TOPICS IN NUMBER THEORY - EXERCISE SHEET I

École Polytechnique Fédérale de Lausanne

Exercise 1 (Non-vanishing of Dirichlet L-functions on the line $\Re(s)=1$)
Let $q \geq 1$ and let χ be a Dirichlet character modulo q. Let also $L(\chi, s)$ be the Dirichlet L-function defined for $\Re(s)>1$ by

$$
L(\chi, s)=\sum_{n \geq 1} \frac{\chi(n)}{n^{s}}
$$

The goal of this exercise is to prove that $L(\chi, s) \neq 0$ for $\Re(s)=1$. This generalizes the result of Dirichlet which asserts that $L(\chi, 1) \neq 0$.

Steps. - (I) Let $\zeta_{q}(s)$ be the function defined for $\Re(s)>1$ by

$$
\zeta_{q}(s)=\prod_{\chi(\bmod q)} L(\chi, s)=\sum_{n \geq 1} \frac{a_{q}(n)}{n^{s}}
$$

and the opposite of its logarithmic derivative

$$
-\frac{\zeta_{q}^{\prime}(s)}{\zeta_{q}(s)}=\sum_{n \geq 1} \frac{\Lambda_{q}(n)}{n^{s}}
$$

Compute $\Lambda_{q}(n)$ and check that $\Lambda_{q}(n) \geq 0$.
(II) Let $t \in \mathbb{R}_{\neq 0}$ and let $H_{q, i t}(s)$ be the function defined for $\Re(s)>1$ by

$$
H_{q, i t}(s)=\zeta_{q}(s)^{3}\left(\zeta_{q}(s+i t) \zeta_{q}(s-i t)\right)^{2} \zeta_{q}(s+2 i t) \zeta_{q}(s-2 i t)
$$

and the opposite of its logarithmic derivative

$$
-\frac{H_{q, i t}^{\prime}(s)}{H_{q, i t}(s)}=\sum_{n \geq 1} \frac{\Lambda_{q, i t}(n)}{n^{s}}
$$

Prove that these two functions extend meromorphically to the open half-plane $\{s \in \mathbb{C}, \Re(s)>0\}$, and that $\Lambda_{q, i t}(n) \geq 0$.
(III) We assume that there exists a Dirichlet character χ such that $L(\chi, 1+i t)=0$ for some $t \in \mathbb{R}_{\neq 0}$. Check that $a_{q}(n) \in \mathbb{R}$ for any $n \geq 1$, and deduce that $H_{q, i t}(1)=0$. Prove also that $-H_{q, i t}^{\prime}(s) / H_{q, i t}(s)$ has a simple pole at $s=1$ and that

$$
\operatorname{res}_{s=1}\left(-\frac{H_{q, i t}^{\prime}(s)}{H_{q, i t}(s)}\right)<0
$$

(IV) Find a contradiction by examining the Laurent expansion of $-H_{q, i t}^{\prime}(s) / H_{q, i t}(s)$ at 1. Conclude.

Exercise 2 (The Prime Number Theorem in arithmetic progressions)

Let $q \geq 1$ and $a \in \mathbb{Z}$ coprime to q, and let also

$$
\psi(x ; q, a)=\sum_{\substack{n \leq x \\ n=a(\bmod q)}} \Lambda(n) .
$$

The goal of this exercise is to prove that the results of Exercise 1 imply

$$
\psi(x ; q, a)=\frac{x}{\varphi(q)}\left(1+o_{q}(1)\right) .
$$

We will also make use of the following lemma.
Lemma. - Let $f: \mathbb{R}_{\geq 1} \rightarrow \mathbb{R}$ be a piecewise continuous function whose absolute value is bounded. Then the function $F(s)$ defined by the integral

$$
F(s)=\int_{1}^{\infty} f(t) t^{-s} d t
$$

is holomorphic in the open half-plane $\{s \in \mathbb{C}, \Re(s)>1\}$. Moreover, if $F(s)$ extends meromorphically to an open neighborhood of the closed half-plane $\{s \in \mathbb{C}, \Re(s) \geq 1\}$ and if it is holomorphic on the line $\{s \in \mathbb{C}, \Re(s)=1\}$, then the integral

$$
\int_{1}^{\infty} f(t) t^{-1} d t
$$

is convergent and equals $F(1)$.
Steps. - (I) Let $L\left(\Lambda \cdot \delta_{a}(\bmod q), s\right)$ be the function defined for $\Re(s)>1$ by

$$
L\left(\Lambda \cdot \delta_{a}(\bmod q), s\right)=\sum_{\substack{n \geq 1 \\ n=a(\bmod q)}} \frac{\Lambda(n)}{n^{s}} .
$$

