TOPICS IN NUMBER THEORY - EXERCISE SHEET II

École Polytechnique Fédérale de Lausanne

Exercise 1 (Action of the modular group on the upper-half plane)

Let $\Gamma = \mathrm{SL}_2(\mathbb{Z})/\{\pm I_2\}$ be the modular group and let $\mathbb{H} = \{z \in \mathbb{C}, \Im(z) > 0\}$ be the upper-half plane. Recall that Γ acts on \mathbb{H} by Möbius transformations. Let also

$$D = \{ z \in \mathbb{H}, |\Re(z)| < 1/2, |z| > 1 \}$$

be the usual fundamental domain for the modular group Γ .

Prove that if $z, z' \in \overline{D}$, $z \neq z'$, are such that there exists $A \in \Gamma$ satisfying $z' = A \cdot z$, then either, $\Re(z) = \pm 1/2$ and $z' = z \mp 1$, or |z| = 1 and z' = -1/z. Let $\rho = e^{2\pi i/3}$. For $z \in \overline{D}$, let

$$S(z) = \{A \in \Gamma, A \cdot z = z\}$$

be the stabilizer of z under the action of Γ . Prove that if $z \in \overline{D} \setminus \{i, \rho, -\rho^2\}$ then $S(z) = \{I_2\}.$

Let T and S be the elements of Γ respectively defined by their action on $z \in \mathbb{H}$ by $T \cdot z = z + 1$ and $S \cdot z = -1/z$. Prove that $S(i) = \{I_2, S\}, S(\rho) = \{I_2, ST, (ST)^2\}$ and $S(-\rho^2) = \{I_2, TS, (TS)^2\}$.

Exercise 2 (On class numbers of positive definite quadratic forms)

Let D < 0 be an integer such that $D = 0 \pmod{4}$, or $D = 1 \pmod{4}$. Let \mathfrak{Q}_D be the set of quadratic forms

$$Q(x,y) = Ax^2 + Bxy + Cy^2$$

with coefficients $A, B, C \in \mathbb{Z}$ satisfying $B^2 - 4AC = D$, A > 0 and gcd(A, B, C) = 1. For $\gamma \in \Gamma$ and $Q \in \mathfrak{Q}_D$, we define

$$(\gamma \cdot Q)(x, y) = Q(ax + by, cx + dy),$$

where

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Prove that this defines an action of the modular group Γ on \mathfrak{Q}_D .

The number of equivalence classes under this action is called the class number of D and is denoted by h(D). The goal of this exercise is to show that h(D) is finite.

Steps. — (I) Prove that there is a bijection between \mathfrak{Q}_D and the set

$$\left\{\frac{-B + i\sqrt{-D}}{2A}, A, B, C \in \mathbb{Z}, B^2 - 4AC = D, A > 0, \gcd(A, B, C) = 1\right\}.$$

(II) For $Q \in \mathfrak{Q}_D$, we set

$$z_Q = \frac{-B + i\sqrt{-D}}{2A}.$$

For $\gamma \in \Gamma$ and $Q \in \mathfrak{Q}_D$, check that

$$z_{\gamma \cdot Q} = \gamma^{-1} \cdot z_Q.$$

- (III) Show that in each equivalence class of the action of Γ on \mathfrak{Q}_D , there is a unique representative whose coefficients satisfy $-A < B \leq A < C$ or $0 \leq B \leq A = C$.
- (IV) Conclude.

Exercise 3 (On the space of modular forms). — For $k \in \mathbb{Z}$, prove that the set of modular forms of weight 2k is a vector space over \mathbb{C} .

Prove also that if f is a modular form of weight 2k and g is a modular form of weight 2ℓ then fg is a modular form of weight $2k + 2\ell$.

Exercise 4 (Elliptic functions). — A discrete subgroup of \mathbb{C} which contains an \mathbb{R} -basis for \mathbb{C} is called a lattice.

An elliptic function relative to a lattice Λ is a meromorphic function $f : \mathbb{C} \to \mathbb{C}$ which satisfies $f(z+\omega) = f(z)$ for any $z \in \mathbb{C}$ and any $\omega \in \Lambda$. All along this exercise, we let $\Lambda \subset \mathbb{C}$ be a lattice, and f be an elliptic function relative to Λ .

Prove that if f has no poles then f is constant. Prove also that if f has no zeros then f is constant.

For $z \in \mathbb{C}$, we let $\operatorname{res}_z(f)$ be the residue of f at z. Show that

$$\sum_{z \in \mathbb{C}/\Lambda} \operatorname{res}_z(f) = 0.$$

For $z_0 \in \mathbb{C}$, we let $v_{z_0}(f)$ be the order of f at z_0 , that is the integer $n \in \mathbb{Z}$ such that the function $f(z)(z-z_0)^{-n}$ is holomorphic and non-zero at z_0 . Show that

$$\sum_{z \in \mathbb{C}/\Lambda} v_z(f) = 0.$$

The order $\operatorname{ord}(f)$ of f is defined by

$$\operatorname{ord}(f) = \sum_{\substack{z \in \mathbb{C}/\Lambda \\ v_z(f) > 0}} v_z(f).$$

Show that if f is non-constant then we have

$$\operatorname{ord}(f) \ge 2.$$

Exercise 5 (On the Weierstrass function). — For $z \in \mathbb{C}$ and $\tau \in \mathbb{H}$, we define the Weierstrass \wp_{τ} -function by

$$\wp_{\tau}(z) = \frac{1}{z^2} + \sum_{\substack{(m,n) \in \mathbb{Z}^2 \\ (m,n) \neq (0,0)}} \left(\frac{1}{(z - (m\tau + n))^2} - \frac{1}{(m\tau + n)^2} \right),$$

and, for $k \geq 2$, we define the Eisenstein series $G_{2k}(\tau)$ by

$$G_{2k}(\tau) = \sum_{\substack{(m,n) \in \mathbb{Z}^2 \\ (m,n) \neq (0,0)}} \frac{1}{(m\tau + n)^{2k}}.$$

All along this exercise, we view $\tau \in \mathbb{H}$ as being fixed and $z \in \mathbb{C}$ as being a variable. Check that, for $k \geq 2$, the Eisenstein series G_{2k} converges absolutely.

