CHAPTER 4

Higher dimensional adelic structures

In this chapter we discuss and describe the structure of higher dimensional adelic objects; the most basic one being the free \mathbb{A} -module \mathbb{A}^n equipped with the adelic product topology and subsets of it. We first recall the following:

1. Finitely generated modules over principal ideal rings

Let R be a (commutative) ring; we recall that an R-module L is finitely generated if there exists some finite set $\{\mathbf{e}_i\} \subset L$ such that

$$L = \sum_{i} R\mathbf{e}_{i}.$$

An *R*-module is free is there exists a finite generating set $\{\mathbf{e}_i\} \subset L$ such that any element of *L* can be written in a unique way as a (finite) *R*-linear combination of elements of the \mathbf{e}_i : the set $\{\mathbf{e}_i\} \subset L$ is then called a (free) *R*-basis of *L* and this is written

$$L = \bigoplus_{i} R\mathbf{e}_i.$$

A basis is not unique but its cardinality depends only on L and is called the R-rank of L, $\operatorname{rk}_R(L)$. When R is a principal ideal ring, finitely generated R-modules are well understood:

THEOREM 4.1. Let L be a finitely generated R-module; L decompose as a direct sum of a free R-module and of a torsion R-module

$$L = L' \oplus L_{tors}$$

where

$$L_{tors} = \{x \in L, \ existsr \in R, \ r.x = 0_L\}$$

denote the torsion part of L and $L' \subset L$ is free; in particular L is free iff $L_{tors} = 0$. The free module L' is not unique but is rank depends only on L is is again called the R-rank of L, $\operatorname{rk}_R(L)$.

If $L' \subset L$ is a submodule, L' is finitely generated and one has

$$L'_{tors} \subset L_{tors}, \operatorname{rk}_R(L') \leqslant \operatorname{rk}_R(L)$$

In particular if L is free then L' is free and there exist a basis of L

$$\{\mathbf{e}_1,\cdots,\mathbf{e}_{r'},\cdots\mathbf{e}_r\}$$

and elements of R, $d_{r'}|d_{r'-1}|\cdots|d_1 \neq 0$ such that

$$\{d_1\mathbf{e}_1,\cdots,d_{r'}\mathbf{e}_{r'}\}$$

is a basis of L'.

2. Free A-module

For any $n \ge 1$, we consider the free A-module

$$\mathbb{A}^n = \{ \mathbf{x} = (x_1, \cdots, x_n), \ x_i \in \mathbb{A} \}.$$

One can check that this can be written in restricted product form

$$\mathbb{A}^n = \{ (\mathbf{x}_v)_{v \in \mathcal{V}}, \ \mathbf{x}_v \in \mathbb{Q}_v^n, \ \mathbf{x}_p \in \mathbb{Z}_p^n \text{ for a.e. } p \} = \prod_v^{'} \mathbb{Q}_v^n$$

the restricted product being wrt the sequence of free modules $(\mathbb{Z}_p^n)_p$. For any $V \subset \mathcal{V}$, we can form similarly the \mathbb{A}_V -modules

$$\mathbb{A}_{V}^{n} = \prod_{v \in V}^{\prime} \mathbb{Q}_{v}^{n} \simeq \{(\mathbf{x}_{v})_{v} \in \mathbb{A}^{n}, \ \mathbf{x}_{v} = 0 \text{ for all } v \notin V\}$$

in which \mathbb{Q}^n embeds as a \mathbb{Q} -vecor space via the map δ_V . We equip \mathbb{A}^n with the adelic product topology and

PROPOSITION 4.1. The following properties hold:

- \mathbb{A}^n is a topological \mathbb{A} -module (addition and multiplication by scalars are continuous).
- For any $V \subset \mathcal{V}$, $\mathbb{A}^n_V \subset \mathbb{A}^n$ is closed.
- $\delta_{\mathcal{V}}: \mathbb{Q}^n \to \mathbb{A}^n$ is discrete and the quotient $\mathbb{Q}^n \setminus \mathbb{A}^n = (\mathbb{Q} \setminus \mathbb{A})^n$ is compact.
- (Weak approximation) For any finite $V \subset \mathcal{V}, \, \delta_V : \mathbb{Q}^n \to \mathbb{A}^n_V$ is dense.
- (Strong approximation) For any $v \in \mathcal{V}$, $\delta^{(v)} : \mathbb{Q}^n \to (\mathbb{A}^{(v)})^n$ is dense. In particular $\delta_f : \mathbb{Q}^n \to \mathbb{A}^n_f$ is dense.

