TOPICS IN NUMBER THEORY - EXERCISE SHEET II

École Polytechnique Fédérale de Lausanne

Exercise 1 (Action of the modular group on the upper-half plane)

Let $\Gamma=\mathrm{SL}_{2}(\mathbb{Z}) /\left\{ \pm I_{2}\right\}$ be the modular group and let $\mathbb{H}=\{z \in \mathbb{C}, \Im(z)>0\}$ be the upper-half plane. Recall that Γ acts on \mathbb{H} by Möbius transformations. Let also

$$
D=\{z \in \mathbb{H},|\Re(z)|<1 / 2,|z|>1\}
$$

be the usual fundamental domain for the modular group Γ.
Prove that if $z, z^{\prime} \in \bar{D}, z \neq z^{\prime}$, are such that there exists $A \in \Gamma$ satisfying $z^{\prime}=A \cdot z$, then either, $\Re(z)= \pm 1 / 2$ and $z^{\prime}=z \mp 1$, or $|z|=1$ and $z^{\prime}=-1 / z$.

Let $\rho=e^{2 \pi i / 3}$. For $z \in \bar{D}$, let

$$
S(z)=\{A \in \Gamma, A \cdot z=z\}
$$

be the stabilizer of z under the action of Γ. Prove that if $z \in \bar{D} \backslash\left\{i, \rho,-\rho^{2}\right\}$ then $S(z)=\left\{I_{2}\right\}$.

Let T and S be the elements of Γ respectively defined by their action on $z \in \mathbb{H}$ by $T \cdot z=z+1$ and $S \cdot z=-1 / z$. Prove that $S(i)=\left\{I_{2}, S\right\}, S(\rho)=\left\{I_{2}, S T,(S T)^{2}\right\}$ and $S\left(-\rho^{2}\right)=\left\{I_{2}, T S,(T S)^{2}\right\}$.

Exercise 2 (On class numbers of positive definite quadratic forms)

Let $D<0$ be an integer such that $D=0(\bmod 4)$, or $D=1(\bmod 4)$. Let \mathfrak{Q}_{D} be the set of quadratic forms

$$
Q(x, y)=A x^{2}+B x y+C y^{2}
$$

with coefficients $A, B, C \in \mathbb{Z}$ satisfying $B^{2}-4 A C=D, A>0$ and $\operatorname{gcd}(A, B, C)=1$.
For $\gamma \in \Gamma$ and $Q \in \mathfrak{Q}_{D}$, we define

$$
(\gamma \cdot Q)(x, y)=Q(a x+b y, c x+d y)
$$

where

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Prove that this defines an action of the modular group Γ on \mathfrak{Q}_{D}.
The number of equivalence classes under this action is called the class number of D and is denoted by $h(D)$. The goal of this exercise is to show that $h(D)$ is finite.

Steps. - (I) Prove that there is a bijection between \mathfrak{Q}_{D} and the set

$$
\left\{\frac{-B+i \sqrt{-D}}{2 A}, A, B, C \in \mathbb{Z}, B^{2}-4 A C=D, A>0, \operatorname{gcd}(A, B, C)=1\right\} .
$$

(II) For $Q \in \mathfrak{Q}_{D}$, we set

$$
z_{Q}=\frac{-B+i \sqrt{-D}}{2 A}
$$

For $\gamma \in \Gamma$ and $Q \in \mathfrak{Q}_{D}$, check that

$$
z_{\gamma \cdot Q}=\gamma^{-1} \cdot z_{Q}
$$

(III) Show that in each equivalence class of the action of Γ on \mathfrak{Q}_{D}, there is a unique representative whose coefficients satisfy $-A<B \leq A<C$ or $0 \leq B \leq A=C$.
(IV) Conclude.

Exercise 3 (On the space of modular forms). - For $k \in \mathbb{Z}$, prove that the set of modular forms of weight $2 k$ is a vector space over \mathbb{C}.

Prove also that if f is a modular form of weight $2 k$ and g is a modular form of weight 2ℓ then $f g$ is a modular form of weight $2 k+2 \ell$.

Exercise 4 (Elliptic functions). - A discrete subgroup of \mathbb{C} which contains an \mathbb{R}-basis for \mathbb{C} is called a lattice.

An elliptic function relative to a lattice Λ is a meromorphic function $f: \mathbb{C} \rightarrow \mathbb{C}$ which satisfies $f(z+\omega)=f(z)$ for any $z \in \mathbb{C}$ and any $\omega \in \Lambda$. All along this exercise, we let $\Lambda \subset \mathbb{C}$ be a lattice, and f be an elliptic function relative to Λ.

Prove that if f has no poles then f is constant. Prove also that if f has no zeros then f is constant.

For $z \in \mathbb{C}$, we let $\operatorname{res}_{z}(f)$ be the residue of f at z. Show that

$$
\sum_{z \in \mathbb{C} / \Lambda} \operatorname{res}_{z}(f)=0
$$

For $z_{0} \in \mathbb{C}$, we let $v_{z_{0}}(f)$ be the order of f at z_{0}, that is the integer $n \in \mathbb{Z}$ such that the function $f(z)\left(z-z_{0}\right)^{-n}$ is holomorphic and non-zero at z_{0}. Show that

$$
\sum_{z \in \mathbb{C} / \Lambda} v_{z}(f)=0
$$

The order $\operatorname{ord}(f)$ of f is defined by

$$
\operatorname{ord}(f)=\sum_{\substack{z \in \mathbb{C} / \Lambda \\ v_{z}(f)>0}} v_{z}(f) .
$$

