
CHAPTER 4

Higher dimensional adelic structures

In this chapter we discuss and describe the structure of higher dimensional adelic objects;
the most basic one being the free A-module An equipped with the adelic product topology
and subsets of it. We first recall the following:

1. Finitely generated modules over principal ideal rings

Let R be a (commutative) ring; we recall that an R-module L is finitely generated if
there exists some finite set {ei} ⇢ L such that

L =
X

i

Rei.

An R-module is free is there exists a finite generating set {ei} ⇢ L such that any element
of L can be written in a unique way as a (finite) R-linear combination of elements of the
ei: the set {ei} ⇢ L is then called a (free) R-basis of L and this is written

L =
M

i

Rei.

A basis is not unique but its cardinality depends only on L and is called the R-rank of L,
rkR(L). When R is a principal ideal ring, finitely generated R-modules are well understood:

Theorem 4.1. Let L be a finitely generated R-module; L decompose as a direct sum of
a free R-module and of a torsion R-module

L = L0 � Ltors

where

Ltors = {x 2 L, existsr 2 R, r.x = 0L}
denote the torsion part of L and L0 ⇢ L is free; in particular L is free i↵ Ltors = 0. The
free module L0 is not unique but is rank depends only on L is is again called the R-rank of
L, rkR(L).

If L0 ⇢ L is a submodule, L0 is finitely generated and one has

L0
tors ⇢ Ltors, rkR(L

0) 6 rkR(L).

In particular if L is free then L0 is free and there exist a basis of L

{e1, · · · , er0 , · · · er}
and elements of R, dr0 |dr0�1| · · · |d1 6= 0 such that

{d1e1, · · · , dr0er0}
is a basis of L0.
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2. Free A-module

For any n > 1, we consider the free A-module

An = {x = (x1, · · · , xn), xi 2 A}.
One can check that this can be written in restricted product form

An = {(xv)v2V , xv 2 Qn
v , xp 2 Zn

p for a.e. p} =
Y0

v

Qn
v

the restricted product being wrt the sequence of free modules (Zn
p )p. For any V ⇢ V, we

can form similarly the AV -modules

An
V =

Y0

v2V
Qn

v ' {(xv)v 2 An, xv = 0 for all v 62 V }

in which Qn embeds as a Q-vecor space via the map �V . We equip An with the adelic
product topology and

Proposition 4.1. The following properties hold:

• An is a topological A-module (addition and multiplication by scalars are continu-
ous).

• For any V ⇢ V , An
V ⇢ An is closed.

• �V : Qn ! An is discrete and the quotient Qn\An = (Q\A)n is compact.
• (Weak approximation) For any finite V ⇢ V, �V : Qn ! An

V is dense.
• (Strong approximation) For any v 2 V, �(v) : Qn ! (A(v))n is dense. In particular
�f : Qn ! An

f is dense.

Proposition 4.2. Let B = {ei, i = 1 · · ·n} be a Q-basis of Qn, then B is a free basis
of the A-module An (and of any An

V for V ⇢ V):
An =

M

i

Aei.

Moreover we have
An = {(xv)v 2

Y

v

Qv, xp 2 Lp a.e. p}

where Lp is the free Zp-module (and the closure of
P

i Zei in Qn
p )

Lp =
M

i

Zpei ⇢ Qn
p .

In other terms An is the restricted product of the Qn
v wrt to the sequence (Lp)p. Moreover

the sequence (Lp)p has the property that

Lp = Zn
p

for a.e. p.

Proof. ⇤
Remark 2.1. Observe that these two representations as restricted product are indeed

the same because (chasing denominators), there always exists m 2 Z� {0} such that

m
X

i

Zei ⇢ Zn ⇢ 1

m

X

i

Zei
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which implies that for p not dividing m

Lp = Zn
p .

3. Local-global principles for lattices

Definition 4.1. A lattice L ⇢ Qn is a finitely generated Z-module generating Qn as a
Q-vector space. we denote by L(Qn) the set of all lattices in Qn

This definition admits the following ”local” counterpart:

Definition 4.2. For v 2 V, let Zv be the closure1 of Z in Qv; a lattice Lv ⇢ Qn
v is a

finitely generated Zv-module generating Qn
v as a Qv-vector space. We denote by L(Qn

v ) the
set of all lattices in Qn

v .

Remark 3.1. Since Z (resp. Zv) is a principal ideal ring, a lattice L in Qn (resp. Qn
v )

is precisely a free Z (resp. Zv)-module of rank n

L =
M

i=1···n
Zei

where B = {ei} is a basis of Qn.