PROPOSITION 4.2. Let $\mathcal{B} = \{\mathbf{e}_i, i = 1 \cdots n\}$ be a \mathbb{Q} -basis of \mathbb{Q}^n , then \mathcal{B} is a free basis of the \mathbb{A} -module \mathbb{A}^n (and of any \mathbb{A}^n_V for $V \subset \mathcal{V}$):

$$\mathbb{A}^n = \bigoplus_i \mathbb{A}\mathbf{e}_i.$$

Moreover we have

$$\mathbb{A}^n = \{ (\mathbf{x}_v)_v \in \prod_v \mathbb{Q}_v, \ \mathbf{x}_p \in L_p \ a.e. \ p \}$$

where L_p is the free \mathbb{Z}_p -module (and the closure of $\sum_i \mathbb{Z} \mathbf{e}_i$ in \mathbb{Q}_p^n)

$$L_p = \bigoplus_i \mathbb{Z}_p \mathbf{e}_i \subset \mathbb{Q}_p^n.$$

In other terms \mathbb{A}^n is the restricted product of the \mathbb{Q}_v^n wrt to the sequence $(L_p)_p$. Moreover the sequence $(L_p)_p$ has the property that

$$L_p = \mathbb{Z}_p^n$$

for a.e. p.

Proof.

REMARK 2.1. Observe that these two representations as restricted product are indeed the same because (chasing denominators), there always exists $m \in \mathbb{Z} - \{0\}$ such that

$$m\sum_{i}\mathbb{Z}\mathbf{e}_{i}\subset\mathbb{Z}^{n}\subset\frac{1}{m}\sum_{i}\mathbb{Z}\mathbf{e}_{i}$$

which implies that for p not dividing m

$$L_p = \mathbb{Z}_p^n.$$

3. Local-global principles for lattices

DEFINITION 4.1. A lattice $L \subset \mathbb{Q}^n$ is a finitely generated \mathbb{Z} -module generating \mathbb{Q}^n as a \mathbb{Q} -vector space. we denote by $\mathcal{L}(\mathbb{Q}^n)$ the set of all lattices in \mathbb{Q}^n

This definition admits the following "local" counterpart:

DEFINITION 4.2. For $v \in \mathcal{V}$, let \mathbb{Z}_v be the closure¹ of \mathbb{Z} in \mathbb{Q}_v ; a lattice $L_v \subset \mathbb{Q}_v^n$ is a finitely generated \mathbb{Z}_v -module generating \mathbb{Q}_v^n as a \mathbb{Q}_v -vector space. We denote by $\mathcal{L}(\mathbb{Q}_v^n)$ the set of all lattices in \mathbb{Q}_v^n .

REMARK 3.1. Since \mathbb{Z} (resp. \mathbb{Z}_v) is a principal ideal ring, a lattice L in \mathbb{Q}^n (resp. \mathbb{Q}_v^n) is precisely a free \mathbb{Z} (resp. \mathbb{Z}_v)-module of rank n

$$L = \bigoplus_{i=1\cdots n} \mathbb{Z}\mathbf{e}_i$$

where $\mathcal{B} = {\mathbf{e}_i}$ is a basis of \mathbb{Q}^n .

Let $L \subset \mathcal{L}(\mathbb{Q}^n)$ be a rational lattice and let $\mathcal{B} = \{\mathbf{e}_i\}$ be a basis of \mathbb{Q}^n generating L. In the previous section we have associated to such a lattice the sequence of \mathbb{Q}_v -lattices $(L_v)_v$,

$$L_v = \sum_i \mathbb{Z}_v \mathbf{e}_i \subset \mathbb{Q}_v^n;$$

alternatively L_v is defined as the closure of L in \mathbb{Q}_v^n . This sequence satisfies the following property: one has

$$L_p = \mathbb{Z}_p^n$$
 for a.e. p

Observe also that the product $\prod_p L_p$ viewed as a subset of \mathbb{A}_f^n equals

$$\prod_{p} L_{p} = \sum_{i} \widehat{\mathbb{Z}} \mathbf{e}_{i} = \widehat{L}$$

the closure of L in \mathbb{A}^n_f .

