TOPICS IN NUMBER THEORY - EXERCISE SHEET I

École Polytechnique Fédérale de Lausanne

Exercise 1 (Poisson Summation Formula). - Let $\mathcal{S}(\mathbb{R})$ be the Schwartz class, that is

$$
\mathcal{S}(\mathbb{R})=\left\{f \in C^{\infty}(\mathbb{R}, \mathbb{R}), f^{(k)}(x)=O\left((1+|x|)^{-\ell}\right), k, \ell \geq 0\right\}
$$

For $f \in \mathcal{S}(\mathbb{R})$, we define the Fourier transform \hat{f} of f by

$$
\hat{f}(\xi)=\int_{\mathbb{R}} f(x) e^{-2 \pi i x \xi} d x
$$

Prove that we have the formula

$$
\sum_{n \in \mathbb{Z}} f(n)=\sum_{m \in \mathbb{Z}} \hat{f}(m)
$$

Steps. - (I) Check that the function F defined for $x \in \mathbb{R}$ by

$$
F(x)=\sum_{n \in \mathbb{Z}} f(x+n)
$$

is well-defined and is periodic of period 1.
(II) Compute the Fourier coefficients of F and conclude.

Exercise 2 (On the theta function). - Let θ be the function defined for $x>0$ by

$$
\theta(x)=\sum_{n \in \mathbb{Z}} e^{-\pi n^{2} x}
$$

Prove that θ satisfies the functional equation

$$
\theta(x)=\frac{1}{\sqrt{x}} \theta\left(\frac{1}{x}\right)
$$

for any $x>0$.
Steps. - (I) For fixed $x>0$, compute the Fourier transform of the function f_{x} defined for $t \in \mathbb{R}$ by

$$
f_{x}(t)=e^{-\pi x t^{2}}
$$

(II) Conclude using the Poisson summation formula.

Exercise 3 (On the cotangent function). - Show that, for $z \in \mathbb{C} \backslash \mathbb{Z}$, we have

$$
\pi \cot \pi z=\frac{1}{z}+2 z \sum_{n=1}^{\infty} \frac{1}{z^{2}-n^{2}} .
$$

Steps. - (I) For fixed $z \in \mathbb{C} \backslash \mathbb{Z}$, prove that for $t \in[0, \pi]$, we have

$$
\cos z t=\frac{\sin \pi z}{\pi}\left(\frac{1}{z}+2 z \sum_{n=1}^{\infty} \frac{(-1)^{n}}{z^{2}-n^{2}} \cos n t\right) .
$$

To do this, compute the Fourier coefficients of the 2π-periodic function ϕ_{z} defined for $t \in(-\pi, \pi]$ by $\phi_{z}(t)=\cos z t$.
(II) Conclude.

Exercise 4 (On the Gamma function). - Let Γ be the function defined for $\Re(s)>0$ by

$$
\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

Prove that Γ admits a meromorphic continuation to \mathbb{C} with poles only at the nonpositive integers, all of order 1. Prove also that, for $n \geq 0$, we have

$$
\operatorname{res}_{s=-n} \Gamma(s)=\frac{(-1)^{n}}{n!} .
$$

Steps. - (I) Prove that for $\Re(s)>0$ and for $m \geq 1$, we have

$$
\Gamma(s+m)=\prod_{j=0}^{m-1}(s+j) \Gamma(s) .
$$

(II) Conclude.

Exercise 5 (Euler's Reflection Formula). - Show that, for $s \in \mathbb{C} \backslash \mathbb{Z}$, we have

$$
\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin \pi s}
$$

Deduce that Γ does not have any zeros in \mathbb{C}.
Steps. - (I) Show that, for $0<\Re(s)<1$, we have

$$
\Gamma(s) \Gamma(1-s)=\int_{0}^{\infty} \frac{t^{s-1}}{1+t} d t
$$

(II) Deduce that, for $0<\Re(s)<1$, we have

$$
\Gamma(s) \Gamma(1-s)=\int_{0}^{1} \frac{t^{s-1}}{1+t} d t+\int_{0}^{1} \frac{t^{-s}}{1+t} d t
$$

(III) Prove that, for $0<\Re(s)<1$, we have

$$
\Gamma(s) \Gamma(1-s)=\frac{1}{s}+2 s \sum_{n=1}^{\infty} \frac{(-1)^{n}}{s^{2}-n^{2}}
$$

(IV) Conclude using the proof of Exercise 3.

To go further. - We can prove that, for $s \in \mathbb{C}$, we have

$$
\frac{1}{\Gamma(s)}=s e^{\gamma s} \prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right) e^{-s / n}
$$

where γ is Euler's constant. Euler's reflection formula thus implies that, for $s \in \mathbb{C}$, we have

$$
\frac{\sin \pi s}{\pi s}=\prod_{n=1}^{\infty}\left(1-\frac{s^{2}}{n^{2}}\right)
$$

Exercise 6 (On the Riemann zeta function). - Let ζ be the Riemann zeta function, that is the function defined for $\Re(s)>1$ by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

In this exercise, we prove that ζ admits a meromorphic continuation to \mathbb{C}, with a single pole at 1 , of order 1 and with residue 1.

In addition, we prove that ζ satisfies the functional equation

$$
\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\pi^{-(1-s) / 2} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s)
$$

for $s \in \mathbb{C} \backslash\{0,1\}$.
Steps. - (I) Prove that for $\Re(s)>1$, we have

$$
\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\int_{0}^{\infty} x^{s / 2-1}\left(\sum_{n=1}^{\infty} e^{-\pi n^{2} x}\right) d x
$$

(II) Use Exercise 2 to prove that, for $\Re(s)>1$, we have

$$
\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\frac{1}{s(s-1)}+\int_{1}^{\infty}\left(x^{-(s+1) / 2}+x^{s / 2-1}\right)\left(\sum_{n=1}^{\infty} e^{-\pi n^{2} x}\right) d x
$$

(III) Conclude.

To go further. - The functional equation shows that ζ has zeros at the negative even integers. The Riemann Hypothesis states that all the other zeros of ζ are on the line $\Re(s)=1 / 2$.

Exercise 7 (Bernoulli numbers). - For $n \geq 1$, the Bernoulli numbers B_{n} are defined using the generating series

$$
\frac{x}{e^{x}-1}=\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!}
$$

Prove that for $n \geq 0, B_{n} \in \mathbb{Q}$.
Prove also that for $n \geq 1$, we have $B_{2 n+1}=0$. For this, we will show that the function g defined for $x \in \mathbb{R}$ by

$$
g(x)=\frac{x}{e^{x}-1}+\frac{x}{2}
$$

is an even function.

Exercise 8 (Values of the Riemann zeta function at integers)
Use Exercise 3 to prove that for $n \geq 1$, we have

$$
\zeta(2 n)=(-1)^{n+1} \frac{(2 \pi)^{2 n}}{2(2 n)!} B_{2 n} .
$$

Deduce that for $n \geq 0$, we have

$$
\zeta(-n)=-\frac{B_{n+1}}{n+1}
$$

To go further. - This implies in particular that $\pi^{-2 n} \zeta(2 n) \in \mathbb{Q}$ for any $n \geq 1$. We know that $\zeta(3) \notin \mathbb{Q}$. However, it is an open problem whether, for $n \geq 2, \zeta(2 n+1)$ is a rational number or not.

Pierre Le Boudec - Spring 2016
École Polytechnique Fédérale de Lausanne

