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Exercise 1 (Action of the modular group on the upper-half plane)
Let Γ = SL2(Z)/{±I2} be the modular group and let H = {z ∈ C,=(z) > 0} be

the upper-half plane. Recall that Γ acts on H by Möbius transformations. Let also

D = {z ∈ H, |<(z)| < 1/2, |z| > 1}

be the usual fundamental domain for the modular group Γ.
Prove that if z, z′ ∈ D, z 6= z′, are such that there exists A ∈ Γ satisfying z′ = A·z,

then either, <(z) = ±1/2 and z′ = z ∓ 1, or |z| = 1 and z′ = −1/z.
Let ρ = e2πi/3. For z ∈ D, let

S(z) = {A ∈ Γ, A · z = z}

be the stabilizer of z under the action of Γ. Prove that if z ∈ D r {i, ρ,−ρ2} then
S(z) = {I2}.

Let T and S be the elements of Γ respectively defined by their action on z ∈ H by
T · z = z + 1 and S · z = −1/z. Prove that S(i) = {I2, S}, S(ρ) = {I2, ST, (ST )2}
and S(−ρ2) = {I2, TS, (TS)2}.

Exercise 2 (On class numbers of positive definite quadratic forms)
Let D < 0 be an integer such that D = 0 (mod 4), or D = 1 (mod 4). Let QD

be the set of quadratic forms

Q(x, y) = Ax2 +Bxy + Cy2

with coefficients A,B,C ∈ Z satisfying B2−4AC = D, A > 0 and gcd(A,B,C) = 1.
For γ ∈ Γ and Q ∈ QD, we define

(γ ·Q)(x, y) = Q(ax+ by, cx+ dy),

where

γ =
(
a b
c d

)
.

Prove that this defines an action of the modular group Γ on QD.
The number of equivalence classes under this action is called the class number of

D and is denoted by h(D). The goal of this exercise is to show that h(D) is finite.
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Steps. — (I) Prove that there is a bijection between QD and the set{
−B + i

√
−D

2A ,A,B,C ∈ Z, B2 − 4AC = D,A > 0, gcd(A,B,C) = 1
}
.

(II) For Q ∈ QD, we set

zQ = −B + i
√
−D

2A .

For γ ∈ Γ and Q ∈ QD, check that

zγ·Q = γ−1 · zQ.

(III) Show that in each equivalence class of the action of Γ on QD, there is a unique
representative whose coefficients satisfy −A < B ≤ A < C or 0 ≤ B ≤ A = C.

(IV) Conclude.

Exercise 3 (On the space of modular forms). — For k ∈ Z, prove that the
set of modular forms of weight 2k is a vector space over C.

Prove also that if f is a modular form of weight 2k and g is a modular form of
weight 2` then fg is a modular form of weight 2k + 2`.

Exercise 4 (Elliptic functions). — A discrete subgroup of C which contains an
R-basis for C is called a lattice.

An elliptic function relative to a lattice Λ is a meromorphic function f : C → C
which satisfies f(z+ω) = f(z) for any z ∈ C and any ω ∈ Λ. All along this exercise,
we let Λ ⊂ C be a lattice, and f be an elliptic function relative to Λ.

Prove that if f has no poles then f is constant. Prove also that if f has no zeros
then f is constant.

For z ∈ C, we let resz(f) be the residue of f at z. Show that∑
z∈C/Λ

resz(f) = 0.

For z0 ∈ C, we let vz0(f) be the order of f at z0, that is the integer n ∈ Z such
that the function f(z)(z − z0)−n is holomorphic and non-zero at z0. Show that∑

z∈C/Λ
vz(f) = 0.

The order ord(f) of f is defined by

ord(f) =
∑

z∈C/Λ
vz(f)>0

vz(f).

