
CHAPTER 5

Adeles over a number field

1. The adelic points of an algebra

Let A is a finite dimensional Q-algebra (not necessarily commutative), it follows imme-
diately that A(AS) has the structure of a AS-algebra extending the Q-algebra structure on
A (ie. one has �S(x ⇥A y) = �S(x) ⇥A(A) �S(y) for any x, y 2 A). This is either a formal
consequence of the tensor product construction or this could be checked directly as we will
do now.

1.1. General facts about finite dimensional algebras over a field. Let A be a
finite n-dimensional algebra over some field k; the multiplication map yield an embedding

[⇥·] : A ,! Endk(A)
x 7! [⇥x] : y ! xy

.

This map is an embedding because [⇥x](1A) = x is zero i↵ x = 0.
To distinguish between the k-vector space A and the algebra A acting on A (and identi-

fied with a subalgebra of Endk(A) via [⇥·], we will sometimes write VA for the vector space
and keep A to designate the subalgebra [⇥·]A.

One then defines the trace, norm, characteristic polynomial and minimal polynomial
(the unit polynomial generating the ideal of polynomial vanishing at x, in particular it
divides Pchar,x) of some x 2 A as

trA/k(x) = tr([⇥x]), NrA/k(x) := det([⇥x]),

Pchar,x(X) := det(XIdA � [⇥x]), Pmin,x(X)|Pchar,x(X).

Exercise 5.1. Prove that if A is a field, and x 6= 0, there is a basis of A for which the
matrix of [⇥x] is a product of bloc matrices of [⇥x] restricted, k[x] the field generated by
x. Consequently

Pchar,x(X) = Pmin,x(X)d/dx

where dx = [k[x] : k] is the degree, and

trA/k(x) = (d/dx)trk[x]/k(x), NrA/k(x) = Nrk[x]/k(x)
d/d

x .

1.1.1. Presentation as an algebra of matrices. One can make things a bit more concrete
by choosing B = {ei} a k-basis of A: this induces an isomorphism of vector space ◆ : A ' Kn

◆ : y =
X

i

yiei 7! (y1, · · · , yn) 2 kn

and an algebra embedding ✓ : A ,! Mn(k) defined by the equality

✓(x)◆(y) = ◆(xy).

The linear map ✓ is injective because if some ✓(x) is the zero endomorphism, one has
0 = ✓(x)◆(1) = ◆(x) hence x = 0.
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42 5. ADELES OVER A NUMBER FIELD

In such a realization, the trace, norm, characteristic and minimal polynomials are just
the trace the determinant and the characteristic and minimal polynomials of n⇥n-matrices.

Remark 1.1. Observe that if we consider another basis B0, the corresponding matrix
algebra ✓0(A) is obtained from ✓(A) by conjugation by a fixed matrix mB,B0 2 GLn(Q).

1.2. The algebra of adelic matrices Mn(A). The most basic example of adelic point
of an algebra is the algebra of n⇥ n matrices with adelic entries equipped with the basis of
elementary matrices

Mn(Q) = {m = (mi,j)i,j6n, mi,j 2 Q} =
X

i,j6n

QEi,j ,

where

Ei,j = (ei,j,k,l)k,l6n, ei,j,k,l = �i=k�j=l.

is the endomorphism which maps the i-th element of the canonical basis to the j-th element
and all other elements to 0. If we replace Q by the ring AS for S ⇢ VQ one obtains

Mn(AS) = {m = (mi,j)i,j6n, mi,j 2 AS} ==
X

i,j6n

ASEi,j

Y0

v2S
Mn(Qv) = {(mv)v, mv 2 Mn(Qv), mp 2 Mn(Zp) for a.e. p 2 S}

where

Mn(Zv) =
X

i,j6n

ZvEi,j

equipped with the usual addition and multiplication laws.

Remark 1.2. The latticeMn(Zv) is defined slightly more intrinsicly as the set EndZ
v

(Zn
v )

of Zv-linear endomorphisms of the lattice Zn
v or equivalently the stabilizer of the lattice Zn

v

inside Mn(Qv).

If V is a general Q-vector space with basis B = {ei, i 6 n}, we may consider the algebra
of linear maps on V

EndQ(V ) =
M

i,j6n

QEi,j

where Ei,j is the linear map defined by

Ei,j(ek) = �k=iej .

