
CHAPTER 1

Overview of Zhang’s and Maynard’s theorems

Let P = {2, 3, 5, 7, 11, · · · } be the set of prime numbers; it is known at
least since Euclide that P is infinite. In order to quantify how ”dense” P
might be, it is natural to introduce the prime counting function

π(x) =
∑
p≤x

1 =
∑
n≤x

1P(n).

Gauss made extensive numerical investigations on the growth of π(X) and
made the following conjecture

Conjecture (Gauss). On has

π(x) ' `i(x) ' x

log x

where

`i(x) =

∫ x

2

dt

log t

is called the integral logarithm.

Gauss prime number conjecture was eventually proven about 100 years
later, independently and simultaneously by J. Hadamard and C. de la Vallée-
Poussin:

Theorem. Gauss’s prime number conjecture holds. Equivalently, if we
note

θ(x) := 1P(n) log n,

one has

Θ(x) =
∑
n≤x

θ(n) =
∑
p≤x

log p ' x.

In particular this theorem asserts that the set of prime numbers becomes
less and less dense: the probability that an integer less than x and picked
at random is ∼ 1/ log x→ 0, x→∞.

In other terms, if we denote by pn denote the n-th prime (p1 = 2, p2 =
3, · · · ), one has

pn ∼ n log n

and the distance (the prime gap) between pn and the next consecutive prime
pn+1 satisfies

pn+1 − pn ∼ log n

5
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”on average”. In this respect, the twin prime conjecture, made after numer-
ical investigations is largely counter-intuitive:

Conjecture (Polignac). There are infinitely many primes n such that

pn+1 − pn = 2.

In fact the twin primes conjecture has a more precise form

Conjecture. Let

π2(x) =
∑
p≤x

p+2 prime

1

one has

π2(x) ' 2C2
x

(log x)2
, C2 := 2

∏
p>2

(1− 1

(p− 1)2
)

Remark 1.1. This conjecture is in line with a naive probabilistic model
asserting that the probability for an integer n ≤ x to be prime is 1/ log x and
the probability for both n and n+ 2 being both primes should be 1/ log2 x.

One possible way to approach the twin prime conjecture is to investigate
how small the gap pn+1− pn can be; for this people considered the quantity

lim inf
n

pn+1 − pn
log pn

.

and could prove that

lim inf
n

pn+1 − pn
log pn

≤ c

for various values of c < 1. In 2005 a major breakthrough came came from
the work of Goldston-Pintz-Yildirim who proved that

Theorem 1.1 (GPY).

lim inf
n

pn+1 − pn
log pn

= 0.

This breakthrough came from the invention of a new approach the prob-
lem of finding small gaps between primes.

In the spring of 2013, an unknown analytic number theorist, Y. Zhang,
stunned the mathematical world by proving that

Theorem 1.2 (Y. Zhang). The quantity

G2 := lim inf
n

pn+1 − pn

is finite. More precisely, G2 satisfies the bound

G2 ≤ 70.106.
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The release of Zhang’s paper generated considerable activity. In partic-
ular, a collaborative project, Polymath8, coordinated by Terence Tao was
set up; its aim was, first to understand Zhang’s work and whenever possible
to improve the value of G2.

In september of 2013, the polymath8 project reached a value G2 ≤ 4680
by improving Zhang’s argument at several places.

However in October 2013, a postdoctoral assistant at Montreal, J. May-
nard, made a second breakthrough by proving the bound

Theorem 1.3 (Maynard).

G2 ≤ 600.

This striking bound was obtained by a significantly simpler method;
this is this method which we are going to expose in this course. May-
nard’s method allows for much stronger results non accessible to previous
techniques: the existence of infinitely many l-uples of primes clustered in
intervals of bounded length:

Theorem 1.4 (Maynard). For any l ≥ 2, the quantity

Gl = lim inf
n

pn+l − pn.

is finite.

Subsequently, Maynard joined the Polymath8 project and these bounds
were further to improved (April 2014)

G2 ≤ 246

and

Gl = O(l exp((4− 52

283
)m)).

1. The GPY method

The origin of these latest development comes from the work of GPY and
its new method to handle efficiently the detection of prime gaps; this is based
on wide generalization of the twin prime conjecture, the Hardy-Littlewood
conjecture:

Given k ≥ 2 and

h = (h1, · · ·hk) ∈ Zk, h1 < h2 < · · · < hk

a strictly increasing k-tuple of integers. We consider the sequence of shifts

(n+ h1, · · · , n+ hk)n≥1.

