which do not divide the denominator of p.

Definition 3.1. The ring \mathbb{A} is called the ring of adèles of \mathbb{Q}. It factors as

$$
\mathbb{A}:=\mathbb{R} \times \mathbb{A}_{f}
$$

where

$$
\mathbb{A}_{f}:=\prod_{p}^{\prime} \mathbb{Q}_{p}=\left\{\left(x_{p}\right)_{p}, x_{p} \in \mathbb{Q}_{p}, x_{p} \in \mathbb{Z}_{p} \text { for a.e. } p\right\} \subset \mathbb{Q} \nu_{f}
$$

is the restricted product of the \mathbb{Q}_{p} with respect to the sequence of subsets $\left(\mathbb{Z}_{p}\right)_{p}$ and is called the ring of finites adèles of \mathbb{Q}.

More generally, for $S \subset \mathcal{V}$ a set of places we denote by \mathbb{A}_{S} and $\mathbb{A}^{(S)}=\mathbb{A}_{\mathcal{V}-S}$

$$
\mathbb{A}_{S}=\prod_{v \in S}^{\prime} \mathbb{Q}_{v}=\left\{\left(x_{v}\right)_{v \in S}, x_{v} \in \mathbb{Q}_{v}, x_{p} \in \mathbb{Z}_{p} \text { for a.e. } p \in S\right\} \subset \mathbb{Q}_{S},
$$

and

$$
\mathbb{A}^{(S)}=\prod_{v \notin S}^{\prime} \mathbb{Q}_{v}\left\{\left(x_{v}\right)_{v \in S}, x_{v} \in \mathbb{Q}_{v}, x_{p} \in \mathbb{Z}_{p} \text { for a.e. } p \notin S\right\} \subset \mathbb{Q}_{\mathcal{V}-S} .
$$

For instance, $\mathbb{A}_{\mathcal{V}}=\mathbb{A}, \mathbb{A}_{p}=\mathbb{Q}_{p}, \mathbb{A}_{\mathcal{V}_{f}}=\mathbb{A}(\infty)=\mathbb{A}_{f}$. These are subrings of the corresponding products for the pointwise addition and multiplication. Moreover \mathbb{A}^{S} and $\mathbb{A}^{(S)}$ embeds into as \mathbb{A} as \mathbb{A}-modules via

$$
\begin{gather*}
\mathbb{A}_{S} \simeq\left\{\left(x_{v}\right)_{v} \in \mathbb{A}, x_{v}=0 \text { for all } v \notin S\right\}, \tag{2.1}\\
\mathbb{A}^{(S)}=\mathbb{A}_{\mathcal{V}-S}=\left\{\left(x_{v}\right)_{v} \in \mathbb{A}, x_{v}=0 \text { for all } v \in S\right\} .
\end{gather*}
$$

Remark 2.1. The set \mathbb{A} is indeed a subring of $\mathbb{Q} \mathcal{V}$ for the pointwise addition and multiplication: if $\left(x_{v}\right)_{v}$ and $\left(y_{v}\right)_{v}$ are such that $x_{p}, y_{p} \in \mathbb{Z}_{p}$ a.e. p, then $x_{p}+y_{p}, x_{p} y_{p} \in \mathbb{Z}_{p}$ a.e. p.

Remark 2.2. The field \mathbb{Q} embeds into \mathbb{A}_{S} and $\mathbb{A}^{(S)}$ via the diagonal embeddings δ_{S} and $\delta^{(S)}=\delta_{\mathcal{V}-S}$ giving these rings the structure of \mathbb{Q}-algebras.
2.1. The adelic topology. We now equip these rings with an adequate restricted product topology

Definition 3.2. The adelic topology on $\mathbb{A}_{S} \subset \mathbb{Q}_{S}$ is the restriction to \mathbb{A}_{S} of the product topology on \mathbb{Q}_{S}. A basis of open neighborhoods is composed of the subsets of the shape

$$
\Omega=\prod_{v \in S} \Omega_{v} \subset \mathbb{A}_{S}, \Omega_{v} \subset \mathbb{Q}_{v} \text { open }, \Omega_{p}=\mathbb{Z}_{p} \text { a.e. } p \in S
$$

Exercise 3.1. Prove that addition and multiplication are continuous for the adelic topology. Prove that the adelic topology on \mathbb{A}_{S} is the one obtained by restricting of the adelic topology on \mathbb{A} to the image of the embedding (2.1) and that this image is closed in A.