We have

EndQ(V )(A) = EndA(V (A)) =
Y0

v

EndQ
v

(Vv)

= {(mv)v, mv 2 EndQ
v

(Vv), mp 2 EndZ
p

(LB,p) for a.e. p}
where

LB,p =
X

i

Zpei, EndZ
p

(LB,p) =
X

i,j

ZpEi,j .

and EndZ
p

(LB,p) is precisely the stabilizer of the lattice LB,p inside EndQ
v

(Vv).
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1.3. Topology of A(A). Let us return to the situation of A being a finite dimensional
algebra over Q. As explained above, the choice of some Q-basis B of VA, yields an linear
isomorphism ◆ : VA ' Qn in which B get identified with the canonical basis of Qn and which
induces a Q-algebra embedding

✓ : A ,! ✓(A) ⇢ Mn(Q).

Therefore A(A) is identified with the A-subalgebra ✓(A)(A) ⇢ Mn(A). Since the lattice
LB =

P
Zei is identified with Zn under ◆ one has

A(A) =
Y0

v

A(Qv) = {(xv)v, xv 2 A(Qv), xp 2 A(LB,p) for a.e. p}

where

A(LB,v) = {xv 2 A(Qv), xv.LB,v ⇢ LB,v} ' ✓(A)(Qv) \Mn(Zv)

is the stabilizer of the lattice LB,v in A(Qv).
In particular A(LB,v) is a lattice and the collection of local lattices (A(LB,v))v obtained

from the global lattice

✓(A) \Mn(Z).
The A-algebra as a closed subset of Mn(A) is equipped with the adelic topology which

we transport to A(A) via ✓. Observe again that this topology does not depend on the
choice of the basis B of A: if one consider another basis, ✓0(A) is obtained from ✓(A) by
conjugation by an element of GLn(Q) which induce an homeomorphism between ✓(A)(A)
and ✓0(A)(A).

Since matrix multiplication and addition are continuous on Mn(A), they are continuous
on ✓(A)(A) and therefore

Proposition 5.1. Equipped with the adelic topology A(A) has the structure of locally
compact topological ring in which A(Q) embeds as a discrete subring and in which the trace
norm and characteristic polynomial are continuous maps.

As for the ideles, some care is necessary to define the topology on the group of invertible
elements of A(A),

A(A)⇥ =
Y0

v

A(Qv)
⇥ = {(xv)v, xv 2 A(Qv)

⇥, ✓(xp) 2 GLn(Zp)
⇥ for a.e. p}.

We observe that by Cramer formula, for any ring R a matrix x 2 Mn(R) is invertible i↵
detx 2 R⇥; therefore

A(AV )
⇥ = {x 2 A(AV ), NrA/k(x) 2 A⇥

V }.
We may therefore identify A(AV )⇥ with the following closed subset:

{(x, t) 2 A(AV )⇥ AV , NrA/k(x)t = 1}
as for the ideles, the adelic topology on A(AV )⇥ is the topology corresponding to the relative
topology under this identification.

Proposition 5.2. Equipped with this topology, A(AV )⇥ is a locally compact topological
group and embeds as a closed subgroup of A(A). The group A⇥ embeds as a discrete subgroup
of A(A)⇥
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2. Adelic points of a number field

We now assume that the algebra A is a number field K (a finite extension of Q) and
discuss in greater detail the structure of K(A) which is sometimes noted AK and is called
the ring of adeles of K. In particular we discuss the structure of the Qv-algebra Kv =
K(Qv) = K ⌦Q Qv for v 2 V.

2.1. Etale algebras. Let k be a field and A be a k-algebra. The trace trA/k linear
form defines a bilinear form (called the trace form) on A⇥A as follows

hx, yi := trA/k(xy).

Definition 5.1. A finite dimensional k-algebra A is etale if the trace form is non-
degenerate; ie. if the following linear map to the dual A⇤

x 2 A 7! x⇤ 2 A⇤ : y 7! x⇤(y) = hx, yi = trA/k(xy)

is an isomorphism or equivalently if for some (hence any) basis of A

det((hei, eji)i,j6n) 6= 0.

One has the following fundamental result

Theorem 5.1. A commutative etale k-algebra A decomposes as a k-algebra into a prod-
uct of finite field extensions of k,

A '
Y

w

Kw.

This decomposition is unique up to isomorphism.

Proof. We achieve this decomposition by decomposing the vector space VA(= A) into
a direct sum of non-trivial A-invariant (A.V ⇢ V ) vector spaces

VA =
M

w

Vw

(which are minimal for this property) therefore we will have the (block matrices) decompo-
sition

Endk(VA) =
Y

w

Endk(Vw)

and therefore A will decompose as

A =
Y

w

Kw ⇢
Y

w

Endk(Vw) with Kw = A|V
w

the image of the restricted action of A on the subspace V|w. The minimality of the Vw then
shows that the Kw are fields.

