TOPICS IN NUMBER THEORY - EXERCISE SHEET IV

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

Ezxercise 1 (The Brun-Titchmarsh Theorem). — Let x,y > 1, and let also
1<g<yanda>1 be coprime to q. Prove that
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where the implied constant is absolute.

Ezxercise 2 (On the Hardy-Littlewood Conjecture). — Let k > 1 be fized

and let a = (ay,...,a) € ZF be such that for any prime p, we have
{a; (mod p),i=1,...,k} #7Z/pZ.
Let w(x;a) be the number of m < x such that for alli € {1,...,k}, m —a; is prime.

Prove that we have
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where w(p) is the number of roots of the polynomial (X —ay)--- (X — ag) modulo p.

where

To go further (The Hardy-Littlewood Conjecture). — We conjecture that

x

r;a) = Ch—— (14 0(1)),
() = Ca oy (1 4+-0(1)
so the upper bound of the previous exercise is larger than the expectation by a factor
2k k!,
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