Show that if f is non-constant then we have

ord(f) ≥ 2.
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Exercise 5 (On the Weierstrass function). — For z ∈ C and τ ∈ H, we define
the Weierstrass ℘τ -function by

℘τ (z) = 1
z2 +

∑
(m,n)∈Z2

(m,n)6=(0,0)

( 1
(z − (mτ + n))2 −

1
(mτ + n)2

)
,

and, for k ≥ 2, we define the Eisenstein series G2k(τ) by

G2k(τ) =
∑

(m,n)∈Z2

(m,n) 6=(0,0)

1
(mτ + n)2k .

All along this exercise, we view τ ∈ H as being fixed and z ∈ C as being a variable.
Check that, for k ≥ 2, the Eisenstein series G2k converges absolutely.
Prove that the series defining the Weierstrass ℘τ -function converges absolutely

and uniformly on every compact subset of Cr 〈1, τ〉, where
〈1, τ〉 = Z + τZ.

Prove also that it defines a meromorphic function on C, having a double pole with
residue 0 at each point of 〈1, τ〉, and no other pole.

Show that the Weierstrass ℘τ -function is an even elliptic function.
Prove that there is a neighborhood U of the origin such that for any z ∈ U r {0},

we have

℘τ (z) = 1
z2 +

∞∑
k=1

(2k + 1)G2k+2(τ)z2k.

Finally, prove that, for any z ∈ Cr 〈1, τ〉, we have

℘′τ (z)2 = 4℘τ (z)3 − 60G4(τ)℘τ (z)− 140G6(τ).

Exercise 6 (Non-vanishing of the Discriminant on the upper-half plane)
For τ ∈ H, we define the Discriminant ∆(τ) by

∆(τ) = 603G4(τ)3 − 27 · 1402G6(τ)2.

The goal of this exercise is to prove that, for τ ∈ H, we have
∆(τ) 6= 0,

without using the fact that ∆(τ) is a modular form.

Steps. — (I) Check that ∆(τ) is the discriminant of the polynomial

4X3 − 60G4(τ)X − 140G6(τ).
(II) Let ω1 = 1, ω2 = τ and ω3 = 1 + τ . Prove that

℘′τ

(
ωi
2

)
= 0,

for i ∈ {1, 2, 3}.
(III) Prove that

℘τ

(
ωi
2

)
6= ℘τ

(
ωj
2

)
,

for i, j ∈ {1, 2, 3}, i 6= j.
(IV) Conclude using Exercise 5.
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To go further. — For τ ∈ H, let Eτ be the elliptic curve defined over C by the
Weierstrass equation

y2 = 4x3 − 60G4(τ)x− 140G6(τ).
One can show that the map Ψ : C/〈1, τ〉 → Eτ (C) ⊂ P2(C) defined by

Ψ(z) = (℘τ (z) : ℘′τ (z) : 1),
is an isomorphism of Riemann surfaces and also a group homomorphism.

To go further. — One can prove that, for τ ∈ H, we have the Jacobi product
formula

∆(τ) = (2π)12q
∞∏
n=1

(1− qn)24 ,

where q = e2πiτ , from which we immediately deduce that ∆(τ) 6= 0.

Exercise 7 (On the modular invariant). — For τ ∈ H, we define the modular
invariant j(τ) by

j(τ) = 123 603G4(τ)3

∆(τ) .

Prove that a meromorphic function f : H→ C is a modular function of weight 0
if and only if it is a rational function of j.

Exercise 8 (Modular forms in terms of their zeros)
Let f be a non-zero modular form and let z1, . . . , zN be the zeros of f belonging

to D r {i, ρ,−ρ2} (possibly with repetitions). Prove that there exists a constant
λ ∈ Cr {0} such that, for τ ∈ H, we have

f(τ) = λG4(τ)vρ(f)G6(τ)vi(f)∆(τ)v∞(f)+N
N∏
`=1

(j(τ)− j(z`)) ,

where vρ(f), vi(f) and v∞(f) respectively denote the orders of vanishing of f at ρ,
i and ∞.
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