Definition 5.2. A subspace V ⇢ VA is A-irreducible (for the action of A on VA) if it is
non-zero, A-invariant (A.V ⇢ V ) and minimal for this property: any A-invariant subspace
of V is either zero or A.

Let us show that VA decomposes as a direct sum of A-irreducible subspaces. Let V ⇢ VA

be a non-zero A-invariant subspace and of minimal dimension. V is a clearly irreducible.
Let A|V = A \ Endk(V ) be the image of A in Endk(V ); we claim that A|V is a field
(A⇤

|V = A|V � {0}). Indeed suppose that x 2 A acts non-trivially on V (x.V 6= {0}) and

let V 0 = ker[⇥x]|V ; by definition V 0 6= V and since A is commutative A.V 0 = V 0 (ie. V 0 is
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A-invariant) it follows (by minimality of dimk V ) that V 0 is trivial so that [⇥x]|V is injective
hence invertible. This proves that A|V is a field. Let

V ? = {y 2 VA, hy, V i = 0}
be the subspace orthogonal to V . Since the trace form is non-degenerate one has and
orthogonal decomposition

VA = V
M

V ?

and for all x 2 A and y 2 V ?

hx.y, V i = tr(xyV ) = tr(yxV ) ⇢ trA/k(yV ) = {0}
so that x.y 2 V ?, therefore V ? is an A-invariant subspace of A. Repeating this argument
with V ? we obtain a direct sum decomposition of VA into irreducible subspaces

V =
M

w

Vw hence Endk(A) '
Y

w

Endk(Vw)

hence the decomposition

A '
Y

w

A|V
w

⇢
Y

w

Endk(Vw)

where A|V
w

= Kw is a field. such decomposition is unique become is one has two such
decompositions

VA =
M

w

Vw =
M

w0

V 0
w0

by irreducibility we will get

Vw \ V 0
w0 =

(
0

Vw = V 0
w0

because Vw \ V 0
w0 ⇢ Vw is an A-invariant subspace of an irreducible subspace. ⇤

Let
dw := dimk(Kw)

be the degree of Kw, we have

dimk A =
X

w

dw;

if we denote by

(xw)w 2
Y

w

Kw

the image of x 2 A under the above isomorphism one has

trA/k(x) =
X

w

trK
w

/k(xw),(2.1)

NrA/k(x) =
Y

w

NrK
w

/k(xw),(2.2)

Px(X) =
Y

w

Px
w

(X).(2.3)

Exercise 5.2. Prove that if A = K is a field of characteristic > dimk K, K is etale.

Exercise 5.3. Prove that if A is a field, A is etale i↵ A/k is separable. For this consider
a basis B of the shape {1, x, · · · , xn�1}
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Exercise 5.4. Prove that if A is etale and monogenic (of the shape A = k[x] for some
x 2 A), the above decomposition is obtained as follows: let Pchar,x be the characteristic
polynomial of x then Pchar,x has no multiple roots (in an algebraic closure of k) and if we
decompose it into a product of irreducible polynomials,

Pchar,x(X) =
Y

w

Pw(X),

one has
A '

Y

w

Kw where Kw ' k[X]/Pw(X)k[X].

2.2. The local algebras Kv. We return to the special case of k = Qv and

A = Kv = K ⌦Q Qv

for K a finite field extension of Q of degree n. The algebra Kv is etale because K, as a field
of characteristic zero is etale and therefore the determinant of the trace form matrix is not
zero in some Q-base of K hence in some Qv-base of Kv.

By Theorem 5.1, one has a Qv-algebra isomorphism

Kv '
Y

w⇢V
K,v

Kw, dw = [Kw : Qv],
X

w⇢V
v

dw = n

where the Kw are finite field extension of Qv indexed by some suitable finite set Vv. Since
K is a field the projection to the w-factor yields a Q-algebra embedding

�w : K ! Kw.

Moreover since K is dense in Kv its image by �w is dense in Kw.
As we have seen, for any Kw there is a unique way to extend the v-adic absolute value

| · |v from Qv to Kw and it is given by the formula

| · |w = |NrK
w

/Q
p

(·)|1/dwv .

2.3. The local ring of integers. Suppose that v = p is finite; we let

Ow = Bc(0, 1)w

be the closed unit ball for the valuation | · |w.
Theorem 5.2. One has the following

(1) The set Ow is a subring of Kw and a lattice in Kw (in particular open-compact).
Any compact subring of Kv is contained into Ow.

(2) The group of units is the unit sphere

O⇥
K

w

= {xw 2 Kw, |xw|w = 1}.
(3) The ring Ow is a principal ideal ring whose unique maximal ideal is the open unit

ball
pw := Bo(0, 1)w{xw 2 Kw, |xw|w < 1}.