The Hardy-Littlewood conjecture aims at predicting that the above vector
has all of its entries primes for infinitely many integers n. For this conjecture
to have a chance to hold, it is necessary that h satisfies some additional
condition named admissibility. for instance suppose that k = 2 and h =
(0, 1) then either n or n + 1 will always be prime therefore they cannot be
simultaneously primes (unless n = 2).
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Definition 1.1. A k-uple h = (h1, · · ·hk) is admissible of for any prime
p

{hi (mod p), i = 1 · · · k} 6= Z/p

The Hardy-Littlewood conjecture is the statement that this condition is
also sufficient:

Conjecture (Hardy-Littlewood). Let h ∈ Zk be admissible then

πh(x) :=
∑
n≤x

1P(n+ h1) · · · 1P(n+ hk) ' Ck
x

logk x

with

Ck =
∏
p

1− hp/p
(1− 1/p)k

.

Equivalently ∑
n≤x

θ(n+ h1) · · · θ(n+ hk) ' Ckx.

The idea of GPY is the following: consider the sequence

(n+ h1, · · · , n+ hk)n≥1

for h admissible; suppose one can prove that this vector as at least two prime
entries for infinitely many n (which is guaranteed by the HL conjecture) this
implies that there are infinitely many prime gaps of size≤ hk−h1. This is the
extra flexibility introduced by the extra parameter k which will eventually
make this approach to work: let

θh(n) :=
k∑
i=1

θ(n+ hi);

the main observation is that if

θh(n) ≥ log(3n)

infinitely often, the sum θh(n) contains at least 2 non-zero terms infinitely
often.

Therefore, it woud be sufficient to evaluate the sum∑
n∼x

(θh(n)− log(3n))

and show that it is positive infinitely often. This naive strategy has no
chance to work since∑

n∼x
θh(n) ' kx,

∑
n≤x

log(3x) ∼ x log(3x).

Instead GPY consider the weighted sum∑
n∼x

w(n)(θh(n)− log(3n))
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for w(n) somenon-negative weights designed to ”penalize”the integers n such
that the product

Ph(n) =
∏
i

(n+ hi)

has many prime factors: the effect of these weights being that (assuming k
is sufficiently large but absolutely bounded)

(1.1)
∑
n≤x

w(n) log(2n) ≤ Q1,wx(1 + o(1))

while

(1.2)
∑
n≤x

w(n)θh(n) ≥ Q2,wx(1 + o(1))

for some constants Q1,w, Q2,w > 0 such that

Q2,w/Q1,w > 1.

Remark 1.2. Observe that the lower bound

Q2,w/Q1,w > l − 1

implies that Gl <∞.

1.1. The GPY choice. The design of weights w(n) penalizing integers
with many prime factors (are therefore detecting almost prime numbers)
belong to the theory of the sieve which is an art in itself and is to be discussed
later. The GPY original choice was (roughly) of the following shape

wGPY (n) = (
∑

d|Ph(n)
(d,∆h)=1

µ(d)g(
log d

log z
)2

where

∆h =
∏
j>i

(hj − hi)

is the discriminant1 of Ph(X), µ(n) is the Moebius function, which is the
multiplicative function defined for n =

∏
p|n p

αp by

µ(
∏
p|n

pαp) =
∏
p|n

µ(pαp),

µ(1) = 1, µ(p) = −1, µ(pα) = 0, α ≥ 2,

g is a suitable non-negative smooth function, compactly supported in [0, 1]
which will be optimized later and z = xδ, δ > 0 is a truncation parameter
which we will need to take sufficiently large to insure a good almost-prime

1 this extra condition is natural for this problem, see below.
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detection. The basic idea behind this choice (natural within Sieve methods)
is that when z is small compared to n the sum

λ(n) =
∑
d|n

µ(d)g(
log d

log z
)

will not have much time to oscillate and deviate much from the initial value
of the sum µ(1) = 1 and will stay large in general while for z large compared
to n, there will be many oscillations in this sum which will be therefore be
small (remember that for n ≥ 1,∑

d|n

µ(d) = 0.)