Prove that the series defining the Weierstrass \wp_{τ} -function converges absolutely and uniformly on every compact subset of $\mathbb{C} \smallsetminus \langle 1, \tau \rangle$, where

$$\langle 1, \tau \rangle = \mathbb{Z} + \tau \mathbb{Z}.$$

Prove also that it defines a meromorphic function on \mathbb{C} , having a double pole with residue 0 at each point of $\langle 1, \tau \rangle$, and no other pole.

Show that the Weierstrass \wp_{τ} -function is an even elliptic function.

Prove that there is a neighborhood U of the origin such that for any $z \in U \setminus \{0\}$, we have

$$\wp_{\tau}(z) = \frac{1}{z^2} + \sum_{k=1}^{\infty} (2k+1)G_{2k+2}(\tau)z^{2k}.$$

Finally, prove that, for any $z \in \mathbb{C} \setminus \langle 1, \tau \rangle$, we have

$$\wp_{\tau}'(z)^2 = 4\wp_{\tau}(z)^3 - 60G_4(\tau)\wp_{\tau}(z) - 140G_6(\tau).$$

Exercise 6 (Non-vanishing of the Discriminant on the upper-half plane)

For $\tau \in \mathbb{H}$, we define the Discriminant $\Delta(\tau)$ by

 $\Delta(\tau) = 60^3 G_4(\tau)^3 - 27 \cdot 140^2 G_6(\tau)^2.$

The goal of this exercise is to prove that, for $\tau \in \mathbb{H}$, we have

$$\Delta(\tau) \neq 0,$$

without using the fact that $\Delta(\tau)$ is a modular form.

Steps. — (I) Check that $\Delta(\tau)$ is the discriminant of the polynomial

$$4X^3 - 60G_4(\tau)X - 140G_6(\tau).$$

(II) Let $\omega_1 = 1$, $\omega_2 = \tau$ and $\omega_3 = 1 + \tau$. Prove that

$$\wp_{\tau}'\left(\frac{\omega_i}{2}\right) = 0,$$

for $i \in \{1, 2, 3\}$.

(III) Prove that

$$\wp_{\tau}\left(\frac{\omega_i}{2}\right) \neq \wp_{\tau}\left(\frac{\omega_j}{2}\right),$$

for $i, j \in \{1, 2, 3\}, i \neq j$.

(IV) Conclude using Exercise 5.

To go further. — For $\tau \in \mathbb{H}$, let E_{τ} be the elliptic curve defined over \mathbb{C} by the Weierstrass equation

 $y^2 = 4x^3 - 60G_4(\tau)x - 140G_6(\tau).$

One can show that the map $\Psi: \mathbb{C}/\langle 1, \tau \rangle \to E_{\tau}(\mathbb{C}) \subset \mathbb{P}^2(\mathbb{C})$ defined by

$$\Psi(z) = (\wp_\tau(z) : \wp_\tau'(z) : 1)$$

is an isomorphism of Riemann surfaces and also a group homomorphism.

To go further. — One can prove that, for $\tau \in \mathbb{H}$, we have the Jacobi product formula

$$\Delta(\tau) = (2\pi)^{12} q \prod_{n=1}^{\infty} (1-q^n)^{24},$$

where $q = e^{2\pi i \tau}$, from which we immediately deduce that $\Delta(\tau) \neq 0$.

Exercise 7 (On the modular invariant). — For $\tau \in \mathbb{H}$, we define the modular invariant $j(\tau)$ by

$$j(\tau) = 12^3 \frac{60^3 G_4(\tau)^3}{\Delta(\tau)}.$$

Prove that a meromorphic function $f : \mathbb{H} \to \mathbb{C}$ is a modular function of weight 0 if and only if it is a rational function of j.

Exercise 8 (Modular forms in terms of their zeros)

Let f be a non-zero modular form and let z_1, \ldots, z_N be the zeros of f belonging to $\overline{D} \setminus \{i, \rho, -\rho^2\}$ (possibly with repetitions). Prove that there exists a constant $\lambda \in \mathbb{C} \setminus \{0\}$ such that, for $\tau \in \mathbb{H}$, we have

$$f(\tau) = \lambda G_4(\tau)^{v_{\rho}(f)} G_6(\tau)^{v_i(f)} \Delta(\tau)^{v_{\infty}(f)+N} \prod_{\ell=1}^N \left(j(\tau) - j(z_{\ell}) \right),$$

where $v_{\rho}(f)$, $v_i(f)$ and $v_{\infty}(f)$ respectively denote the orders of vanishing of f at ρ , i and ∞ .

PIERRE LE BOUDEC - Spring 2016

École Polytechnique Fédérale de Lausanne