TOPICS IN NUMBER THEORY - EXERCISE SHEET II

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

Exercise 1 (Action of the modular group on the upper-half plane)
Let T' = SLy(Z) /{£1L>} be the modular group and let H = {z € C,3(z) > 0} be
the upper-half plane. Recall that I acts on H by Mébius transformations. Let also

D ={zeH,|R()| < 1/2, |z > 1}

be the usual fundamental domain for the modular group I.

Prove that if z, 2/ € D, z # 2', are such that there exists A € " satisfying 2’ = A-z,
then either, R(z) = £1/2 and 2’ =z F 1, or |z| =1 and 2/ = —1/=.

Let p = €2™i/3. For z € D, let

S(z)={AeTl,A-z=1z}

be the stabilizer of z under the action of I'. Prove that if z € D N\ {i, p, —p*} then
S(z) = {I.}.

Let T and S be the elements of I' respectively defined by their action on z € H by
T-z=2z+1and S-z= —1/z. Prove that S(i) = {I5, S}, S(p) = {I2, ST, (ST)?}
and S(—p?) = {12, TS, (TS)?}.

Ezxercise 2 (On class numbers of positive definite quadratic forms)
Let D < 0 be an integer such that D = 0 (mod 4), or D =1 (mod 4). Let Qp
be the set of quadratic forms
Q(z,y) = Az® + Bry + Cy?
with coefficients A, B, C € 7 satisfying B> —4AC = D, A > 0 and gcd(A, B,C) = 1.
Forvy €T and Q € Qp, we define

_fa b
T=\e d)-
Prove that this defines an action of the modular group I on Qp.

The number of equivalence classes under this action is called the class number of
D and is denoted by h(D). The goal of this exercise is to show that h(D) is finite.

where
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Steps. —  (I) Prove that there is a bijection between Qp and the set
—B+iv/—-D
{Z;,A,B,C € Z,B? —4AC = D, A > 0,gcd(A, B,C) = 1} .

(II) For Q € Qp, we set
—B+iyV/=D
24 ‘

For v € I' and Q € Qp, check that

Zy.Q = ’y_l - 2Q-
(ITII) Show that in each equivalence class of the action of I on Qp), there is a unique
representative whose coefficients satisfy —A < B< A< Cor0< B<A=C.
(IV) Conclude.

Ezercise 3 (On the space of modular forms). — For k € Z, prove that the
set of modular forms of weight 2k is a vector space over C.

Prove also that if f is a modular form of weight 2k and g is a modular form of
weight 20 then fg is a modular form of weight 2k + 2£.

Exercise 4 (Elliptic functions). — A discrete subgroup of C which contains an
R-basis for C is called a lattice.

An elliptic function relative to a lattice A is a meromorphic function f : C — C
which satisfies f(z4+w) = f(z) for any z € C and any w € A. All along this ezercise,
we let A C C be a lattice, and f be an elliptic function relative to A.

Prove that if f has no poles then f is constant. Prove also that if f has no zeros
then f is constant.

For z € C, we let res,(f) be the residue of f at z. Show that

Z res,(f) = 0.

ze€C/A

For zy € C, we let vy, (f) be the order of f at zp, that is the integer n € Z such
that the function f(z)(z — 2z0)™" is holomorphic and non-zero at zy. Show that

Z v.(f)=0.
zeC/A

The order ord(f) of f is defined by
od(f) = 3 wa()).

zeC/A
v (f)>0

Show that if f is non-constant then we have

ord(f) > 2.
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Exercise 5 (On the Weierstrass function). — For z € C and 7 € H, we define
the Weierstrass or-function by

1 1 1
KJT(Z):?+ Z ((,z—(rm-—i-n))2 B (mr—i—n)?)’

(m,n)ez?
(m,n)#(0,0)

and, for k > 2, we define the Fisenstein series Gop(T) by

1
Go(T) = ), (mr + )7

(m,n)€Z>
(m,n)#(0,0)
All along this exercise, we view T € H as being fized and z € C as being a variable.
Check that, for k > 2, the FEisenstein series Gy converges absolutely.
Prove that the series defining the Weierstrass pr-function converges absolutely
and uniformly on every compact subset of C ~ (1, 1), where

(1,7) =Z+ 7Z.

Prove also that it defines a meromorphic function on C, having a double pole with
residue 0 at each point of (1,7), and no other pole.

Show that the Weierstrass or-function is an even elliptic function.

Prove that there is a neighborhood U of the origin such that for any z € U ~ {0},
we have

1 o0
pr(z) = o) + Z(2/€ + 1)G2k+2(7)z2k
k=1
Finally, prove that, for any z € C~ (1,7), we have

0(2)” = 49, (2)° — 60Ga(r)pr () — 140Gi().

Ezxercise 6 (Non-vanishing of the Discriminant on the upper-half plane)
For 7 € H, we define the Discriminant A(T) by

A(T) = 60°G4(T)® — 27 - 140G (7)>.
The goal of this exercise is to prove that, for T € H, we have
A(r) #0,
without using the fact that A(T) is a modular form.
Steps. —  (I) Check that A(7) is the discriminant of the polynomial
4X3 — 60G4(T)X — 140G (7).
(IT) Let wy =1, wy = 7 and w3 = 1 + 7. Prove that

for i € {1,2,3}.
(III) Prove that

for i,j € {1,2,3}, i # J.
(IV) Conclude using Exercise 5.
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To go further. — For T € H, let E. be the elliptic curve defined over C by the
Weierstrass equation

y? = 4a® — 60G(T)x — 140Gg(T).
One can show that the map ¥ : C/(1,7) — E.(C) C P?(C) defined by

U(2) = (pr(2) s r(2) 1 1),
s an isomorphism of Riemann surfaces and also a group homomorphism.

To go further. — One can prove that, for T € H, we have the Jacobi product
formula
o
A(r) = (2m)q T (1 = g™,
n=1

where q = €2™7, from which we immediately deduce that A(T) # 0.

Ezxercise 7 (On the modular invariant). — For 7 € H, we define the modular
invariant j(1) by
603G4(7)3
(1) =123 ———— L
3(7) NG
Prove that a meromorphic function f : H — C is a modular function of weight 0
if and only if it is a rational function of j.

Ezxercise 8 (Modular forms in terms of their zeros)

Let f be a non-zero modular form and let z1,...,zn be the zeros of f belonging
to D~ {i,p,—p?} (possibly with repetitions). Prove that there exists a constant
A € C~ {0} such that, for 7 € H, we have

N
F(7) = AGu(7) DG ()" DA (r) = DN TT (1) — 5(20))
=1

where v,(f), vi(f) and veo(f) respectively denote the orders of vanishing of f at p,
1 and oo.
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