The sum (1.1) is not too hard to evaluate and one has

(1.3)
∑
n≤x

wGPY (n) log(3n) ' Q1(g; k, δ)x

where Q1(g, k, δ) is a quadratic form in g.
The sum (1.2) constitute the hardest part: opening the square in the

definition of gGPY , one finds that this term equal

(1.4)
∑

d,d′≤z2
(dd′,∆h)=1

· · ·
∑
i

∑
n≤x

[d,d′]|Ph(n)

θ(n+ hi)

=
∑
i

∑
q≤z2

(dd′,∆h)=1

(
∑

[d,d′]=q

· · · )
∑

hi≤n≤x+hi
Ph(n−hi)≡0 (mod q)

θ(n)

where

· · · = µ(d)µ(d′)g(
log d

log z
)g(

log d′

log z
)

The innermost sums is a log-weighted count for the number of primes in the
shifted sequence n+ hi and in the union of arithmetic progressions modulo
q = [d, d′], a+ qZ, for a defined by the polynomial congruence equation

Ph(a− hi) ≡ 0 (mod q).

Therefore we need first to be able to count primes of size x contained in
arithmetic progressions of relatively large moduli (up to q ≈ x2δ).

Observe that since q is coprime with ∆h, the solutions of the above
polynomial congruence equation are composed of

- the zero class 0 (mod q) and the corresponding sum is very small∑
hi≤n≤x+hi
n≡0 (mod q)

θ(n) ≤ log q,
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- a number (bounded by kω(q)) of congruences classes a which are
coprime with q. We evaluate the corresponding sums∑

hi≤n≤x+hi
n≡a (mod q)

θ(n)

below.

2. Primes in arithmetic progressions to large moduli

Theorem (Dirichlet). Given (a, q) = 1, the set

P ∩ a+ qZ
is infinite.

Remark 1.3. Observe that for (a, q) 6= 1, the set P ∩ a+ qZ is finite.

This is a qualitative statement and we will need something more quan-
titative in several aspects. Let us recall that the number of arithmetic pro-
gressions of modulus q, a + qZ made of integers coprime with q (the only
ones which could possibly contain infinitely many primes) equals the Euler
totient function

|{a (mod q), (a, q) = 1}| = |(Z/q)×| = ϕ(q) = q
∏
p|q

(1− 1

p
),

We know from Dirichlet theorem that any such class contains infinitely many
primes but there is a priori no reason why one class should contain more
prmes than the other classes; this is indeed not the case a fact confirmed by
more qualitative results: Dirichlet himself proved that∑

p≡a (mod q),p≤x

log p

p
' 1

ϕ(q)
(
∑
p≤x

log p

p
) ' log x

ϕ(q)

and subsquently Landau generalized the HdVP method to prove the follow-
ing: let

Θ(x; q, a) =
∑
n≤x

n≡a (mod q)

θ(n) =
∑
p≤x

p≡a (mod q)

log p

Theorem (Landau). Given (a, q) = 1,

Θ(x; q, a) ' 1

ϕ(q)
x.

In other terms, there are asymptotically as many primes in any of the
arithmetic progression a (mod q) for a prime to q.

From this result on can guess the expected main term for the sum (1.4)
is asymptotic to

(1.5) k
∑
q≤z2

(q,∆h)=1

1

ϕ(q)

∑
[d,d′]=q

· · · ×Θ(x) ' Q2(g; k, δ)x.
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Suppose that the step of replacing the sum (1.4) by the main term computed
in this way can be justified for some value of δ, we would get

(1.6) Q2(g; k, δ)/Q1(g; k, δ)

and would ”just” have to choose g appropriately in order to maximize the
above quotient (this is an optimization problem in analysis) and hope that
its value is > 1.

We therefore need to evaluate the error term arising from making this
approximatio and is essentially bounded by∑

i

∑
q≤z2

(q,∆h)=1

(
∑

[d,d′]=q

· · · )
∑

(a,q)=1
Ph(a−hi)≡0 (mod q)

∣∣Θ(x; q, a)− 1

ϕ(q)
Θ(x)

∣∣∣.
In the previous statement the dependency in q was not explicited but if

it were, it would be very poor: the following is known

Theorem (Siegel-Walfisz). For any A ≥ 0

Θ(x; q, a) =
1

ϕ(q)
Θ(x) +OA(

Θ(x)

logA x
).

In particular, if q ≤ (log x)A−1,

x log−A x = o(Θ(x; q, a)) = o(
1

ϕ(q)
x)

and one can count accurately primes less than x in an arithmetic progressions
of sufficiently small modulus (≤ (log x)A−1) for any A ≥ 1. Here we need
to control the error term for the distribution of primes ≤ x in arithmetic
progressions for much larger moduli, namely of size x2δ.

