CHAPTER 4

Higher dimensional adelic structures

In this chapter we discuss and describe the structure of higher dimensional adelic objects; the most basic one being the free \mathbb{A}-module \mathbb{A}^{n} equipped with the adelic product topology and subsets of it. We first recall the following:

1. Finitely generated modules over principal ideal rings

Let R be a (commutative) ring; we recall that an R-module L is finitely generated if there exists some finite set $\left\{\mathbf{e}_{i}\right\} \subset L$ such that

$$
L=\sum_{i} R \mathbf{e}_{i}
$$

An R-module is free is there exists a finite generating set $\left\{\mathbf{e}_{i}\right\} \subset L$ such that any element of L can be written in a unique way as a (finite) R-linear combination of elements of the \mathbf{e}_{i} : the set $\left\{\mathbf{e}_{i}\right\} \subset L$ is then called a (free) R-basis of L and this is written

$$
L=\bigoplus_{i} R \mathbf{e}_{i}
$$

A basis is not unique but its cardinality depends only on L and is called the R-rank of L, $\mathrm{rk}_{R}(L)$. When R is a principal ideal ring, finitely generated R-modules are well understood:

Theorem 4.1. Let L be a finitely generated R-module; L decompose as a direct sum of a free R-module and of a torsion R-module

$$
L=L^{\prime} \oplus L_{\text {tors }}
$$

where

$$
L_{\text {tors }}=\left\{x \in L, \text { existsr } \in R, r . x=0_{L}\right\}
$$

denote the torsion part of L and $L^{\prime} \subset L$ is free; in particular L is free iff $L_{\text {tors }}=0$. The free module L^{\prime} is not unique but is rank depends only on L is is again called the R-rank of $L, \mathrm{rk}_{R}(L)$.

If $L^{\prime} \subset L$ is a submodule, L^{\prime} is finitely generated and one has

$$
L_{\text {tors }}^{\prime} \subset L_{\text {tors }}, \operatorname{rk}_{R}\left(L^{\prime}\right) \leqslant \operatorname{rk}_{R}(L)
$$

In particular if L is free then L^{\prime} is free and there exist a basis of L

$$
\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{r^{\prime}}, \cdots \mathbf{e}_{r}\right\}
$$

and elements of $R, d_{r^{\prime}}\left|d_{r^{\prime}-1}\right| \cdots \mid d_{1} \neq 0$ such that

$$
\left\{d_{1} \mathbf{e}_{1}, \cdots, d_{r^{\prime}} \mathbf{e}_{r^{\prime}}\right\}
$$

is a basis of L^{\prime}.

2. Free \mathbb{A}-module

For any $n \geqslant 1$, we consider the free \mathbb{A}-module

$$
\mathbb{A}^{n}=\left\{\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right), x_{i} \in \mathbb{A}\right\}
$$

One can check that this can be written in restricted product form

$$
\mathbb{A}^{n}=\left\{\left(\mathbf{x}_{v}\right)_{v \in \mathcal{V}}, \mathbf{x}_{v} \in \mathbb{Q}_{v}^{n}, \mathbf{x}_{p} \in \mathbb{Z}_{p}^{n} \text { for a.e. } p\right\}=\prod_{v}^{\prime} \mathbb{Q}_{v}^{n}
$$

the restricted product being wrt the sequence of free modules $\left(\mathbb{Z}_{p}^{n}\right)_{p}$. For any $V \subset \mathcal{V}$, we can form similarly the \mathbb{A}_{V}-modules

$$
\mathbb{A}_{V}^{n}=\prod_{v \in V}^{\prime} \mathbb{Q}_{v}^{n} \simeq\left\{\left(\mathbf{x}_{v}\right)_{v} \in \mathbb{A}^{n}, \mathbf{x}_{v}=0 \text { for all } v \notin V\right\}
$$

in which \mathbb{Q}^{n} embeds as a \mathbb{Q}-vecor space via the map δ_{V}. We equip \mathbb{A}^{n} with the adelic product topology and

Proposition 4.1. The following properties hold:

- \mathbb{A}^{n} is a topological \mathbb{A}-module (addition and multiplication by scalars are continuous).
- For any $V \subset \mathcal{V}, \mathbb{A}_{V}^{n} \subset \mathbb{A}^{n}$ is closed.
- $\delta_{\mathcal{V}}: \mathbb{Q}^{n} \rightarrow \mathbb{A}^{n}$ is discrete and the quotient $\mathbb{Q}^{n} \backslash \mathbb{A}^{n}=(\mathbb{Q} \backslash \mathbb{A})^{n}$ is compact.
- (Weak approximation) For any finite $V \subset \mathcal{V}, \delta_{V}: \mathbb{Q}^{n} \rightarrow \mathbb{A}_{V}^{n}$ is dense.
- (Strong approximation) For any $v \in \mathcal{V}, \delta^{(v)}: \mathbb{Q}^{n} \rightarrow\left(\mathbb{A}^{(v)}\right)^{n}$ is dense. In particular $\delta_{f}: \mathbb{Q}^{n} \rightarrow \mathbb{A}_{f}^{n}$ is dense.
Proposition 4.2. Let $\mathcal{B}=\left\{\mathbf{e}_{i}, i=1 \cdots n\right\}$ be $a \mathbb{Q}$-basis of \mathbb{Q}^{n}, then \mathcal{B} is a free basis of the \mathbb{A}-module \mathbb{A}^{n} (and of any \mathbb{A}_{V}^{n} for $\left.V \subset \mathcal{V}\right)$:

$$
\mathbb{A}^{n}=\bigoplus_{i} \mathbb{A} \mathbf{e}_{i}
$$

Moreover we have

$$
\mathbb{A}^{n}=\left\{\left(\mathbf{x}_{v}\right)_{v} \in \prod_{v} \mathbb{Q}_{v}, \mathbf{x}_{p} \in L_{p} \text { a.e. } p\right\}
$$

where L_{p} is the free \mathbb{Z}_{p}-module (and the closure of $\sum_{i} \mathbb{Z} \mathbf{e}_{i}$ in \mathbb{Q}_{p}^{n})

$$
L_{p}=\bigoplus_{i} \mathbb{Z}_{p} \mathbf{e}_{i} \subset \mathbb{Q}_{p}^{n}
$$

In other terms \mathbb{A}^{n} is the restricted product of the \mathbb{Q}_{v}^{n} wrt to the sequence $\left(L_{p}\right)_{p}$. Moreover the sequence $\left(L_{p}\right)_{p}$ has the property that

$$
L_{p}=\mathbb{Z}_{p}^{n}
$$

for a.e. p.
Proof.
REmARK 2.1. Observe that these two representations as restricted product are indeed the same because (chasing denominators), there always exists $m \in \mathbb{Z}-\{0\}$ such that

$$
m \sum_{i} \mathbb{Z} \mathbf{e}_{i} \subset \mathbb{Z}^{n} \subset \frac{1}{m} \sum_{i} \mathbb{Z} \mathbf{e}_{i}
$$

which implies that for p not dividing m

$$
L_{p}=\mathbb{Z}_{p}^{n} .
$$

3. Local-global principles for lattices

Definition 4.1. A lattice $L \subset \mathbb{Q}^{n}$ is a finitely generated \mathbb{Z}-module generating \mathbb{Q}^{n} as a \mathbb{Q}-vector space. we denote by $\mathcal{L}\left(\mathbb{Q}^{n}\right)$ the set of all lattices in \mathbb{Q}^{n}

This definition admits the following "local" counterpart:
Definition 4.2. For $v \in \mathcal{V}$, let \mathbb{Z}_{v} be the closure ${ }^{1}$ of \mathbb{Z} in \mathbb{Q}_{v}; a lattice $L_{v} \subset \mathbb{Q}_{v}^{n}$ is a finitely generated \mathbb{Z}_{v}-module generating \mathbb{Q}_{v}^{n} as a \mathbb{Q}_{v}-vector space. We denote by $\mathcal{L}\left(\mathbb{Q}_{v}^{n}\right)$ the set of all lattices in \mathbb{Q}_{v}^{n}.