(4) The later is generated by any element ⇡w in pw of maximal absolute value; any such
element is called an uniformizer of Ow. Let ew 2 N>1 be such that pOw = ⇡e

v

w Ow

or equivalently |⇡w|w = p�1/f
w ; that integer is called the ramification index of Kw.

(5) The quotient Ow/pw is an extension of the finite field Fp = Zp/pZp called the
residual field of Kw. Its degree is noted fw and is called the inertia degree of Kw.

(6) One has the relation ewfw = dw.
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(7) The ring OK
w

is exactly the set of elements of Kw which are roots by some monic
Zp-integral polynomial, or equivalently, whose characteristic is Zp-integral or equiv-
alently whose minimal polynomial is Zp-integral.

Proof. ⇤
From the above theorem one has

|NrK
w

/Q
p

(⇡w)|p = p�e
w = |OK

w

/pw|�1.

Since the absolute value | · |w is non-archimedean, the map

xw 2 Kw 7! |xw|w,n = |x|dww = |NrK
w

/Q
v

(xw)|v
is also an absolute value equivalent to | · |w; because of the identity

|⇡w|w,n = |OK
w

/pw|�1,

| · |w,n is called the normalized absolute value at w.

2.4. Archimedean absolute values. When v = 1, Kw is a finite algebraic extension
of R so is either R or C and dw is either 1 or 2. In the first case the absolute value is
unchanged, and when Kw = C, z = x+ iy, one has

|z|w = |NrC/R(z)|1/2 = |x2 + y2|1/21 = |zz|1/21 = |z|C
is the usual absolute value on the complex numbers and one defines the normalized absolute
value as

|z|C,n = |z|2C = x2 + y2.

Remark 2.1. Observe that |z|C,n does not satisfy the triangle inequality so in this case
there is a slight abuse of notations.

2.5. Comparison with the intrinsic construction of the ring of adeles of a
number field. By restriction this defines an absolute value on K.

Theorem 5.3. The absolute value | · |w for w varying over the set VK,v form a set of
representatives of the equivalence classes of absolute values on K whose restriction to Q is
equivalent to | · |v. Consequently the set

S
v2VQ Vw = VK is a set of representatives of the

equivalence classes of all possible absolute values on K (the set of places of K).

Proof. Exercise. ⇤
Definition 5.3. We say that the absolute values in VK,v is the set of absolute values w

above v or which divide v and this is written w|v. Consequently

Kv =
Y

w|v
Kw.

If v = p is finite the absolute value w will be called finite (or non-archimedean) and infinite
(or archimedean) otherwise. The set of finite places is noted VK,f and the infinite ones
VK,1

Proof. Exercise. ⇤
From this discussion we get two equivalent constructions of the ring of adeles of K:

choosing B a Q-basis of K and setting L the associated lattice we have

K(A) = AK =
Y0

v2VQ

Kv = {(xv) 2 K ⌦Q Qv, xp 2 Lp for a.e. p}
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and a more intrisic one

K(A) = AK =
Y0

w2V
K

Kw = {(xw)V
K

, xw 2 Kw, xw 2 Lw for a.e. w finite}.

here Lw is the closure of L inside Kw.
2.5.1. The adelic absolute value.

Definition 5.4. The adelic absolute value of K is the continuous function on A⇥
K

defined by
| · |A

K

: x 2 A⇥
K 7! |NrK/Q(x)|A 2 R>0.

We have for x = (xv)v2VQ = (xw)w2V
K

|x|A
K

=
Y

v

|NrK
v

/Q
v

(xv)|v =
Y

w

|NrK
w

/Q
v

(xw)|w =
Y

w

|xw|dww =
Y

w

|xw|w,n.

In particular we obtain

Theorem 5.4 (Artin product formula). For any xK 2 K⇥

|xK |A
K

=
Y

w

|xK |w,n = |NrK/Q(xK)|A = 1.

Since the adelic absolute value is continuous, its kernel

A(1)
K = {x 2 A⇥

K , |x|A
K

= 1}
is a closed subgroup. We have the following important generalization of

Theorem 5.5. The subgroup K⇥ is a discrete subgroup of A(1)
K and the quotient K⇥\A(1)

K
is compact.

3. Classical Algebraic number Theory vs. Adelic Number Theory

As is proven in any classical course in algebraic number theory, the field K contains a
very specific subring which is in many respect canonical: this ring is defined algebraically
as the integral closure of Z in K, that is the set of elements of K which are annihilated by
a unitary polynomial with integral coe�cients: this ring is called the ring of integers of K.

In this section with retrieve these from the adelic viewpoint and discuss its main prop-
erties.