Write $L\left(\Lambda \cdot \delta_{a(\bmod q)}, s\right)$ as a linear combination of the logarithmic derivatives $-L^{\prime}(\chi, s) / L(\chi, s)$ and show that the function

$$
L\left(\Lambda \cdot \delta_{a(\bmod q)}, s\right)-\frac{1}{\varphi(q)} \frac{s}{s-1}
$$

extends meromorphically to the open half-plane $\{s \in \mathbb{C}, \Re(s)>0\}$ and that it does not have poles in the closed half-plane $\{s \in \mathbb{C}, \Re(s) \geq 1\}$.
(II) For $t \geq 1$, we set

$$
f_{q, a}(t)=\frac{1}{t}\left(\psi(t ; q, a)-\frac{t}{\varphi(q)}\right) .
$$

Prove that $f_{q, a}(t)$ is a piecewise continuous function whose absolute value is bounded.
(III) Prove that for $\Re(s)>1$, we have

$$
L\left(\Lambda \cdot \delta_{a(\bmod q)}, s\right)-\frac{1}{\varphi(q)} \frac{s}{s-1}=-s \int_{1}^{\infty} f_{q, a}(t) t^{-s} \mathrm{~d} t
$$

(IV) Prove that the integral

$$
\int_{1}^{\infty} \frac{1}{t^{2}}\left(\psi(t ; q, a)-\frac{t}{\varphi(q)}\right) \mathrm{d} t
$$

is convergent and that for every fixed $\lambda>1$, we have

$$
\lim _{x \rightarrow \infty} \int_{x}^{\lambda x} \frac{1}{t^{2}}\left(\psi(t ; q, a)-\frac{t}{\varphi(q)}\right) \mathrm{d} t=0
$$

(V) Prove that for every $\varepsilon>0$, there exists $x_{0} \geq 1$ such that for every $x \geq x_{0}$, we have

$$
\psi(x ; q, a) \leq\left(\frac{1}{\varphi(q)}+\varepsilon\right) x .
$$

For this, assume that there exists a sequence $\left(x_{n}\right)_{n \geq 1}$ going to infinity, and such that for every $n \geq 1$,

$$
\psi\left(x_{n} ; q, a\right)>\left(\frac{1}{\varphi(q)}+\varepsilon\right) x_{n}
$$

and find a contradiction.
(VI) Conclude.

Exercise 3 (On the number of zeros of the Riemann zeta function)

Let $N(T)$ be the number of zeros $s=\sigma+$ it of the Riemann zeta function satisfying $0<\sigma<1$ and $0<t<T$, counted with multiplicities. The goal of this exercise is to prove that

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+O(\log T)
$$

Steps. - (I) Let $\xi(s)$ be the function defined by

$$
\xi(s)=\frac{1}{2} s(s-1) \pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s) .
$$

Prove that $2 \pi N(T)=\Delta_{R} \arg \xi(s)$, where R is the rectangle with vertices 2, $2+i T,-1+i T,-1$ described in the positive direction, and Δ_{R} denotes the variation of $\xi(s)$ along the rectangle R.
(II) Using the functional equation satisfied by $\xi(s)$, prove that

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+S(T)+\frac{7}{8}+O\left(\frac{1}{T}\right)
$$

where $\pi S(T)=\Delta_{L} \arg \zeta(s)$ and L is the path of line segments joining 2 to $2+i T$ and then to $1 / 2+i T$.
(III) Prove that

$$
\sum_{\rho} \frac{1}{1+(T-\Im(\rho))^{2}} \ll \log T
$$

where the sum is over the non-trivial zeros ρ of the Riemann zeta function, counted with multiplicities.
(IV) Let $s=\sigma+i t$ with $-1 \leq \sigma \leq 2$ and t not equal to an ordinate of a zero. Prove that

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)}=\sum_{\rho}^{\prime} \frac{1}{s-\rho}+O(\log |t|),
$$

where the dash on the summation indicates that it is restricted to those ρ for which $|t-\Im(\rho)|<1$.
(V) Use the last step to conclude that $S(T) \ll \log T$.