With this definition the strong approximation theorem is equivalent to
ThEOREM. For any place $v_{0} \in \mathcal{V}, \mathbb{Q}$ (embeded by $\left.\delta^{\left(v_{0}\right)}\right)$ is dense in $\mathbb{A}^{\left(v_{0}\right)}$. In particular \mathbb{Q} is dense in \mathbb{A}_{f}.

This result is optimal since we have
Theorem. \mathbb{Q} is discrete in \mathbb{A}.
Proof. Since additive translations are homeomorphisms it is sufficient to show that 0 is isolated: there exists an open set $\Omega=\prod_{v} \Omega_{v}$ such that

$$
\mathbb{Q} \cap \Omega=\{0\} .
$$

One take

$$
\Omega=[-1 / 2,1 / 2] \times_{p} \mathbb{Z}_{p}
$$

so that if $x \in \mathbb{Q} \cap \Omega$ we have

$$
|x|_{\infty} \leqslant 1 / 2, x \in \mathbb{Z}_{p} \text { for all } p \Leftrightarrow|x|_{\infty} \leqslant 1 / 2, x \in \mathbb{Z}
$$

and therefore $x=0$.
2.2. The ring of adelic integers. Let $\widehat{\mathbb{Z}}$ be the product of all p-adic integers

$$
\widehat{\mathbb{Z}}=\prod_{p} \mathbb{Z}_{p} \subset \mathbb{A}_{f}
$$

this is an open subring of \mathbb{A}_{f}.
Proposition 3.1. The ring $\widehat{\mathbb{Z}}$ is open, compact and locally compact.
Proof. $\widehat{\mathbb{Z}}$ is clearly open (since the \mathbb{Z}_{p} are open). It is also closed being the complement of the union of the open sets (because \mathbb{Z}_{p} is closed in \mathbb{Q}_{p})

$$
\left(\mathbb{Q}_{p}-\mathbb{Z}_{p}\right) \prod_{p^{\prime} \neq p}^{\prime} \mathbb{Q}_{p^{\prime}}
$$

Observe that the topology induced by the inclusion $\widehat{\mathbb{Z}} \subset \mathbb{A}_{f}$ is precisely the product (or Tychonoff) topology on $\widehat{\mathbb{Z}}=\prod_{p} \mathbb{Z}_{p}$: the topology whose basis of open subsets is given by the sets of the shape

$$
\Omega=\prod_{p} \Omega_{p}, \Omega_{p} \subset \mathbb{Z}_{p} \text { open, } \Omega_{p}=\mathbb{Z}_{p} \text { a.e. } p .
$$

The rings \mathbb{Z}_{p} being compact, and locally compact, by Tychonoff theorem $\widehat{\mathbb{Z}}$ is compact, locally compact. Let $R \subset \mathbb{A}_{f}$ be a compact subring and let R_{p} be its projection to \mathbb{Q}_{p}; this is a compact subring of \mathbb{Q}_{p} hence is contained in \mathbb{Z}_{p}.

Since translations are homeomorphism we obtain that
THEOREM 3.3. \mathbb{A}_{f} and \mathbb{A} are locally compact topological rings.
REmARK 2.3. Observe that if S is infinite, the product ring \mathbb{Q}_{S} is NOT locally compact. This is another reason why the adeles equipped with adelic topology is the right space to consider.

