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Exercise 1 (The Arithmetic Large Sieve). — Let N ≥ 1 and M be a set of
integers contained in [1, N ]. Let also P be a finite set of prime numbers. For each
p ∈ P, let Ωp ⊂ Z/pZ be a set of residue classes modulo p and set Ω = (Ωp)p∈P .
Define

S(M,P,Ω) = {m ∈M,∀p ∈ P m (mod p) /∈ Ωp},
and

Z(a) =
∑

n∈S(M,P,Ω)
an,

for any sequence a = (an)n≤N of complex numbers. Assume that ω(p) = |Ωp| < p
for every p ∈ P. Prove that for any Q ≥ 1, we have

|Z(a)|2 ≤ (N +Q2)H−1 ∑
n∈S(M,P,Ω)

|an|2,

where
H =

∑
q≤Q

h(q),

where h is the multiplicative function supported on squarefree integers with prime
divisors in P which is defined by

h(p) = ω(p)
p− ω(p) .

Steps. — (I) For α ∈ R, let

S(α) =
∑

n∈S(M,P,Ω)
ane(αn),

where e(x) = e2πix. Start by proving that for any squarefree integer q, we
have

h(q)|S(0)|2 ≤
∑∗

a (mod q)

∣∣∣∣S (aq
)∣∣∣∣2 ,

where the symbol ∗ indicates that the summation is restricted to residue
classes a which are coprime to q. Reason by induction on the number of
prime factors of q.

(II) Use the additive large sieve inequality to conclude.
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Exercise 2 (On Twin Primes). — Let P2 be the set of prime numbers p such
that p − 2 is also prime and let π2(x) be the number of p ∈ P2 such that p ≤ x.
Prove that

π2(x)� x

(log x)2 .

Deduce that ∑
p∈P2

1
p
� 1.

Exercise 3 (A Theorem of Linnik on least quadratic non-residues)
For q a prime number, let n(q) be the least quadratic non-residue modulo q. Let

ε > 0 be fixed and N ≥ 1. Prove that the number of primes q ≤ N such that
n(q) > N ε is bounded by a constant depending only on ε.

To go further (A Theorem of Serre on rational points on diagonal conics)
The following statement is also a consequence of the Arithmetic Large Sieve. For

a, b, c ≥ 1, let Ca,b,c be the conic defined in P2(Q) by the equation

ax2 + by2 = cz2,

and for B ≥ 1, let
N(B) = #{(a, b, c) ∈ Z3 ∩ [1, B]3, Ca,b,c(Q) 6= ∅}.

We have
N(B) = o(B3).

Exercise 4 (The Bombieri-Vinogradov Theorem for the Möbius function)
Let A > 0 be fixed. Prove that there exists a constant B > 0 depending on A such

that

∑
q≤x1/2/(log x)B

max
a (mod q)

∣∣∣∣∣∣∣∣∣
∑
n≤x

n=a (mod q)

µ(n)

∣∣∣∣∣∣∣∣∣�
x

(log x)A ,

where the maximum is taken over integers a coprime to q, and where the constant
involved in the notation � may depend on A.

Steps. — (I) Start by proving that the Möbius function satisfies the following
Siegel-Walfisz condition. For any A > 0, and for a, q ≥ 1 two coprime integers,∑

n≤x
n=a (mod q)

µ(n)� x

(log x)A .

(II) Prove that for y, z ≥ 1 and for n > max(y, z), we have

µ(n) = −
∑
ab|n

a≤y,b≤z

µ(a)µ(b) +
∑
ab|n

a>y,b>z

µ(a)µ(b).

(III) Follow the steps of the proof of the Bombieri-Vinogradov Theorem.
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Exercise 5 (The Barban-Davenport-Halberstam Theorem)
For a, q ≥ 1 two coprime integers, we set as usual

ψ(x; q, a) =
∑
n≤x

n=a (mod q)

Λ(n).

Let A > 0 be fixed. Prove that there exists a constant B > 0 depending on A such
that ∑

q≤x/(log x)B

∑∗

a (mod q)

(
ψ(x; q, a)− x

ϕ(q)

)2
� x2

(log x)A ,

where the constant involved in the notation � may depend on A.

Steps. — (I) Rewrite the left-hand side using Dirichlet characters.
(II) Use the Siegel-Walfisz Theorem and the multiplicative large sieve inequality

to conclude.

Exercise 6 (The Titchmarsh divisor problem). — Let τ denote the divisor
function. Prove that there exists a constant c > 0 such that∑

p≤x
τ(p− 1) = cx+O

(
x log log x

log x

)
.

Steps. — (I) Start by using the fact that if n ≥ 1 is not a square then

τ(n) = 2
∑
d|n

d≤
√
n

1.

(II) Use the Brun-Titchmarsh Theorem and the Bombieri-Vinogradov Theorem
to conclude.
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