Let L ⇢ L(Qn) be a rational lattice and let B = {ei} be a basis of Qn generating L. In
the previous section we have associated to such a lattice the sequence of Qv-lattices (Lv)v,

Lv =
X

i

Zvei ⇢ Qn
v ;

alternatively Lv is defined as the closure of L in Qn
v . This sequence satisfies the following

property: one has
Lp = Zn

p for a.e. p.

Observe also that the product
Q

p Lp viewed as a subset of An
f equals

Y

p

Lp =
X

i

bZei = bL

the closure of L in An
f .

This collection of ”local” data (Lv)v su�ce to recover the lattice L: in fact it is su�cient
to consider only the place at 1 since L1 = L ⇢ Rn. On the other hand knowing Lp for a
given p is not su�cient to distinguish L from other rational lattices but the data, (Lp)p, for
all the finite places does:

Theorem 4.2 (Local-global principle for lattices). Let L(An
f ) denote restricted product

Y0

p

Ln(Qp) = {(Lp)p, Lp 2 Ln(Qp), such that Lp = Zn
p for a.e. p};

the map

L(Qn) 7! Q0

p2P
L(Qn

p )

L 7! (Lp)p

1
for v = 1, Q

v

= R and Z
v

= Z
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is 1� 1 and its converse is the map

(Lp)p 7! L =
\

p

Qn \ Lp.

Proof. We have seen already that L 7! (Lp)p maps L(Qn) to
Q0

p
L(Qn

p ). Let us show

that it has a converse is given by the map

(Lp)p 7!
\

p

Qn \ Lp.

Given any (Lp)p 2 Q0

p
Ln(Qp), let L0 =

T
pQn \ Lp ⇢ Qn, we first show that L0 is a

lattice. Let S be the finite set of primes such that Lp 6= Zn
p . For any such p there exist

↵p = ↵p(Lp) > 0 such that

p↵pZn
p ⇢ Lp ⇢ p�↵

pZn
p

and for N =
Q

p2S p↵p we have

NZn =
\

p

Qn \NZn
p ⇢ L0 ⇢

\

p

Qn \N�1Zn
p = N�1Zn

so L0 is a lattice.
Suppose now that the (Lp)p are obtained as the closure of some lattice L ⇢ Qn: we will

show that L0 = L. Observe that Lp is the set of elements in Qn
p whose coordinates in the

basis {ei} are p-adic integers. Therefore L0 is the set of element in Qn whose coordinates
in the same basis are p-adic integers for every p: meaning integers. ⇤

4. Adelic points of a vector space

Let
K =

M

i=1,··· ,n
Qei

be a general n-dimensional Q-vector space with a choice of a Q-basis B = {ei, i = 1 · · ·n};
we denote by

KV = K(A) =
M

Aei ' An

the free rank-n, A-module with basis the set B. The vector space K embeds into K(A) in
the obvious way. In the same way we define for any S ⇢ V,

K(AS) =
M

ASei ' An
S

in which K embeds via �S . In particular for v 2 V
Kv = K(Qv) =

M
Qvei ' Qn

v .

For v = p, we denote by

LB,p =
X

i

Zpei ⇢ Kp

the free Zp-module generated by B. With these notations we have

K(A) =
Y0

v

Kv = {(xv)v2V , xv 2 Kv, xp 2 LB,p for a.e. p}
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and
K(AS) ' {(xv)v2V 2 K(A), xv = 0 for v 62 V }

4.1. Topology. The space K(A) is obviously isomorphic to An as a A-module (by
chosing some basis B) is therefore inherit the adelic topology. This topology does not
depend on the choice of B, because two basis are transform into each other by a Q-linear
map which is an homeomorphism. The following are immediate consequences of the case
K = Q:

Theorem 4.3. For n > 1, one has

• For any V ⇢ V, the K(AV ) embeds as a closed subset of K(A) (the subset of
(xv)v 2 K(A) such that xv = 0 for all v 62 V ).

• (Discretness) K ,! K(A) (embedded diagonally via �V) is discrete.
• (Weak approximation) For any V ⇢ V finite, �V (K) is dense in K(AV ).
• (Strong approximation) For any v 2 V, �(v)(K) is dense in K(A(v)).