4. The ring of integers as an intersection of balls

We consider the intersection of the unit balls associated to the various absolute values
w on K, or in other terms the local rings

Ow = Bc(0, 1)w = {xw 2 Kw, |xw|w 6 1},
which we denote by

OK =
\

w2V
K

OK
w

\K =
\

p

Op \K

(here we have noted Op :=
Q

w|pOK
w

⇢ Kp). As we show below this analytically defined
object is the ring of integers of K:

Theorem 5.6. The set OK has the following properties

• OK is a ring.
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• OK is a lattice.
• OK is the set of elements of K which are roots of some monic polynomial with
integral coe�cient or equivalently whose characteristic or minimal polynomial has
integral coe�cients; therefore OK is called the ring of integers of K.

Proof. OK is a ring as an intersection of rings. For any x 2 OK we have for any p

Pchar,x,K(X) =
Y

w

Pchar,x,K
w

(X) 2 Zp[X]

therefore Pchar,x,K(X) has integral coe�cients; conversely any element of K who character-
istic polynomial is integral is contained in Ow for every w hence in OK . The equivalence
of this caracteriszation to the integrality of the minimal polynomial or some annahilating
polynomial follows from Gauss lemma.

We observe that K contains a lattice (hence contains a basis of K); this follows from
for any x 2 K there exists some non zero m 2 Z such that nx 2 OK ; indeed let

Pchar,x(X) = Xn + an�1X
n�1 + · · ·+ a0, ai 2 Q

we have for m 6= 0 an integer

Pchar,mx(X) = det(XId� ✓(mx)) = mn det(
X

m
Id� ✓(x))

= mn((
X

m
)n + an�1(

X

m
)n�1 + · · ·+ a0) = Xn + an�1mXn�1 + · · ·+mna0

is integral for m su�ciently divisible.
To show that OK is a lattice it is su�cient to show that OK is discrete in K1 : by a

well known lemma OK will then be a finitely generated Z-module clearly of maximal rank
since it generated K as a Q-vector space. To prove discretness it is su�cient to observe
that if x1 2 K1 ⇢ Mn(R) has su�ciently small coe�cients in some fixed basis of K1 and
integral characteristic polynomial, all the coe�cient excepted for the dominant one have to
be 0 and therefore x = 0. ⇤

Exercise 5.5 (Orders of a number field). An order O ⇢ K is a subring of K which
is also a lattice. Prove the order are exactly the subsets of K of the shape: for L ⇢ K a
lattice

O(L) := {x 2 K, xL ⇢ L} = EndK(L) \K.

Prove that any order1 is contained in OK : OK is also called the maximal order. Prove, more
generally that any subring R ⇢ K which is finitely generated as a Z-module is contained
into OK .

4.1. The ideals of OK . By convention an ideal2 a ⇢ OK (a OK-module contained
into OK) is always non-zero. It is useful to slightly extend the definition of ideal:

Definition 5.5. A fractional OK-ideal a ⇢ Kis a non-zero OK-module for which there
exist � 2 K⇥ such that �a ⇢ OK . The set of fractional ideals is noted J(OK) or JK . We
also denote by P (OK) = PK = {�OK , � 2 K⇥} the subset of principal ideals

Lemma 5.1. A fractional ideal a is a Z-lattice in K. In particular, OK \ a is of finite
index in both OK and a.

1
andd more generally, any subring of O

K

which is finitely generated as a Z-module

2
or an O

K

-ideal
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Proof. ⇤

Theorem 5.7. The set of fractional ideals has the following structural properties:

• The set of fractional ideals has a natural structure of commutative group with unit
element OK and multiplication given by

a.b = hab, a 2 a, b 2 bi = the ideal generated by product of elements of a and b,

• The prime ideals of OK are generator of that group and wrt the above multiplication
law, every ideal decompose in a unique way as a product of powers of primes ideals,

a =
Y

p

p

vp(a), vp(a) = 0 for a.e. p.

The integer vp(a) is the valuatin at p of the fractional ideal a.
• In other terms, JK is isomorphic to the free (commutative) Z-module generated by
the set of prime OK-ideals Spec(OK), Div(Spec(OK)) say; that is the set of finite
integral linear combinations of the symbols p 2 Spec(OK)

X

p

vp.p, vp 2 Z, vp = 0 for a.e. p.

• Some basic calculus for integers remains valid for fractional ideals:

a ⇢ b , 8p vp(a) > vp(b)

in which case one says that b divides a which is written

b|a;
in addition

a+ b = ha+ b, a 2 a, b 2 bi =
Y

p

p

min(vp(a),vp(b)) = g.c.d(a, b)

a \ b =
Y

p

p

max(vp(a),vp(b)) = l.c.m(a, b).