Since $\widehat{\mathbb{Z}}$ is open, by the strong approximation theorem for \mathbb{A}_{f} one has
Proposition 3.2. One has the decompositions

$$
\mathbb{A}_{f}=\mathbb{Q}+\widehat{\mathbb{Z}}, \mathbb{A}=\mathbb{Q}+\mathbb{R}+\widehat{\mathbb{Z}}
$$

REMARK 2.4. In the above expression, \mathbb{Q} should be understood as $\delta_{\mathcal{V}_{f}}(\mathbb{Q})$ for the first equality and $\delta_{\mathcal{V}}(\mathbb{Q})$ for the second. In the second $\mathbb{R}=\mathbb{A}_{\infty}=(\mathbb{R}, 0,0 \cdots)_{v}$ and $\widehat{\mathbb{Z}}=\left(0, \mathbb{Z}_{2}, \mathbb{Z}_{3}, \cdots\right)$.

Proof. Since \mathbb{Q} is dense and $\widehat{\mathbb{Z}}$ is open in \mathbb{A}_{f}, the union of translates of $\widehat{\mathbb{Z}}$ by the elements of \mathbb{Q} covers all of $\mathbb{A}_{f}: \mathbb{Q}+\widehat{\mathbb{Z}}=\mathbb{A}_{f}$; the second result follows immediately.

Since $\mathbb{Q} \cap \widehat{\mathbb{Z}}=\mathbb{Z}$ we obtain the following version of the
Theorem (Chinese Reminder Theorem). \mathbb{Z} is dense in $\widehat{\mathbb{Z}}$ for the adelic topology.
Exercise 3.2. Prove this result directly.
EXERCISE 3.3. Prove that $\widehat{\mathbb{Z}}$ is maximal for the compactness property: more precisely any compact subring of \mathbb{A}_{f} is contained in $\widehat{\mathbb{Z}}$.

EXERCISE 3.4. Prove that as a group $\widehat{\mathbb{Z}}$ is the profinite completion of \mathbb{Z}.
ExERCISE 3.5. Prove that if $K_{f} \subset \mathbb{A}_{f}$ is a compact subset, there exist $m \in \mathbb{Z}-\{0\}$ such that K_{f} is a finite disjoint unions of points and of translates of $m \widehat{\mathbb{Z}}$.

Exercise 3.6. Prove the finer decomposition

$$
\begin{equation*}
\mathbb{A}=\mathbb{Q}+[-1 / 2,1 / 2]+\widehat{\mathbb{Z}} \tag{2.2}
\end{equation*}
$$

Since \mathbb{Q} is discrete in \mathbb{A} it is also closed and we may consider the quotient $\mathbb{Q} \backslash \mathbb{A}$ space; equipped with the quotient topology this quotient is locally compact separated space (Cf. the Appendix). Since $\widehat{\mathbb{Z}}$ is compact the same is true for the quotient $(\mathbb{Q}+\widehat{\mathbb{Z}}) \backslash \mathbb{A}$. We have the following

Theorem 3.4. The quotient $\mathbb{Q} \backslash \mathbb{A}$ is compact. We have an homeomorphism

$$
(\mathbb{Q}+\widehat{\mathbb{Z}}) \backslash \mathbb{A} \simeq \mathbb{R} / \mathbb{Z} \simeq S^{1}
$$

Proof. The images of

$$
\widehat{\mathbb{Z}} \rightarrow \mathbb{Q} \backslash \mathbb{A}, \quad[-1 / 2,1 / 2] \rightarrow \mathbb{Q} \backslash \mathbb{A}
$$

under the (continuous) projection map are compact images and their sum is $\mathbb{Q} \backslash \mathbb{A}($ by $(2.2))$. We leave the second statement as an exercise (observe that $\mathbb{Q} \cap \widehat{\mathbb{Z}}=\mathbb{Z}$).