That this is indeed possible is a very deep

Conjecture (Generalized Riemann Hypothesis). Given (a, q) = 1, one
has for any x ≥ 2

Θ(x; q, a) =
1

ϕ(q)
Θ(x) +Oε(x

1/2 log2 x).

In particular, one has for any ε > 0 and x ≥ 2

Θ(x; q, a) ' 1

ϕ(q)
Θ(x)

as long as q ≤ x1/2−ε and (1.5) would be valid for any δ < 1/4.
Fortunately, for this specific problem (and many other), it is not neces-

sary to be able to count primes in arithmetic progressions in large individual
moduli q; we need only this count on average over q ≤ x2δ. For this one has
the following unconditional result (which match GRH):

Theorem (Bombieri-Vinogradov). For any θ < 1/2 and any A ≥ 0∑
q≤xθ

max
(a,q)=1

|Θ(x; q, a)− 1

ϕ(q)
Θ(x)| � x

logA x
.
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Consequently, one can prove rigorously (1.5) for any δ < 1/4; unfortu-
nately for δ = 1/4 (so that 2δ = 1/2) it is possible to show that the quotient
(1.6) is always ≤ 1 for k any fixed number; eventually by allowing k to grow
slowly with x and by an additional device GPY were able to bypass the
problem and to prove their main result.

On the other hand, GPY also proved that if δ > 1/4, then for suitable
g and sufficiently large k, one has

Q2(g; k, δ)/Q1(g; k, δ) > 1

therefore, if one could prove a version of the Bombieri-Vinogradov theorem
for some θ > 1/2 and therefore

Theorem (GPY). Assume that the Bombieri-Vinogradov Theorem holds
with 1/2 replaced by 1/2 + η for some fixed η > 0, then

G2 <∞.

3. Zhang’s contribution

The improvement on the Bombieri-Vinogradov theorem (passing the
1/2-threshold) was showed to be possible in some situations by Fouvry-
Iwaniec and Bombieri-Friedlander-Iwaniec. The main new ingredient neede
for this is a smoothness assumption on the moduli q

Definition 1.2. Given y > 0, an integer q is y-smooth if all its prime
divisors are ≤ y.

In particular when y is small compared to q, q has many prime factors
and admits a factorisation into products q = q1q2 where the size of of the two
factors can be chosen flexibly (a smallest y implying a greater flexibility).

Because of this, Motohashi and Pintz modifies the GPY sieving argu-
ment so that the moduli q of the arithmetic progression become smooth
and therefore so that the extension of BV become applicable (with some
smoothness parameter y = xσ. For this, it was necessary to change the
weights wGPY (n)↔ wMP (n) and to recompute a new quotient

Q2(g; k, δ, σ)/Q1(g; k, δ, σ).

which could be proven > 1 for k large enough and δ > 1/4. Unfortunately
the works Fouvry-Iwaniec and Bombieri-Friedlander-Iwaniec were still not
applicable.

Zhang’s main achievement was to show that it was possible to pass
the exponent 1/2 in the Bombieri-Vinogradov theorem therefore prove that
G2 <∞. A stronger form of Zhang’s original theorem is the following result

Theorem (Zhang+Polymath8). For any θ < 1/2 + 7/300, there exist
σ > 0 such that for any A ≥ 1

max
a≥1

∑
q≤xθ, (a,q)=1
q xσ−smooth

|Θ(x; q, a)− 1

ϕ(q)
Θ(x)| �A

x

logA x
.
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4. Maynard method

The main innovation of Maynard a new choice of the weights w(n).
Instead of considering a weight detecting whether the product

Ph(n) =
∏
i

(n+ hi)

has few or many prime factors, Maynard introduced a weight for each factor
of the polynomial; a simplified version of Maynard weight is the following

wM (n) =
k∏
i=1

(
∑
d|n+hi

(d,∆h)=1

µ(d)g(
log d

log z
))2.

With these new weights one can carry out the same analysis of the main
terms and reach a quotient

Q2,M (g; k, δ)/Q1,M (g; k, δ).

The main feature of these weights is the following:

Theorem (Maynard). For and δ > 0 and any ` ≥ 1 one has, for k
sufficiently large

Q2,M (g; k, δ)/Q1,M (g; k, δ) > `− 1

for some choice of g.

By the previous discussion this implies Maynard’s theorem on clusters
of primes in bounded intervals: for any ` ≥ 1

lim inf pn+` − pn <∞.