Remark 3.1. Since \mathbb{Z} (resp. \mathbb{Z}_{v}) is a principal ideal ring, a lattice L in $\mathbb{Q}^{n}\left(\right.$ resp. $\left.\mathbb{Q}_{v}^{n}\right)$ is precisely a free \mathbb{Z} (resp. \mathbb{Z}_{v})-module of rank n

$$
L=\bigoplus_{i=1 \cdots n} \mathbb{Z} \mathbf{e}_{i}
$$

where $\mathcal{B}=\left\{\mathbf{e}_{i}\right\}$ is a basis of \mathbb{Q}^{n}.
Let $L \subset \mathcal{L}\left(\mathbb{Q}^{n}\right)$ be a rational lattice and let $\mathcal{B}=\left\{\mathbf{e}_{i}\right\}$ be a basis of \mathbb{Q}^{n} generating L. In the previous section we have associated to such a lattice the sequence of \mathbb{Q}_{v}-lattices $\left(L_{v}\right)_{v}$,

$$
L_{v}=\sum_{i} \mathbb{Z}_{v} \mathbf{e}_{i} \subset \mathbb{Q}_{v}^{n} ;
$$

alternatively L_{v} is defined as the closure of L in \mathbb{Q}_{v}^{n}. This sequence satisfies the following property: one has

$$
L_{p}=\mathbb{Z}_{p}^{n} \text { for a.e. } p .
$$

Observe also that the product $\prod_{p} L_{p}$ viewed as a subset of \mathbb{A}_{f}^{n} equals

$$
\prod_{p} L_{p}=\sum_{i} \widehat{\mathbb{Z}} \mathbf{e}_{i}=\widehat{L}
$$

the closure of L in \mathbb{A}_{f}^{n}.
This collection of "local" data $\left(L_{v}\right)_{v}$ suffice to recover the lattice L: in fact it is sufficient to consider only the place at ∞ since $L_{\infty}=L \subset \mathbb{R}^{n}$. On the other hand knowing L_{p} for a given p is not sufficient to distinguish L from other rational lattices but the data, $\left(L_{p}\right)_{p}$, for all the finite places does:

Theorem 4.2 (Local-global principle for lattices). Let $\mathcal{L}\left(\mathbb{A}_{f}^{n}\right)$ denote restricted product

$$
\prod_{p}^{\prime} \mathcal{L}_{n}\left(\mathbb{Q}_{p}\right)=\left\{\left(L_{p}\right)_{p}, L_{p} \in \mathcal{L}_{n}\left(\mathbb{Q}_{p}\right), \text { such that } L_{p}=\mathbb{Z}_{p}^{n} \text { for a.e. } p\right\}
$$

the map

$$
\begin{array}{rll}
\mathcal{L}\left(\mathbb{Q}^{n}\right) & \mapsto & \prod_{p \in \mathcal{P}}^{\prime} \mathcal{L}\left(\mathbb{Q}_{p}^{n}\right) \\
L & \mapsto & \left(L_{p}\right)_{p}
\end{array}
$$

[^0]is $1-1$ and its converse is the map
$$
\left(L_{p}\right)_{p} \mapsto L=\bigcap_{p} \mathbb{Q}^{n} \cap L_{p}
$$

Proof. We have seen already that $L \mapsto\left(L_{p}\right)_{p}$ maps $\mathcal{L}\left(\mathbb{Q}^{n}\right)$ to $\prod_{p}^{\prime} \mathcal{L}\left(\mathbb{Q}_{p}^{n}\right)$. Let us show that it has a converse is given by the map

$$
\left(L_{p}\right)_{p} \mapsto \bigcap_{p} \mathbb{Q}^{n} \cap L_{p}
$$

Given any $\left(L_{p}\right)_{p} \in \prod_{p}^{\prime} \mathcal{L}_{n}\left(\mathbb{Q}_{p}\right)$, let $L^{\prime}=\bigcap_{p} \mathbb{Q}^{n} \cap L_{p} \subset \mathbb{Q}^{n}$, we first show that L^{\prime} is a lattice. Let S be the finite set of primes such that $L_{p} \neq \mathbb{Z}_{p}^{n}$. For any such p there exist $\alpha_{p}=\alpha_{p}\left(L_{p}\right) \geqslant 0$ such that

$$
p^{\alpha_{p}} \mathbb{Z}_{p}^{n} \subset L_{p} \subset p^{-\alpha_{p}} \mathbb{Z}_{p}^{n}
$$