3. The group of Idèles

The group of idèles, \mathbb{A}^{\times}is the multiplicative group of invertible elements (or units) of the ring \mathbb{A}. It decompose as the restricted product of the multiplicative groups $\left(\mathbb{Q}_{v}^{\times}\right)_{v \in \mathcal{V}}$ with respect to the sequence of subgroups $\left(\mathbb{Z}_{p}^{\times}\right)_{p}$:

$$
\mathbb{A}^{\times}=\left\{\left(x_{v}\right)_{v} \in \mathbb{A}, x_{v} \in \mathbb{Q}_{v}^{\times}, x_{p} \in \mathbb{Z}_{p}^{\times} \text {for a.e. } p\right\}=\prod_{v}^{\prime} \mathbb{Q}_{v}^{\times} \subset \mathbb{Q}_{\mathcal{V}}^{\times}=\prod_{v \in \mathcal{V}} \mathbb{Q}_{v}^{\times}
$$

In the same way, for $S \subset \mathcal{V}$, the group of units of \mathbb{A}_{S} is given by

$$
\mathbb{A}_{S}^{\times}=\left\{\left(x_{v}\right)_{v \in S}, x_{v} \in \mathbb{Q}_{v}^{\times}, x_{p} \in \mathbb{Z}_{p}^{\times} \text {for a.e. } p \in S\right\}=\prod_{v \in S}^{\prime} \mathbb{Q}_{v}^{\times} \subset \mathbb{Q}_{S}^{\times}=\prod_{v \in S} \mathbb{Q}_{v}^{\times} .
$$

In particular $\mathbb{A}_{f}^{\times}=\mathbb{A}_{\mathcal{V}_{f}}^{\times}=\mathbb{A}^{\times(\infty)}$ is called the group of finite ideles. We will realize the group \mathbb{A}_{S}^{\times}as a subgroup of \mathbb{A}^{\times}via

$$
\mathbb{A}_{S}^{\times} \simeq\left\{\left(x_{v}\right)_{v} \in \mathbb{A}^{\times}, x_{v}=1 \forall v \notin S\right\} ;
$$

3.1. The topology of idèles. What is called the adelic topology on the group of idèles \mathbb{A}^{\times}or any \mathbb{A}_{S}^{\times}is NOT a priori the restriction of the adelic topology relative the inclusion $\mathbb{A}^{\times} \subset \mathbb{A}\left(\right.$ or $\left.\mathbb{A}_{S}^{\times} \subset \mathbb{A}_{S}\right)$.

Definition 3.3. The adelic topology on \mathbb{A}^{\times}(and similarly for \mathbb{A}_{S}^{\times}) is either (prove that the two definitions are the same)

- The restriction of the product topology relative to the inclusion

$$
\prod_{v}^{\prime} Q_{\square}^{x} \subset \prod_{v} Q_{v}^{x} .
$$

In other terms a basis of open sets for \mathbb{A}^{\times}is given by set of the shape

$$
\Omega=\prod_{v} \Omega_{v}, \Omega_{v} \subset \mathbb{Q}_{v}^{\times} \text {open, } \Omega_{p}=\mathbb{Z}_{p}^{\times} \text {a.e. } p
$$

(observe that \mathbb{Z}_{p}^{\times}is an open compact subgroup of \mathbb{Q}_{p}^{\times}equipped with the p-adic topology).

- The restriction of the adelic topology on \mathbb{A}^{2} when \mathbb{A}^{\times}is realized as the closed subset

$$
\mathbb{A}^{\times} \simeq\left\{(x, y) \in \mathbb{A}^{2}, x y=1\right\} \subset \mathbb{A}^{2}
$$

via the map $x \in \mathbb{A}^{\times} \mapsto\left(x, x^{-1}\right) \in \mathbb{A}^{2}$.
Theorem 3.5. With this topology, \mathbb{A}^{\times}is a locally compact topological group (multiplication and inversion are continuous) of which the \mathbb{A}_{S}^{\times}are closed subgroups and $\widehat{\mathbb{Z}}^{\times}$is an open compact subgroup of \mathbb{A}_{f}^{\times}.

