TOPICS IN NUMBER THEORY - EXERCISE SHEET IV

École Polytechnique Fédérale de Lausanne

Exercise 1 (The Brun-Titchmarsh Theorem). - Let $x, y>1$, and let also $1 \leq q<y$ and $a \geq 1$ be coprime to q. Prove that

$$
\pi(x+y ; q, a)-\pi(x ; q, a)<\frac{2 y}{\varphi(q) \log (y / q)}+O\left(\frac{y}{q \log (y / q)^{2}}\right)
$$

where the implied constant is absolute.

Exercise 2 (On the Hardy-Littlewood Conjecture). - Let $k \geq 1$ be fixed and let $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}^{k}$ be such that for any prime p, we have

$$
\left\{a_{i}(\bmod p), i=1, \ldots, k\right\} \neq \mathbb{Z} / p \mathbb{Z}
$$

Let $\pi(x ; \mathbf{a})$ be the number of $m \leq x$ such that for all $i \in\{1, \ldots, k\}, m-a_{i}$ is prime. Prove that we have

$$
\pi(x ; \mathbf{a}) \leq 2^{k} k!C_{\mathbf{a}} \frac{x}{(\log x)^{k}}\left(1+O\left(\frac{\log \log x}{\log x}\right)\right)
$$

where

$$
C_{\mathbf{a}}=\prod_{p}\left(1-\frac{\omega(p)}{p}\right)\left(1-\frac{1}{p}\right)^{k}
$$

where $\omega(p)$ is the number of roots of the polynomial $\left(X-a_{1}\right) \cdots\left(X-a_{k}\right)$ modulo p. To go further (The Hardy-Littlewood Conjecture). - We conjecture that

$$
\pi(x ; \mathbf{a})=C_{\mathbf{a}} \frac{x}{(\log x)^{k}}(1+o(1))
$$

so the upper bound of the previous exercise is larger than the expectation by a factor $2^{k} k$!.

[^0]
[^0]: Pierre Le Boudec - Fall 2014
 École Polytechnique Fédérale de Lausanne