This collection of "local" data $(L_v)_v$ suffice to recover the lattice L: in fact it is sufficient to consider only the place at ∞ since $L_{\infty} = L \subset \mathbb{R}^n$. On the other hand knowing L_p for a given p is not sufficient to distinguish L from other rational lattices but the data, $(L_p)_p$, for all the finite places does:

THEOREM 4.2 (Local-global principle for lattices). Let $\mathcal{L}(\mathbb{A}_f^n)$ denote restricted product

$$\prod_{p} \mathcal{L}_{n}(\mathbb{Q}_{p}) = \{ (L_{p})_{p}, \ L_{p} \in \mathcal{L}_{n}(\mathbb{Q}_{p}), \ such \ that \ L_{p} = \mathbb{Z}_{p}^{n} \ for \ a.e. \ p \};$$

the map

$$\begin{array}{rcl} \mathcal{L}(\mathbb{Q}^n) & \mapsto & \prod_{p \in \mathcal{P}}' \mathcal{L}(\mathbb{Q}_p^n) \\ L & \mapsto & (L_p)_p \end{array}$$

¹for $v = \infty$, $\mathbb{Q}_v = \mathbb{R}$ and $\mathbb{Z}_v = \mathbb{Z}$

is 1-1 and its converse is the map

$$(L_p)_p \mapsto L = \bigcap_p \mathbb{Q}^n \cap L_p.$$

PROOF. We have seen already that $L \mapsto (L_p)_p$ maps $\mathcal{L}(\mathbb{Q}^n)$ to $\prod_p' \mathcal{L}(\mathbb{Q}_p^n)$. Let us show that it has a converse is given by the map

$$(L_p)_p \mapsto \bigcap_p \mathbb{Q}^n \cap L_p.$$

Given any $(L_p)_p \in \prod_p' \mathcal{L}_n(\mathbb{Q}_p)$, let $L' = \bigcap_p \mathbb{Q}^n \cap L_p \subset \mathbb{Q}^n$, we first show that L' is a lattice. Let S be the finite set of primes such that $L_p \neq \mathbb{Z}_p^n$. For any such p there exist $\alpha_p = \alpha_p(L_p) \ge 0$ such that

$$p^{\alpha_p} \mathbb{Z}_p^n \subset L_p \subset p^{-\alpha_p} \mathbb{Z}_p^n$$

and for $N = \prod_{p \in S} p^{\alpha_p}$ we have

$$N\mathbb{Z}^n = \bigcap_p \mathbb{Q}^n \cap N\mathbb{Z}_p^n \subset L' \subset \bigcap_p \mathbb{Q}^n \cap N^{-1}\mathbb{Z}_p^n = N^{-1}\mathbb{Z}^n$$

so L' is a lattice.

Suppose now that the $(L_p)_p$ are obtained as the closure of some lattice $L \subset \mathbb{Q}^n$: we will show that L' = L. Observe that L_p is the set of elements in \mathbb{Q}_p^n whose coordinates in the basis $\{\mathbf{e}_i\}$ are *p*-adic integers. Therefore L' is the set of element in \mathbb{Q}^n whose coordinates in the same basis are *p*-adic integers for every *p*: meaning integers. \Box

4. Adelic points of a vector space

Let

$$K = \bigoplus_{i=1,\cdots,n} \mathbb{Q}\mathbf{e}_i$$

be a general *n*-dimensional \mathbb{Q} -vector space with a choice of a \mathbb{Q} -basis $\mathcal{B} = \{\mathbf{e}_i, i = 1 \cdots n\};$ we denote by

$$K_{\mathcal{V}} = K(\mathbb{A}) = \bigoplus \mathbb{A}\mathbf{e}_i \simeq \mathbb{A}^n$$

the free rank-n, A-module with basis the set \mathcal{B} . The vector space K embeds into $K(\mathbb{A})$ in the obvious way. In the same way we define for any $S \subset \mathcal{V}$,

$$K(\mathbb{A}_S) = \bigoplus \mathbb{A}_S \mathbf{e}_i \simeq \mathbb{A}_S^n$$

in which K embeds via δ_S . In particular for $v \in \mathcal{V}$

$$K_v = K(\mathbb{Q}_v) = \bigoplus \mathbb{Q}_v \mathbf{e}_i \simeq \mathbb{Q}_v^n$$