Proof. Since component-wise multiplication on \mathbb{A}^{2} and the involution $(x, y) \rightarrow(y, x)$ are continuous multiplication and inversion are continuous on \mathbb{A}^{\times}(taking the second definition of the adelic topology). Since \mathbb{Z}_{p}^{\times}is an open and compact subgroup of $\mathbb{Q}_{p}^{\times}, \widehat{\mathbb{Z}}^{\times}$ equipped with the adelic topology (which is nothing else than the Tychonoff topology) is open, compact and locally compact of subgroup $\mathbb{A}_{f} ;$ from this the local compactness of \mathbb{A}_{f}^{\times} and \mathbb{A}^{\times}follow by a translation argument.

Exercise 3.7. Prove that the relative topology on $\mathbb{A}^{\times} \subset \mathbb{A}$ is not the adelic topology defined above

Exercise 3.8. Prove that \mathbb{Z}_{p}^{\times}and $\widehat{\mathbb{Z}}$ are maximal compact subgroups of \mathbb{Q}_{p}^{\times}and \mathbb{A}_{f}^{\times} respectively: any compact subgroup is contained in it.

Exercise 3.9. Given $q_{f} \in \mathbb{A}_{f}^{\times} \cap \widehat{\mathbb{Z}}$, let

$$
K\left(q_{f}\right):=\left\{x_{f} \in \widehat{\mathbb{Z}}^{\times}, x_{f}\left(\bmod q_{f}\right)=1 \in \widehat{\mathbb{Z}} / q_{f} \widehat{\mathbb{Z}}\right\} .
$$

Prove that $K\left(q_{f}\right)$ is an open compact subgroup of $\widehat{\mathbb{Z}}^{\times}$which depends only on the positive integer

$$
q:=\prod_{p} p^{v_{p}\left(q_{f}\right)} .
$$

This group also noted $K(q)$ is called the principal congruence subgroup of level q; prove that as q varies, these groups form a basis of open neighborhoods of 1 in \mathbb{A}_{f}^{\times}. Prove that

$$
\widehat{\mathbb{Z}}^{\times} / K\left(q_{f}\right) \simeq(\mathbb{Z} / q \mathbb{Z})^{\times} .
$$

Let us now discuss how much "space" the subgroup of rational elements \mathbb{Q}^{\times}occupies into \mathbb{A}^{\times}.

Proposition 3.3. The group \mathbb{Q}^{\times}is discrete in \mathbb{A}^{\times}. One has the following decompositions

$$
\mathbb{A}_{f}^{\times}=\mathbb{Q}^{\times} \widehat{\mathbb{Z}}^{\times}, \mathbb{A}^{\times}=\mathbb{Q}^{\times} \mathbb{R}^{\times} \widehat{\mathbb{Z}}^{\times}
$$

and

$$
\mathbb{Q}^{\times} \backslash \mathbb{A}_{f} / K\left(q_{f}\right) \simeq(\mathbb{Z} / q \mathbb{Z})^{\times}
$$

On the other hand \mathbb{Q}^{\times}is not copmpact in \mathbb{A}^{\times}. To see the obstruction we introduce
Definition 3.4. The adelic modulus (or adelic absolute value) is the map given by the converging product

$$
|\cdot|_{\mathbb{A}}: x=\left(x_{v}\right)_{v} \in \mathbb{A}^{\times} \mapsto|x|_{\mathbb{A}}:=\prod_{v}\left|x_{v}\right|_{v} \in \mathbb{R}_{>0} .
$$

Indeed this is well defined since for since for a.e. $p,\left|x_{p}\right|_{p} \leqslant 1$. Notice that $|\cdot|_{\mathbb{A}}$ is identically 0 on $\mathbb{A}-\mathbb{A}^{\times}$while on \mathbb{A}^{\times}the above infinite product is converging (to a non-zero limit) since for a.e. $p,\left|x_{p}\right|_{p} \leqslant 1$.