Because of this result the set of prime ideals is particularly important:

Proposition 5.3. A prime ideal p ⇢ OK is maximal. The quotient OK/p = kp is a
finite finite.

Proof. Since p is a lattice the quotient OK/p = kp is a finite integral ring hence is a
field so p is maximal. ⇤

Definition 5.6. The field kp called the residue field at p, its characteristic p the residual
characteristic and its degree fp = [kp : Fp] is called the residual degree.

Proposition 5.4. A prime ideal p a characteristic p i↵ p ⇢ p or equivalently p|pOK

also written p|p. The valuation vp(pOK) is also noted ep and is called the ramification index
of p at p. One has the relation

n =
X

p|p
epfp.
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Here we retrive these statement from the adelic viewpoint:
Let a ⇢ K be an ideal, one associates to a the sequence of local lattices

(aw)w, aw 2 L(Kw), for a.e. finite w, aw = Ow.

By density the OK-action on a extend to an OK
w

-action on aw; since Ow is a principal ideal
ring, aw is of the shape

aw = ↵wOw, ↵w 2 K⇥
w , ↵w 2 O⇥

K
w

for a.e. w.

The number ↵w is called a local generator of a at the place w; ↵w is uniquely defined up
to multiplication by an element of O⇥

K
w

and we may take ↵w to be some power of some
uniformizer ⇡w, say

↵w = ⇡v
w

(↵
w

)
w .

In particular the quantity
vw(a) = vw(↵w) 2 Z,

does not depend on the choice of ↵w and are called the local valuation and the local norm
of a at the place w. We have therefore constructed a map

a 2 J(OK) 7! af bO⇥
K = (awO⇥

K
w

)w2V
K,f

2 A⇥
K,f/

dOK
⇥

where

A⇥
K,f =

Y0

w2V
K,f

K⇥
w

is the group of finite ideles of K and

dOK
⇥
=

Y

w2V
K,f

O⇥
K

w

is a maximal open-compact subgroup of A⇥
K,f .

Theorem 5.8. The above map is a group isomorphism. Under this isomorphism, the set
of prime ideals Spec(OK) correspond to the classes of ideles ⇡w bO⇥

K for w 2 VK,f (the idele
noted ⇡w is the one whose w-component is the uniformizer ⇡w and all other components are
equal to 1).

Proof. ⇤

4.2. The norm of an ideal.

Definition 5.7. The norm (or index) of a fractional ideal a is the rational number

NrK/Q(a) =
[OK : OK \ a]

[a : OK \ a]
2 Q>0.

Proposition 5.5. The norm is a group homomorphism. Under the isomorphism JK '
A⇥
K/ bO⇥

K it correspond to

af bO⇥
K 7! |af |�1

A
K

= |NrK/Q(af )|�1
A =

Y

p

Y

p|p
|NrKp/Q

p

(aw)|�1
p =

Y

p

Y

p|p
pfpvw(a

w

).

For � 2 K⇥, one has the formula

Nr(�OK) = |NrK/Q(�f (�))|�1
A = |NrK/Q(�)|1.
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4.3. Two finiteness theorems in algebraic number theory. In the classical alge-
braic number theory there are two important finitness theorems, one concerning the ideal
class group of OK (due to Dedekind), the other concerning the structure of the group of
units O⇥

K (due to Dirichlet). We describe these theorems in the classical setting and show

that they are equivalent to the compactness of the adelic quotient K⇥\A(1)
K .

Let a ⇢ K be a fractional ideal. We have seen that for every non-archimedean place
w ⇢ VK,f the local Øw-fractional ideal aw ⇢ Kwis principal. We then say that a is locally
principal. Obviously any principal ideal is locally principal and a natural question is whether
the converse holds :is a locally principal ideal globally principal ?.

The obstruction to this question is measured by

Definition 5.8. The ideal class group of OK is the quotient of the group of fractional
ideals by the principal ones

ClK = Cl(OK) = JK/PK ;

in other terms this is the set of classes of fractional OK-ideals modulo homothety:

a ⇠ b , 9� 2 K⇥, a = �b.

Obviously any fractional ideal is is principal if and only if ClK is trivial. This is not
always the case but one is not so far away from it since

Theorem 5.9 (Finiteness of the class group). The ideal class group ClK is finite.

Exercise 5.6. More generally let O ⇢ K be an order and let J(O) be the set of
fractional O-ideals. One that and ideal a ⇢ J(O) is locally principal if for every non-
archimedean place w, aw0awOw for some aw 2 K⇥

w . It is not always the case that any
fractional O-ideal is principal. The objective of this exercise is to prove the following
statement:if O is monogenic, that is O = Z[x] for some x 2 K, then every fractional ideal
is locally principal.