To go further. - Using a similar method, one can prove an analog result for Dirichlet L-functions. Let $q \geq 1$ and let χ be a primitive Dirichlet character modulo q. Let also $N(T, \chi)$ be the number of zeros $s=\sigma+$ it of $L(s, \chi)$ satisfying $0<\sigma<1$ and $-T<t<T$, counted with multiplicities. We have

$$
\frac{1}{2} N(T, \chi)=\frac{T}{2 \pi} \log \frac{q T}{2 \pi}-\frac{T}{2 \pi}+O(\log q T)
$$

Exercise 4 (Weil's explicit formula). - Let $\varphi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}_{>0}\right)$ and let $\tilde{\varphi}$ be its Mellin transform. We define the function $\check{\varphi}$ by $\check{\varphi}(x)=x^{-1} \varphi\left(x^{-1}\right)$. We have the identity
$\sum_{n \geq 1}(\varphi(n)+\check{\varphi}(n)) \Lambda(n)=\tilde{\varphi}(1)+\tilde{\varphi}(0)-\sum_{\rho} \tilde{\varphi}(\rho)+\frac{1}{2 \pi i} \int_{(1 / 2)}\left(\frac{\zeta_{\infty}^{\prime}(s)}{\zeta_{\infty}(s)}+\frac{\zeta_{\infty}^{\prime}(1-s)}{\zeta_{\infty}(1-s)}\right) \tilde{\varphi}(s) d s$,
where the sum in the right-hand side is over all non-trivial zeros ρ of the Riemann ζ function, counted with multiplicities, and where

$$
\zeta_{\infty}(s)=\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) .
$$

Steps. - (I) Recall the definition of the function $\xi(s)$ given in Exercise 3. Prove that

$$
\frac{1}{2 \pi i} \int_{(3 / 2)} \frac{\xi^{\prime}(s)}{\xi(s)} \tilde{\varphi}(s) \mathrm{d} s=\frac{1}{2 \pi i} \int_{(3 / 2)}\left(\frac{1}{s}+\frac{1}{s-1}+\frac{\zeta_{\infty}^{\prime}(s)}{\zeta_{\infty}(s)}\right) \tilde{\varphi}(s) \mathrm{d} s-\sum_{n \geq 1} \Lambda(n) \varphi(n) .
$$

(II) Let $T \geq 1$ and let R_{T} be the rectangle whose vertices are $3 / 2 \pm i T$ and $-1 / 2 \pm i T$. Prove that

$$
\frac{1}{2 \pi i} \int_{R_{T}} \frac{\xi^{\prime}(s)}{\xi(s)} \tilde{\varphi}(s) \mathrm{d} s=\sum_{\substack{\rho \\|\Im(\rho)| \leq T}} \tilde{\varphi}(\rho),
$$

and also that

$$
\sum_{\rho} \tilde{\varphi}(\rho)=\frac{1}{2 \pi i} \int_{(3 / 2)} \frac{\xi^{\prime}(s)}{\xi(s)} \tilde{\varphi}(s) \mathrm{d} s-\frac{1}{2 \pi i} \int_{(-1 / 2)} \frac{\xi^{\prime}(s)}{\xi(s)} \tilde{\varphi}(s) \mathrm{d} s
$$

(III) Use the functional equation to prove that

$$
\sum_{\rho} \tilde{\varphi}(\rho)=\frac{1}{2 \pi i} \int_{(3 / 2)}\left(\frac{1}{s}+\frac{1}{s-1}+\frac{\zeta_{\infty}^{\prime}(s)}{\zeta_{\infty}(s)}\right)(\tilde{\varphi}(s)+\tilde{\varphi}(1-s)) \mathrm{d} s-\sum_{n \geq 1} \Lambda(n)(\varphi(n)+\check{\varphi}(n)) .
$$

(IV) Conclude.