ExErcise 3.10. Prove that $|\cdot|_{\mathbb{A}}: \mathbb{A}^{\times} \rightarrow \mathbb{R}_{>0}$ is a continuous group homomorphism.
We denote by \mathbb{A}^{1} the group of ideles of modulus 1 (the kernel of $|\cdot|_{\mathbb{A}}$): this is a closed subgroup. We have

Proposition 3.4 (Product formula). We have

$$
\mathbb{A}^{1}=\mathbb{Q}^{\times} \times \widehat{\mathbb{Z}}
$$

In particular for any $x_{\mathbb{Q}} \in \mathbb{Q}^{\times}$one has the

$$
\text { (Product formula) }|x|_{\mathbb{A}}=|x|_{\infty} \prod_{p}|x|_{p}=1
$$

Proof. If is obvious that $\widehat{\mathbb{Z}}^{\times} \subset \mathbb{A}^{1}$ while for $x_{\mathbb{Q}} \in \mathbb{Q}^{\times}$

$$
|x|_{\mathbb{A}}=|x|_{\infty} \prod_{p}|x|_{p}=\prod_{p} p^{v_{p}(x)} \prod_{p} p^{-v_{p}(x)}=1 .
$$

Given $x=\left(x_{\mathbb{R}}, x_{f}\right) \in \mathbb{R}^{\times} \times \mathbb{A}_{f}^{\times}$of modulus 1 , we have $x_{\mathbb{R}}= \pm\left|x_{f}\right|_{\mathbb{A}}^{-1} \in \mathbb{Q}^{\times}$, therefore up to multiplying x by a rational number we may assume that $x=\left(1, x_{f}\right)$ and $\left|x_{f}\right|_{\mathbb{A}}=1$ which is equivalent to $\left|x_{p}\right|_{p}=1$ for every p or in other terms $\left(x_{p}\right)_{p} \in \widehat{\mathbb{Z}}^{\times}$.
\square Observe that

$$
\left|\mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}\right|_{\mathbb{A}}=\left|\mathbb{R}^{\times}\right|_{\mathbb{A}}=\mathbb{R}_{>0}
$$

is not compact, therefore

$$
\text { The quotient } \mathbb{Q}^{\times} \backslash \mathbb{A}^{\times} \text {is not compact. }
$$

This is the only obstruction:
THEOREM 3.6. The group \mathbb{Q}^{\times}is discrete in \mathbb{A}^{1} and the quotient $\mathbb{Q}^{\times} \backslash \mathbb{A}^{1}$ is compact.
Proof. Since $\mathbb{Q}^{2} \subset \mathbb{A}^{2}$ is discrete it follows (from the definition of the adelic topology and the fact that \mathbb{A}^{1} is closed that \mathbb{Q}^{\times}is discrete in \mathbb{A}^{1}. The compactness of $\mathbb{Q}^{\times} \backslash \mathbb{A}^{1}$ follows from the decomposition $\mathbb{A}^{1}=\mathbb{Q}^{\times} \times \widehat{\mathbb{Z}}$ and the compactness of $\widehat{\mathbb{Z}}^{\times}$.

Finally we observe that strong approximation does not hold for the ideles:
Exercise 3.11. Prove that

$$
\mathbb{Q}^{\times} \backslash \mathbb{A}_{f}^{\times} / K\left(q_{f}\right) \simeq(\mathbb{Z} / q \mathbb{Z})^{\times}
$$

where $q=\prod_{p} p^{v_{p}\left(q_{f}\right)}$. In particular \mathbb{Q}^{\times}is not dense in \mathbb{A}_{f}^{\times}.
REMARK 3.1. As we will see in greater generality later the decomposition $\mathbb{A}_{f}^{\times}=\mathbb{Q}^{\times} \times \widehat{\mathbb{Z}}^{\times}$ is equivalent to the fundamental

ThEOREM 3.7. The ring \mathbb{Z} is a principal ideal ring: any ideal $0 \neq I \subset \mathbb{Z}$ is of the shape $m \mathbb{Z}$ for some $m \in \mathbb{Z}$.