Regarding the group of unit O⇥
K we consider the group of infinite ideles

K⇥
1 =

Y

w|1
K⇥

w ' (R⇥)n1 ⇥ (C⇥)n2 , n1 + 2n2 = n.

We have the embedding
�1 : O⇥

K ,! K⇥
1.

Because of the product formula, the image of O⇥
K is contained into the smaller subgroup of

infinite ideles whose adelic modulus is 1

K(1)
1 = K⇥

1 \ A(1)
K = {x1 = (xw)w|1, |x1|A

K

=
Y

w|1
|xw|w,n = 1}

indeed for x 2 O⇥
K , |xw|w = 1 for every finite w.

By the polar decompositions

x 2 R 7! (|x|1, sgn(x)) 2 R>0 ⇥ {±1}
and

z 2 C 7! (|z|C, z/|z|C) 2 R>0 ⇥ S1

and the logarithm map log : R>0 7! R, one has the group isomorphisms

K⇥
1 ' (R>0)

n
1

+n
2 ⇥ {±1}n1 ⇥ (S1)n2 ' Rn

1

+n
2 ⇥ {±1}n1 ⇥ (S1)n2
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and

K(1)
1 ' Rn

1

+n
2

�1 ⇥ {±1}n1 ⇥ (S1)n2 ,

the first factor being the kernel of the linear form

(u1, · · · , un
1

+n
2

) 2 Rn
1

+n
2 7! u1 + · · ·+ un

1

+ 2(un
1

+1 + · · ·+ un
1

+n
2

)

Theorem 5.10 (Dirichlet unit’s theorem). The image of O⇥
K in K

(1)
1 is discrete and

cocompact. Consequently O⇥
K is a finitely generated abelian group of rank n1 + n2 � 1.

Theorem 5.11. Theorem 5.5 is equivalent to the two finiteness theorems of Dirichlet
and Dedekind.

Proof. ⇤

5. Duality, Discriminant and Ramification

As we have seen already, the fact that K is equipped with a natural non-degenerate
quadratic form

hx, yiL/Q = trK/Q(xy),

play an important role in the understanding of the local algebras Kp and their factorization
into a product of local fields.

Here we use again this trace form to give an alternative proof of the fact that OK is a
lattice.

For this we disccuss the notion of duality relative to lattices.

Definition 5.9. Let k be either Q or Qv and let V be a finite dimenstional k-vector
space equipped with a non-degenerate bilinear form h., .i. Given L ⇢ V a Zv-lattice, the dual
lattice L⇤ is the lattice

L⇤ = {x 2 V, hx, Li ⇢ Zv} = {x 2 V, 8y 2 V, hx, yi ⇢ Zv}.
L⇤ is indeed a lattice because if B = {ei} is a basis of L,

L⇤ =
X

i

Zve
⇤
i

where B⇤ = {e⇤i } is the dual basis of B relative to h·, ·i (ie. the basis corresponding to the
dual basis of B in V ⇤ under the isomorphism V ' V ⇤ induced by h·, ·i):

hei, e⇤j i = �i=j =

(
1 i = j

0 i 6= j.

The dual lattice construction has the following properties (proofs are left as exercises)

L⇤⇤ = L

L ⇢ L0 , L0⇤ ⇢ L

(L+ L0)⇤ = L⇤ \ L0⇤.
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5.1. Duality for ideals. We are now ready to give another proof that

Theorem 5.12. OK is finitely generated.

Proof. We have seen that OK contains a lattice say L ⇢ OK and let L⇤ be the dual
lattice. We claim that OK ⇢ L⇤ hence is finitely generated. Indeed for any x 2 OK and
y 2 L ⇢ OK we have xy 2 OK .L ⇢ OK .OK = OK since OK is a ring; in particular
trL/Q(xy) 2 Z the later being the coe�cient of degree n� 1 of Pchar,xy 2 Z[X]. ⇤

We can apply that construction to OK or to fractional OK-ideals: for a 2 JK we have
the dual lattice

a

⇤ = {x 2 K, trK/Q(xa) ⇢ Z}.
Proposition 5.6. The dual lattice a

⇤ is a fractional ideal. Moreover if (aw)w are the
local OK

w

fractional ideals associated to a, the local ideals associated to a

⇤ are (a⇤w)w where

a

⇤
w = {x 2 Kw, trK

w

/Q
v

(xaw) ⇢ Zv}
is the dual of aw wrt the quadratic form h., .iK

w

/Q
v

= trK
w

/Q
v

(.⇥ .).