For v = p, we denote by

$$L_{\mathcal{B},p} = \sum_{i} \mathbb{Z}_{p} \mathbf{e}_{i} \subset K_{p}$$

the free \mathbb{Z}_p -module generated by \mathcal{B} . With these notations we have

$$K(\mathbb{A}) = \prod_{v} K_{v} = \{ (\mathbf{x}_{v})_{v \in \mathcal{V}}, \ \mathbf{x}_{v} \in K_{v}, \ \mathbf{x}_{p} \in L_{\mathcal{B},p} \text{ for a.e. } p \}$$

and

$$K(\mathbb{A}_S) \simeq \{ (\mathbf{x}_v)_{v \in \mathcal{V}} \in K(\mathbb{A}), \ \mathbf{x}_v = 0 \text{ for } v \notin V \}$$

4.1. Topology. The space $K(\mathbb{A})$ is obviously isomorphic to \mathbb{A}^n as a \mathbb{A} -module (by chosing some basis \mathcal{B}) is therefore inherit the adelic topology. This topology does not depend on the choice of \mathcal{B} , because two basis are transform into each other by a \mathbb{Q} -linear map which is an homeomorphism. The following are immediate consequences of the case $K = \mathbb{Q}$:

THEOREM 4.3. For $n \ge 1$, one has

- For any V ⊂ V, the K(A_V) embeds as a closed subset of K(A) (the subset of (x_v)_v ∈ K(A) such that x_v = 0 for all v ∉ V).
- (Discretness) $K \hookrightarrow K(\mathbb{A})$ (embedded diagonally via $\delta_{\mathcal{V}}$) is discrete.
- (Weak approximation) For any $V \subset \mathcal{V}$ finite, $\delta_V(K)$ is dense in $K(\mathbb{A}_V)$.
- (Strong approximation) For any $v \in \mathcal{V}$, $\delta^{(v)}(K)$ is dense in $K(\mathbb{A}^{(v)})$.

4.2. Tensor products. These constructions can be made more systematic with using the notion of tensor product of two \mathbb{Q} vector spaces (cf. Appendix): given K, L two \mathbb{Q} -vector spaces (not necessarily finite dimensional), there exists a (unique up to unique isomorphism) \mathbb{Q} -vector space $K \otimes_{\mathbb{Q}} L$ and a bilinear map

$$\otimes : (u,v) \in K \times L \to u \otimes v \in K \otimes_{\mathbb{O}} L$$

such that for any bilinear map into another Q-vector space

$$f: (u,v) \in K \times L \to f(u,v) \in M$$

there exists a linear map $\tilde{f}: K \otimes L \to M$ such that

$$f(u \otimes v) = f(u, v).$$

It follows from these properties that the map \otimes is injective and moreover, if $\mathcal{B} = \{u_i\}_{i \in I}, \mathcal{B}' = \{v_i\}_{i \in J}$ are bases of K and L,

$$\mathcal{B} \otimes \mathcal{B}' = \{u_i \otimes v_j\}_{(i,j) \in I \times J}$$

is a basis of $K \otimes L$.

EXERCISE 4.1. Check that when one applies this construction to K and $L = \mathbb{Q}_v, \mathbb{A}_V$ or \mathbb{A} one obtains respectively

$$K \otimes \mathbb{Q}_v = K(\mathbb{Q}_v), \ K \otimes \mathbb{A}_V = K(\mathbb{A}_V), \ K \otimes \mathbb{A} = K(\mathbb{A})$$

We also have the following:

PROPOSITION 4.3. Let $f: V \to W$ be a linear map of \mathbb{Q} -vector spaces, then f extends to an \mathbb{A} -linear map on $f: V(\mathbb{A}) \to W(\mathbb{A})$ which is continuous for the adelic topology.

4.3. Lattices in vector spaces. The discussion of Section 3 generalize to the setting of finite dimensional vector spaces in an obvious way:

DEFINITION 4.3. Let V be either a \mathbb{Q} or a \mathbb{Q}_v finite dimensional vector space. A lattice $L \subset V$ is a finitely generated \mathbb{Z} or \mathbb{Z}_v -module generating V as a vector space. we denote by $\mathcal{L}(V)$ the set of all lattices in V

We have the following extension of the local-global principle for lattices:

THEOREM 4.4. Let V be a n-dimensional Q-vector space and $L_0 \subset V$ a fixed lattice. For any lattice

$$L = \sum_{i=1}^{n} \mathbb{Z} \mathbf{e}_i \in \mathcal{L}(V)$$

we denote by

$$L_v = \overline{L} \sum_{i=1}^n \mathbb{Z}_v \mathbf{e}_i \in \mathcal{L}(V_v)$$

the corresponding local lattice. The map

$$L \mapsto (L_p)_{p \in \mathcal{V}_f}$$

is a bijection between $\mathcal{L}(V)$ and

$$\prod_{p}' \mathcal{L}(V_p) = \{ (L_p)_p, \ L_p \in \mathcal{L}(V_p), \ L_p = L_{0,p} \ for \ a.e. \ p \}$$

whose inverse is given by

$$(L_p)_p \mapsto L = \cap_p V \cap L_p \subset V.$$

5. Adelic points of an algebraic variety

Let

$$P_1, \cdots, P_r \subset \mathbb{Q}[X_1, \cdots X_n]$$

be a family of polynomials in n variables and let

$$I = \sum \mathbb{Q}.P_i \subset \mathbb{Q}[X_1, \cdots x_n]$$

be the ideal they generate. We let

$$V_{P_1,\cdots,P_r}(\mathbb{Q}) = V_I(\mathbb{Q}) \subset \mathbb{Q}^n$$

be the subset of *n*-uples $\mathbf{x} \in \mathbb{Q}^n$ satisfying

$$(5.1) P_1(\mathbf{x}) = \dots = P_r(\mathbf{x}) = 0$$

or equivalently

$$\forall P \in I, \ P(\mathbf{x}) = 0$$

The set $V_I(\mathbb{Q})$ is the set of \mathbb{Q} -points of the algebraic variety defined by the equations (5.1) or (5.2).

Let R be a \mathbb{Q} algebra; we can evaluate any polynomial $P(X) \in \mathbb{Q}[X_1, \dots, X_n]$ at some *R*-valued *n*-uples $\mathbf{x} \in \mathbb{R}^n$: if

$$P(X_1, \cdots X_n) = \sum_{k_1, \cdots, k_n} \sum_{k_1, \cdots, k_n} a_{k_1, \cdots, k_n} X_1^{k_1} \cdots X_n^{k_n}$$

one has

$$P(\mathbf{x}) = \sum_{k_1, \cdots, k_n} \sum_{a_{k_1, \cdots, k_n}} x_1^{k_1} \cdots x_n^{k_n} \in R.$$

We can then define the set of R-point of V_I as

$$V_I(R) = \{ \mathbf{x} \in R^n, \ P_i(\mathbf{x}) = 0, \ i = 1, \cdots, r \}$$

38

Applying this to $R = \mathbb{A}$ or more generally \mathbb{A}_V we obtain

$$V_{I}(\mathbb{A}_{V}) = \{ \mathbf{x} \in \mathbb{A}_{V}^{n}, P_{i}(\mathbf{x}) = 0, i = 1, \cdots, r \} = \prod_{v \in V} V_{I}(\mathbb{Q}_{v})$$
$$= \{ (\mathbf{x}_{v})_{v} \in \mathbb{A}_{V}^{n}, \mathbf{x}_{v} \in V_{I}(\mathbb{Q}_{v}), \mathbf{x}_{p} \in \mathbb{Z}_{p}^{n} \text{ for a.e. } p \in V \}.$$

We have

$$V_I(\mathbb{Q}) = \mathbb{Q}^n \cap V_I(\mathbb{A}_V) \subset V_I(\mathbb{A}_V).$$

PROPOSITION 4.4. For R any of the ring \mathbb{Q}_v , \mathbb{A}_V , \mathbb{A} , the sets $V_I(R)$ are closed subsets of \mathbb{R}^n . In particular if K is a vector subspace of \mathbb{Q}^n the R-submodule $K(R) \subset \mathbb{R}^n$ generated by the elements of K is closed.

PROOF. Indeed each function $\mathbf{x} \to P_i(\mathbf{x})$ is a continuous function on \mathbb{R}^n for the corresponding topology.

REMARK 5.1. Since \mathbb{Q}^n is discrete in \mathbb{A}^n , $V_I(\mathbb{Q})$ is clearly discrete in $V_I(\mathbb{A})$. On the other hand neither the weak or the strong approximation theorems hold for V_I in general: there exist algebraic varieties such that $V_I(\mathbb{Q})$ is empty and $V_I(\mathbb{Q}_v)$ is non-empty for every v!