and for $N=\prod_{p \in S} p^{\alpha_{p}}$ we have

$$
N \mathbb{Z}^{n}=\bigcap_{p} \mathbb{Q}^{n} \cap N \mathbb{Z}_{p}^{n} \subset L^{\prime} \subset \bigcap_{p} \mathbb{Q}^{n} \cap N^{-1} \mathbb{Z}_{p}^{n}=N^{-1} \mathbb{Z}^{n}
$$

so L^{\prime} is a lattice.
Suppose now that the $\left(L_{p}\right)_{p}$ are obtained as the closure of some lattice $L \subset \mathbb{Q}^{n}$: we will show that $L^{\prime}=L$. Observe that L_{p} is the set of elements in \mathbb{Q}_{p}^{n} whose coordinates in the basis $\left\{\mathbf{e}_{i}\right\}$ are p-adic integers. Therefore L^{\prime} is the set of element in \mathbb{Q}^{n} whose coordinates in the same basis are p-adic integers for every p : meaning integers.

4. Adelic points of a vector space

Let

$$
K=\bigoplus_{i=1, \cdots, n} \mathbb{Q} \mathbf{e}_{i}
$$

be a general n-dimensional \mathbb{Q}-vector space with a choice of a \mathbb{Q}-basis $\mathcal{B}=\left\{\mathbf{e}_{i}, i=1 \cdots n\right\}$; we denote by

$$
K_{\mathcal{V}}=K(\mathbb{A})=\bigoplus \mathbb{A} \mathbf{e}_{i} \simeq \mathbb{A}^{n}
$$

the free rank- n, \mathbb{A}-module with basis the set \mathcal{B}. The vector space K embeds into $K(\mathbb{A})$ in the obvious way. In the same way we define for any $S \subset \mathcal{V}$,

$$
K\left(\mathbb{A}_{S}\right)=\bigoplus \mathbb{A}_{S} \mathbf{e}_{i} \simeq \mathbb{A}_{S}^{n}
$$

in which K embeds via δ_{S}. In particular for $v \in \mathcal{V}$

$$
K_{v}=K\left(\mathbb{Q}_{v}\right)=\bigoplus \mathbb{Q}_{v} \mathbf{e}_{i} \simeq \mathbb{Q}_{v}^{n}
$$

For $v=p$, we denote by

$$
L_{\mathcal{B}, p}=\sum_{i} \mathbb{Z}_{p} \mathbf{e}_{i} \subset K_{p}
$$

the free \mathbb{Z}_{p}-module generated by \mathcal{B}. With these notations we have

$$
K(\mathbb{A})=\prod_{v}^{\prime} K_{v}=\left\{\left(\mathbf{x}_{v}\right)_{v \in \mathcal{V}}, \mathbf{x}_{v} \in K_{v}, \mathbf{x}_{p} \in L_{\mathcal{B}, p} \text { for a.e. } p\right\}
$$

and

$$
K\left(\mathbb{A}_{S}\right) \simeq\left\{\left(\mathbf{x}_{v}\right)_{v \in \mathcal{V}} \in K(\mathbb{A}), \mathbf{x}_{v}=0 \text { for } v \notin V\right\}
$$

4.1. Topology. The space $K(\mathbb{A})$ is obviously isomorphic to \mathbb{A}^{n} as a \mathbb{A}-module (by chosing some basis \mathcal{B}) is therefore inherit the adelic topology. This topology does not depend on the choice of \mathcal{B}, because two basis are transform into each other by a \mathbb{Q}-linear map which is an homeomorphism. The following are immediate consequences of the case $K=\mathbb{Q}$:

Theorem 4.3. For $n \geqslant 1$, one has

- For any $V \subset \mathcal{V}$, the $K\left(\mathbb{A}_{V}\right)$ embeds as a closed subset of $K(\mathbb{A})$ (the subset of $\left(\mathbf{x}_{v}\right)_{v} \in K(\mathbb{A})$ such that $\mathbf{x}_{v}=0$ for all $\left.v \notin V\right)$.
- (Discretness) $K \hookrightarrow K(\mathbb{A})$ (embedded diagonally via $\delta_{\mathcal{V}}$) is discrete.
- (Weak approximation) For any $V \subset \mathcal{V}$ finite, $\delta_{V}(K)$ is dense in $K\left(\mathbb{A}_{V}\right)$.
- (Strong approximation) For any $v \in \mathcal{V}, \delta^{(v)}(K)$ is dense in $K\left(\mathbb{A}^{(v)}\right)$.
4.2. Tensor products. These constructions can be made more systematic with using the notion of tensor product of two \mathbb{Q} vector spaces (cf. Appendix): given K, L two \mathbb{Q}-vector spaces (not necessarily finite dimensional), there exists a (unique up to unique isomorphism) \mathbb{Q}-vector space $K \otimes_{\mathbb{Q}} L$ and a bilinear map

$$
\otimes:(u, v) \in K \times L \rightarrow u \otimes v \in K \otimes_{\mathbb{Q}} L
$$

such that for any bilinear map into another \mathbb{Q}-vector space

$$
f:(u, v) \in K \times L \rightarrow f(u, v) \in M
$$

there exists a linear map $\tilde{f}: K \otimes L \rightarrow M$ such that

$$
\tilde{f}(u \otimes v)=f(u, v)
$$

It follows from these properties that the map \otimes is injective and moreover, if $\mathcal{B}=\left\{u_{i}\right\}_{i \in I}, \mathcal{B}^{\prime}=$ $\left\{v_{j}\right\}_{j \in J}$ are bases of K and L,

$$
\mathcal{B} \otimes \mathcal{B}^{\prime}=\left\{u_{i} \otimes v_{j}\right\}_{(i, j) \in I \times J}
$$

is a basis of $K \otimes L$.
Exercise 4.1. Check that when one applies this construction to K and $L=\mathbb{Q}_{v}, \mathbb{A}_{V}$ or \mathbb{A} one obtains respectively

$$
K \otimes \mathbb{Q}_{v}=K\left(\mathbb{Q}_{v}\right), K \otimes \mathbb{A}_{V}=K\left(\mathbb{A}_{V}\right), K \otimes \mathbb{A}=K(\mathbb{A})
$$

We also have the following:
Proposition 4.3. Let $f: V \rightarrow W$ be a linear map of \mathbb{Q}-vector spaces, then f extends to an \mathbb{A}-linear map on $f: V(\mathbb{A}) \rightarrow W(\mathbb{A})$ which is continuous for the adelic topology.
4.3. Lattices in vector spaces. The discussion of Section 3 generalize to the setting of finite dimensional vector spaces in an obvious way:

Definition 4.3. Let V be either a \mathbb{Q} or $a \mathbb{Q}_{v}$ finite dimensional vector space. A lattice $L \subset V$ is a finitely generated \mathbb{Z} or \mathbb{Z}_{v}-module generating V as a vector space. we denote by $\mathcal{L}(V)$ the set of all lattices in V

We have the following extension of the local-global principle for lattices:

Theorem 4.4. Let V be a n-dimensional \mathbb{Q}-vector space and $L_{0} \subset V$ a fixed lattice. For any lattice

$$
L=\sum_{i=1}^{n} \mathbb{Z} \mathbf{e}_{i} \in \mathcal{L}(V)
$$

we denote by

$$
L_{v}=\bar{L} \sum_{i=1}^{n} \mathbb{Z}_{v} \mathbf{e}_{i} \in \mathcal{L}\left(V_{v}\right)
$$

the corresponding local lattice. The map

$$
L \mapsto\left(L_{p}\right)_{p \in \mathcal{V}_{f}}
$$

is a bijection between $\mathcal{L}(V)$ and

$$
\prod_{p}^{\prime} \mathcal{L}\left(V_{p}\right)=\left\{\left(L_{p}\right)_{p}, L_{p} \in \mathcal{L}\left(V_{p}\right), L_{p}=L_{0, p} \text { for a.e. } p\right\}
$$