Exercise 5 (Consequence of the Generalized Riemann Hypothesis)

Let $q \geq 1$ and $a \in \mathbb{Z}$ coprime to q, and recall the definition of $\psi(x ; q, a)$ given in Exercise 2. The goal of this exercise is to prove that the Generalized Riemann Hypothesis implies that

$$
\psi(x ; q, a)-\frac{x}{\varphi(q)} \ll x^{1 / 2}(\log x)^{2}
$$

where the constant involved in the notation \ll does not depend on q.
Steps. - (I) Assuming the Riemann Hypothesis, prove that

$$
\psi(x)-x \ll x^{1 / 2}(\log x)^{2},
$$

where, as usual,

$$
\psi(x)=\sum_{n \leq x} \Lambda(n) .
$$

To do this, use the following approximate explicit formula, which is valid if the distance from x to any prime power is, say, at least $1 / 2$,

$$
\psi(x)=x-\sum_{\substack{\rho \\|\Im(\rho)| \leq T}} \frac{x^{\rho}}{\rho}-\frac{\zeta^{\prime}(0)}{\zeta(0)}+\frac{1}{2} \log \left(1-x^{-2}\right)+O\left(\frac{x(\log T x)^{2}}{T}\right),
$$

where the sum is over the non-trivial zeros ρ of the Riemann zeta function, counted with multiplicities.
(II) Let χ be a non-trivial character modulo q. Assuming the Generalized Riemann Hypothesis, prove that

$$
\psi(x, \chi) \ll x^{1 / 2}(\log q x)^{2}
$$

where, as usual,

$$
\psi(x, \chi)=\sum_{n \leq x} \Lambda(n) \chi(n) .
$$

To do this, use the following approximate explicit formula, which is valid if the distance from x to any prime power is, say, at least $1 / 2$,

$$
\psi(x, \chi)=-\sum_{\substack{\rho \\|\Im(\rho)| \leq T}} \frac{x^{\rho}}{\rho}-(1-\ell)(\log x+b(\chi))+\sum_{m=1}^{\infty} \frac{x^{\ell-2 m}}{2 m-\ell}+O\left(\frac{x(\log q T x)^{2}}{T}\right)
$$

where the sum is over the non-trivial zeros ρ of the L-function $L(s, \chi)$, counted with multiplicities, and $\ell=0$ if $\chi(-1)=1, \ell=1$ if $\chi(-1)=-1$, and finally

$$
b(\chi)=\lim _{s \rightarrow 0}\left(\frac{L^{\prime}(s, \chi)}{L(s, \chi)}-\frac{1}{s}\right) .
$$

(III) Conclude.

To go further. - On average over the residue classes modulo q, one expects much more to be true. Assuming the Generalized Riemann Hypothesis, one can prove that

$$
\sum_{a(\bmod q)}\left(\psi(x ; q, a)-\frac{x}{\varphi(q)}\right)^{2} \ll x(\log q x)^{4},
$$

where the summation is over a coprime to q. What does it imply on the average size of $|\psi(x ; q, a)-x / \varphi(q)|$ as a varies?

Exercise 6 (On the least prime in an arithmetic progression)

Let $q \geq 1$ and $a \in \mathbb{Z}$ coprime to q. Assuming the Generalized Riemann Hypothesis, prove that there exists a prime number $p=a(\bmod q)$ satisfying $p \ll q^{2}(\log q)^{4}$.

Exercise 7 (On the least quadratic non-residue). - Let q be prime and let $n(q)$ be the least quadratic non-residue modulo q. Assuming the Generalized Riemann Hypothesis, prove that $n(q) \ll(\log q)^{4}$.

Exercise 8 (The Class Number Formula for imaginary quadratic fields)

Let K be an imaginary quadratic field and let \mathcal{O}_{K} be the ring of integers of K. We let ω_{K} be the number of roots of unity in K, and $\operatorname{Disc}(K)$ be the discriminant of K. We also let h_{K} be the class number of K, that is the cardinality of the group

$$
\mathcal{C}(K)=I(K) / P(K),
$$

where $I(K)$ is the free abelian group generated by prime ideals of \mathcal{O}_{K}, and $P(K)$ is the subgroup of principal ideals. If I is an ideal of \mathcal{O}_{K}, recall that its norm $N(I)$ is defined by

$$
N(I)=\# \mathcal{O}_{K} / I
$$

We define the Dedekind zeta function of the field K by the formula

$$
\zeta_{K}(s)=\sum_{I \subset \mathcal{O}_{K}} N(I)^{-s},
$$

which is valid for $\Re(s)>1$, and where the sum is over all ideals I of \mathcal{O}_{K}. Prove that $\zeta_{K}(s)$ has a simple pole at $s=1$ and that

$$
\operatorname{res}_{s=1} \zeta_{K}(s)=\frac{2 \pi h_{K}}{\omega_{K}|\operatorname{Disc}(K)|^{1 / 2}} .
$$

[^0]
[^0]: Pierre Le Boudec - Fall 2014
 École Polytechnique Fédérale de Lausanne