Proof. For any prime p, let ap be the closure of a in Kp; clearly

a

⇤
p = {x 2 Kp, trK/Q(xa) ⇢ Zp}.

Let us recall as a quadratic space (Kp, h., .iK
p

/Q
p

) decompose into an orthogonal sum

(Kp, h., .iK
p

/Q
p

) =
M

w|p
(Kw, h., .iK

w

/Q
p

).

This implies that ap ⇢ Kp decompose as the orthogonal sum of the aw adn from there is it
clear that a⇤p is the orthogonal sum of the a

⇤
w. ⇤

Corollary 5.1. One has the formula

a

⇤ = a

�1O⇤
K

where
O⇤

K = {x 2 K, 8y 2 OK , trK/Q(xy) 2 Z}.
is the dual of the ring of integers OK .

Proof. If is su�cient to compute a

⇤
w for every finite place w: write aw = awOK

w

, we
have

a

⇤
w = {x 2 Kw, trK

w

/Q
v

(xawOK
w

) ⇢ Zv}
= {x = awy, y 2 Kw, trK

w

/Q
v

(yOK
w

) ⇢ Zv} = a�1
w O⇤

K
w

.

⇤
5.2. Di↵erent and discriminant. Because of the above result the fractional ideal

O⇤
K is of some importance and we will discuss it in greater details. Since

trK/Q(OK .OK) = trK/Q(OK) ⇢ Z
we have he inclusion

OK ⇢ O⇤
K

or in di↵erent terms (using the decomposition into prime ideals) we have

O⇤
K =

Y

p

p

vp(O⇤
K

) with vp(O⇤
K) 6 0.
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We make the following

Definition 5.10. The di↵erent ideal dK is defined as the inverse of O⇤
K in JK

dK = (O⇤
K)�1 =

Y

p

p

�vp(O⇤
K

) ⇢ OK .

The norm of the di↵erent dK is called the discriminant of OK

disc(OK) = NrK/Q(dK) 2 N>1.

For any finite place w define the local di↵erent and the local discriminant at w by

dp = (O⇤
Kp

)�1 = ⇡
�vp(O⇤

K

)
p OKp

disc(OKp) = NrKp/Qp

(dp)).

We have the following formulas

Proposition 5.7. Let B = {ei} be any basis of OK , one has

disc(OK) = | det(trK/Q(eiej))|.
Similarly for any prime p and Bp = {ei} any basis of OKp

disc(OKp) = | det(trKp/Qp

(eiej))|�1
p

Proof. By definition disc(OK) = [OK : dK ] = [O⇤
K : OK ] and the later is obtained is

| det((mi,j))| where the mij are the coordinates of Z-basis B of OK in the dual basis B⇤,

ei =
X

j

mije
⇤
j .

By definition of the dual basis we have

mij = hei, ejiK/Q.

⇤
5.3. Ramification. We have the following classical definition:

Definition 5.11. A prime ideal p ⇢ OK is ramified if its ramification index ep > 1. A
natural prime p is ramified in OK if there is some prime ideal p ⇢ OK dividing p which is
ramified. Prime or prime ideal which are not ramified are called unramified.

The following result shows that there are only finitely many ramified primes:

Theorem 5.13. Given p a prime ideal, one has the equivalence

vp(dK) > 0 , ep > 1.

Consequently a prime number p is ramified if and only if it divides the discriminant disc(OK).

Proof. We prove the implication

ep > 1 ) vp(dK) > 0

and leave the converse as an exercise. Under the assumption ep > 1 we want to show that
p|dK or equivalently that p| det(trKp/Qp

(eiej)) where Bp = {ei} is a basis of OKp . For
this we consider the quotient kp,p = OKp/pOKp ; this is a finite dimensional Fp-algebra of
dimension dp which equipped with the bilinear form h., .iKp/Qp

(mod p),

h., .ip,p : (x (mod p), y (mod p)) 2 k2p,p 7! trKp/Qp

(xy) (mod p)
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(verify that this is well defined). The set B (mod p) form an basis of kp,p (because it is
generating of the right cardinality) and det(trKp/Qp

(eiej)) (mod p) is the determinant of
the trace form h., .iKp/Qp

(mod p) in that basis. Let us assume that ep > 1, and let ⇡p be
some uniformizer. Under our assumption, the element ⇡p (mod p) is a non-zero nilpotent
element of kp,p of nilpotent index ep, in particular for any x (mod p) 2 kp,p, x⇡p (mod p) is
nilpotent and

trKp/Qp

(x⇡) ⌘ 0 (mod p)

which shows that the bilinear form h., .ip (mod p) is degenerate hence equals 0 (mod p). ⇤