Show that if f is non-constant then we have

$$
\operatorname{ord}(f) \geq 2
$$

Exercise 5 (On the Weierstrass function). - For $z \in \mathbb{C}$ and $\tau \in \mathbb{H}$, we define the Weierstrass \wp_{τ}-function by

$$
\wp_{\tau}(z)=\frac{1}{z^{2}}+\sum_{\substack{(m, n) \in \mathbb{Z}^{2} \\(m, n) \neq(0,0)}}\left(\frac{1}{(z-(m \tau+n))^{2}}-\frac{1}{(m \tau+n)^{2}}\right)
$$

and, for $k \geq 2$, we define the Eisenstein series $G_{2 k}(\tau)$ by

$$
G_{2 k}(\tau)=\sum_{\substack{(m, n) \in \mathbb{Z}^{2} \\(m, n) \neq(0,0)}} \frac{1}{(m \tau+n)^{2 k}}
$$

All along this exercise, we view $\tau \in \mathbb{H}$ as being fixed and $z \in \mathbb{C}$ as being a variable.
Check that, for $k \geq 2$, the Eisenstein series $G_{2 k}$ converges absolutely.
Prove that the series defining the Weierstrass \wp_{τ}-function converges absolutely and uniformly on every compact subset of $\mathbb{C} \backslash\langle 1, \tau\rangle$, where

$$
\langle 1, \tau\rangle=\mathbb{Z}+\tau \mathbb{Z}
$$

Prove also that it defines a meromorphic function on \mathbb{C}, having a double pole with residue 0 at each point of $\langle 1, \tau\rangle$, and no other pole.

Show that the Weierstrass \wp_{τ}-function is an even elliptic function.
Prove that there is a neighborhood U of the origin such that for any $z \in U \backslash\{0\}$, we have

$$
\wp_{\tau}(z)=\frac{1}{z^{2}}+\sum_{k=1}^{\infty}(2 k+1) G_{2 k+2}(\tau) z^{2 k}
$$

Finally, prove that, for any $z \in \mathbb{C} \backslash\langle 1, \tau\rangle$, we have

$$
\wp_{\tau}^{\prime}(z)^{2}=4 \wp_{\tau}(z)^{3}-60 G_{4}(\tau) \wp_{\tau}(z)-140 G_{6}(\tau)
$$

Exercise 6 (Non-vanishing of the Discriminant on the upper-half plane)

For $\tau \in \mathbb{H}$, we define the Discriminant $\Delta(\tau)$ by

$$
\Delta(\tau)=60^{3} G_{4}(\tau)^{3}-27 \cdot 140^{2} G_{6}(\tau)^{2}
$$

The goal of this exercise is to prove that, for $\tau \in \mathbb{H}$, we have

$$
\Delta(\tau) \neq 0
$$

without using the fact that $\Delta(\tau)$ is a modular form.
Steps. - (I) Check that $\Delta(\tau)$ is the discriminant of the polynomial

$$
4 X^{3}-60 G_{4}(\tau) X-140 G_{6}(\tau)
$$

(II) Let $\omega_{1}=1, \omega_{2}=\tau$ and $\omega_{3}=1+\tau$. Prove that

$$
\wp_{\tau}^{\prime}\left(\frac{\omega_{i}}{2}\right)=0
$$

for $i \in\{1,2,3\}$.
(III) Prove that

$$
\wp_{\tau}\left(\frac{\omega_{i}}{2}\right) \neq \wp_{\tau}\left(\frac{\omega_{j}}{2}\right),
$$

for $i, j \in\{1,2,3\}, i \neq j$.
(IV) Conclude using Exercise 5.

To go further. - For $\tau \in \mathbb{H}$, let E_{τ} be the elliptic curve defined over \mathbb{C} by the Weierstrass equation

$$
y^{2}=4 x^{3}-60 G_{4}(\tau) x-140 G_{6}(\tau) .
$$

One can show that the map $\Psi: \mathbb{C} /\langle 1, \tau\rangle \rightarrow E_{\tau}(\mathbb{C}) \subset \mathbb{P}^{2}(\mathbb{C})$ defined by

$$
\Psi(z)=\left(\wp_{\tau}(z): \wp_{\tau}^{\prime}(z): 1\right),
$$

is an isomorphism of Riemann surfaces and also a group homomorphism.
To go further. - One can prove that, for $\tau \in \mathbb{H}$, we have the Jacobi product formula

$$
\Delta(\tau)=(2 \pi)^{12} q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}
$$

where $q=e^{2 \pi i \tau}$, from which we immediately deduce that $\Delta(\tau) \neq 0$.

Exercise 7 (On the modular invariant). - For $\tau \in \mathbb{H}$, we define the modular invariant $j(\tau)$ by

$$
j(\tau)=12^{3} \frac{60^{3} G_{4}(\tau)^{3}}{\Delta(\tau)} .
$$

Prove that a meromorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ is a modular function of weight 0 if and only if it is a rational function of j.

Exercise 8 (Modular forms in terms of their zeros)

Let f be a non-zero modular form and let z_{1}, \ldots, z_{N} be the zeros of f belonging to $\bar{D} \backslash\left\{i, \rho,-\rho^{2}\right\}$ (possibly with repetitions). Prove that there exists a constant $\lambda \in \mathbb{C} \backslash\{0\}$ such that, for $\tau \in \mathbb{H}$, we have

$$
f(\tau)=\lambda G_{4}(\tau)^{v_{\rho}(f)} G_{6}(\tau)^{v_{i}(f)} \Delta(\tau)^{v_{\infty}(f)+N} \prod_{\ell=1}^{N}\left(j(\tau)-j\left(z_{\ell}\right)\right),
$$

where $v_{\rho}(f), v_{i}(f)$ and $v_{\infty}(f)$ respectively denote the orders of vanishing of f at ρ, i and ∞.