whose inverse is given by

$$
\left(L_{p}\right)_{p} \mapsto L=\cap_{p} V \cap L_{p} \subset V .
$$

5. Adelic points of an algebraic variety

Let

$$
P_{1}, \cdots, P_{r} \subset \mathbb{Q}\left[X_{1}, \cdots X_{n}\right]
$$

be a family of polynomials in n variables and let

$$
I=\sum \mathbb{Q} \cdot P_{i} \subset \mathbb{Q}\left[X_{1}, \cdots x_{n}\right]
$$

be the ideal they generate. We let

$$
V_{P_{1}, \cdots, P_{r}}(\mathbb{Q})=V_{I}(\mathbb{Q}) \subset \mathbb{Q}^{n}
$$

be the subset of n-uples $\mathbf{x} \in \mathbb{Q}^{n}$ satisfying

$$
\begin{equation*}
P_{1}(\mathbf{x})=\cdots=P_{r}(\mathbf{x})=0, \tag{5.1}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\forall P \in I, P(\mathbf{x})=0 \tag{5.2}
\end{equation*}
$$

The set $V_{I}(\mathbb{Q})$ is the set of \mathbb{Q}-points of the algebraic variety defined by the equations (5.1) or (5.2).

Let R be a \mathbb{Q} algebra; we can evaluate any polynomial $P(X) \in \mathbb{Q}\left[X_{1}, \cdots, X_{n}\right]$ at some R-valued n-uples $\mathbf{x} \in R^{n}$: if

$$
P\left(X_{1}, \cdots X_{n}\right)=\sum_{k_{1}, \cdots, k_{n}} a_{k_{1}, \cdots, k_{n}} X_{1}^{k_{1}} \cdots X_{n}^{k_{n}}
$$

one has

$$
P(\mathbf{x})=\sum_{k_{1}, \cdots, k_{n}} \sum_{k_{1}, \cdots, k_{n}} x_{1}^{k_{1}} \cdots x_{n}^{k_{n}} \in R .
$$

We can then define the set of R-point of V_{I} as

$$
V_{I}(R)=\left\{\mathbf{x} \in R^{n}, P_{i}(\mathbf{x})=0, i=1, \cdots, r\right\}
$$

Applying this to $R=\mathbb{A}$ or more generally \mathbb{A}_{V} we obtain

$$
\begin{aligned}
V_{I}\left(\mathbb{A}_{V}\right)=\left\{\mathbf{x} \in \mathbb{A}_{V}^{n}, P_{i}(\mathbf{x})=0,\right. & i=1, \cdots, r\}=\prod_{v \in V}^{\prime} V_{I}\left(\mathbb{Q}_{v}\right) \\
& =\left\{\left(\mathbf{x}_{v}\right)_{v} \in \mathbb{A}_{V}^{n}, \mathbf{x}_{v} \in V_{I}\left(\mathbb{Q}_{v}\right), \mathbf{x}_{p} \in \mathbb{Z}_{p}^{n} \text { for a.e. } p \in V\right\}
\end{aligned}
$$

We have

$$
V_{I}(\mathbb{Q})=\mathbb{Q}^{n} \cap V_{I}\left(\mathbb{A}_{V}\right) \subset V_{I}\left(\mathbb{A}_{V}\right) .
$$

Proposition 4.4. For R any of the $\operatorname{ring} \mathbb{Q}_{v}, \mathbb{A}_{V}, \mathbb{A}$, the sets $V_{I}(R)$ are closed subsets of R^{n}. In particular if K is a vector subspace of \mathbb{Q}^{n} the R-submodule $K(R) \subset R^{n}$ generated by the elements of K is closed.

Proof. Indeed each function $\mathbf{x} \rightarrow P_{i}(\mathbf{x})$ is a continuous function on R^{n} for the corresponding topology.

Remark 5.1. Since \mathbb{Q}^{n} is discrete in $\mathbb{A}^{n}, V_{I}(\mathbb{Q})$ is clearly discrete in $V_{I}(\mathbb{A})$. On the other hand neither the weak or the strong approximation theorems hold for V_{I} in general: there exist algebraic varieties such that $V_{I}(\mathbb{Q})$ is empty and $V_{I}\left(\mathbb{Q}_{v}\right)$ is non-empty for every v !

[^0]: ${ }^{1}$ for $v=\infty, \mathbb{Q}_{v}=\mathbb{R}$ and $\mathbb{Z}_{v}=\mathbb{Z}$