4.2. Tensor products. These constructions can be made more systematic with using
the notion of tensor product of two Q vector spaces (cf. Appendix): givenK,L two Q-vector
spaces (not necessarily finite dimensional), there exists a (unique up to unique isomorphism)
Q-vector space K ⌦Q L and a bilinear map

⌦ : (u, v) 2 K ⇥ L ! u⌦ v 2 K ⌦Q L

such that for any bilinear map into another Q-vector space

f : (u, v) 2 K ⇥ L ! f(u, v) 2 M

there exists a linear map f̃ : K ⌦ L ! M such that

f̃(u⌦ v) = f(u, v).

It follows from these properties that the map⌦ is injective and moreover, if B = {ui}i2I , B0 =
{vj}j2J are bases of K and L,

B ⌦ B0 = {ui ⌦ vj}(i,j)2I⇥J

is a basis of K ⌦ L.

Exercise 4.1. Check that when one applies this construction to K and L = Qv,AV or
A one obtains respectively

K ⌦Qv = K(Qv), K ⌦ AV = K(AV ), K ⌦ A = K(A)

We also have the following:

Proposition 4.3. Let f : V ! W be a linear map of Q-vector spaces, then f extends
to an A-linear map on f : V (A) ! W (A) which is continuous for the adelic topology.

4.3. Lattices in vector spaces. The discussion of Section 3 generalize to the setting
of finite dimensional vector spaces in an obvious way:

Definition 4.3. Let V be either a Q or a Qv finite dimensional vector space. A lattice
L ⇢ V is a finitely generated Z or Zv-module generating V as a vector space. we denote by
L(V ) the set of all lattices in V

We have the following extension of the local-global principle for lattices:
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Theorem 4.4. Let V be a n-dimensional Q-vector space and L0 ⇢ V a fixed lattice.
For any lattice

L =
nX

i=1

Zei 2 L(V )

we denote by

Lv = L

nX

i=1

Zvei 2 L(Vv)

the corresponding local lattice. The map

L 7! (Lp)p2V
f

is a bijection between L(V ) and
Y0

p

L(Vp) = {(Lp)p, Lp 2 L(Vp), Lp = L0,p for a.e. p}

whose inverse is given by
(Lp)p 7! L = \pV \ Lp ⇢ V.

5. Adelic points of an algebraic variety

Let
P1, · · · , Pr ⇢ Q[X1, · · ·Xn]

be a family of polynomials in n variables and let

I =
X

Q.Pi ⇢ Q[X1, · · ·xn]
be the ideal they generate. We let

VP
1

,··· ,P
r

(Q) = VI(Q) ⇢ Qn

be the subset of n-uples x 2 Qn satisfying

(5.1) P1(x) = · · · = Pr(x) = 0,

or equivalently

(5.2) 8P 2 I, P (x) = 0

The set VI(Q) is the set of Q-points of the algebraic variety defined by the equations (5.1)
or (5.2).

Let R be a Q algebra; we can evaluate any polynomial P (X) 2 Q[X1, · · · , Xn] at some
R-valued n-uples x 2 Rn: if

P (X1, · · ·Xn) =
XX

k
1

,··· ,k
n

ak
1

,··· ,k
n

Xk
1

1 · · ·Xk
n

n

one has
P (x) =

XX

k
1

,··· ,k
n

ak
1

,··· ,k
n

xk11 · · ·xknn 2 R.

We can then define the set of R-point of VI as

VI(R) = {x 2 Rn, Pi(x) = 0, i = 1, · · · , r}
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Applying this to R = A or more generally AV we obtain

VI(AV ) = {x 2 An
V , Pi(x) = 0, i = 1, · · · , r} =

Y0

v2V
VI(Qv)

= {(xv)v 2 An
V , xv 2 VI(Qv), xp 2 Zn

p for a.e. p 2 V }.
We have

VI(Q) = Qn \ VI(AV ) ⇢ VI(AV ).

Proposition 4.4. For R any of the ring Qv, AV , A, the sets VI(R) are closed subsets
of Rn. In particular if K is a vector subspace of Qn the R-submodule K(R) ⇢ Rn generated
by the elements of K is closed.

Proof. Indeed each function x ! Pi(x) is a continuous function on Rn for the corre-
sponding topology. ⇤

Remark 5.1. Since Qn is discrete in An, VI(Q) is clearly discrete in VI(A). On the
other hand neither the weak or the strong approximation theorems hold for VI in general:
there exist algebraic varieties such that VI(Q) is empty and VI(Qv) is non-empty for every
v!


