TOPICS IN NUMBER THEORY - EXERCISE SHEET III

École Polytechnique Fédérale de Lausanne

Exercise 1 (The Arithmetic Large Sieve). - Let $N \geq 1$ and \mathcal{M} be a set of integers contained in $[1, N]$. Let also \mathcal{P} be a finite set of prime numbers. For each $p \in \mathcal{P}$, let $\Omega_{p} \subset \mathbb{Z} / p \mathbb{Z}$ be a set of residue classes modulo p and set $\Omega=\left(\Omega_{p}\right)_{p \in \mathcal{P}}$. Define

$$
S(\mathcal{M}, \mathcal{P}, \Omega)=\left\{m \in \mathcal{M}, \forall p \in \mathcal{P} \quad m(\bmod p) \notin \Omega_{p}\right\}
$$

and

$$
Z(a)=\sum_{n \in S(\mathcal{M}, \mathcal{P}, \Omega)} a_{n},
$$

for any sequence $a=\left(a_{n}\right)_{n \leq N}$ of complex numbers. Assume that $\omega(p)=\left|\Omega_{p}\right|<p$ for every $p \in \mathcal{P}$. Prove that for any $Q \geq 1$, we have

$$
|Z(a)|^{2} \leq\left(N+Q^{2}\right) H^{-1} \sum_{n \in S(\mathcal{M}, \mathcal{P}, \Omega)}\left|a_{n}\right|^{2},
$$

where

$$
H=\sum_{q \leq Q} h(q),
$$

where h is the multiplicative function supported on squarefree integers with prime divisors in \mathcal{P} which is defined by

$$
h(p)=\frac{\omega(p)}{p-\omega(p)} .
$$

Steps. - (I) For $\alpha \in \mathbb{R}$, let

$$
S(\alpha)=\sum_{n \in S(\mathcal{M}, \mathcal{P}, \Omega)} a_{n} e(\alpha n),
$$

where $e(x)=e^{2 \pi i x}$. Start by proving that for any squarefree integer q, we have

$$
h(q)|S(0)|^{2} \leq \sum_{a(\bmod q)}^{*}\left|S\left(\frac{a}{q}\right)\right|^{2}
$$

where the symbol $*$ indicates that the summation is restricted to residue classes a which are coprime to q. Reason by induction on the number of prime factors of q.
(II) Use the additive large sieve inequality to conclude.

Exercise 2 (On Twin Primes). - Let \mathcal{P}_{2} be the set of prime numbers p such that $p-2$ is also prime and let $\pi_{2}(x)$ be the number of $p \in \mathcal{P}_{2}$ such that $p \leq x$. Prove that

$$
\pi_{2}(x) \ll \frac{x}{(\log x)^{2}} .
$$

Deduce that

$$
\sum_{p \in \mathcal{P}_{2}} \frac{1}{p} \ll 1
$$

Exercise 3 (A Theorem of Linnik on least quadratic non-residues)

For q a prime number, let $n(q)$ be the least quadratic non-residue modulo q. Let $\varepsilon>0$ be fixed and $N \geq 1$. Prove that the number of primes $q \leq N$ such that $n(q)>N^{\varepsilon}$ is bounded by a constant depending only on ε.

To go further (A Theorem of Serre on rational points on diagonal conics)

The following statement is also a consequence of the Arithmetic Large Sieve. For $a, b, c \geq 1$, let $\mathcal{C}_{a, b, c}$ be the conic defined in $\mathbb{P}^{2}(\mathbb{Q})$ by the equation

$$
a x^{2}+b y^{2}=c z^{2},
$$

and for $B \geq 1$, let

$$
N(B)=\#\left\{(a, b, c) \in \mathbb{Z}^{3} \cap[1, B]^{3}, \mathcal{C}_{a, b, c}(\mathbb{Q}) \neq \emptyset\right\} .
$$

We have

$$
N(B)=o\left(B^{3}\right) .
$$

Exercise 4 (The Bombieri-Vinogradov Theorem for the Möbius function)

Let $A>0$ be fixed. Prove that there exists a constant $B>0$ depending on A such that

$$
\sum_{q \leq x^{1 / 2} /(\log x)^{B}} \max _{a(\bmod q)}\left|\sum_{n=a}^{n \leq x}(\bmod q)<1(n)\right| \ll \frac{x}{(\log x)^{A}},
$$

where the maximum is taken over integers a coprime to q, and where the constant involved in the notation \ll may depend on A.

Steps. - (I) Start by proving that the Möbius function satisfies the following Siegel-Walfisz condition. For any $A>0$, and for $a, q \geq 1$ two coprime integers,

$$
\sum_{\substack{n \leq x \\ n=a(\bmod q)}} \mu(n) \ll \frac{x}{(\log x)^{A}} .
$$

(II) Prove that for $y, z \geq 1$ and for $n>\max (y, z)$, we have

$$
\mu(n)=-\sum_{\substack{a b \mid n \\ a \leq y, b \leq z}} \mu(a) \mu(b)+\sum_{\substack{a b \mid n \\ a>y, b>z}} \mu(a) \mu(b) .
$$

(III) Follow the steps of the proof of the Bombieri-Vinogradov Theorem.

Exercise 5 (The Barban-Davenport-Halberstam Theorem)

For $a, q \geq 1$ two coprime integers, we set as usual

$$
\psi(x ; q, a)=\sum_{\substack{n \leq x \\ n=a(\bmod q)}} \Lambda(n) .
$$

Let $A>0$ be fixed. Prove that there exists a constant $B>0$ depending on A such that

$$
\sum_{q \leq x /(\log x)^{B}} \sum_{a(\bmod q)}^{*}\left(\psi(x ; q, a)-\frac{x}{\varphi(q)}\right)^{2} \ll \frac{x^{2}}{(\log x)^{A}},
$$

where the constant involved in the notation \ll may depend on A.
Steps. - (I) Rewrite the left-hand side using Dirichlet characters.
(II) Use the Siegel-Walfisz Theorem and the multiplicative large sieve inequality to conclude.

Exercise 6 (The Titchmarsh divisor problem). - Let τ denote the divisor function. Prove that there exists a constant $c>0$ such that

$$
\sum_{p \leq x} \tau(p-1)=c x+O\left(\frac{x \log \log x}{\log x}\right) .
$$

Steps. - (I) Start by using the fact that if $n \geq 1$ is not a square then

$$
\tau(n)=2 \sum_{\substack{d \mid n \\ d \leq \sqrt{n}}} 1 .
$$

(II) Use the Brun-Titchmarsh Theorem and the Bombieri-Vinogradov Theorem to conclude.

[^0]
[^0]: Pierre Le Boudec - Fall 2014
 École Polytechnique Fédérale de Lausanne

