TOPICS IN NUMBER THEORY - EXERCISE SHEET III

École Polytechnique Fédérale de Lausanne

Exercise 1 (On α-multiplicative arithmetic functions)

A function $\mathbb{Z}_{\geq 1} \rightarrow \mathbb{C}$ is called an arithmetic function. An arithmetic function g is said to be multiplicative if for $m, n \geq 1$ such that $(m, n)=1$, we have

$$
g(m n)=g(m) g(n) .
$$

Moreover, g is said to be completely multiplicative if we have $g(m n)=g(m) g(n)$ for all $m, n \geq 1$.

Finally, if α is a non-zero completely multiplicative function then g is said to be α-multiplicative if for $m, n \geq 1$, we have

$$
\sum_{d \mid(m, n)} \alpha(d) g\left(\frac{m n}{d^{2}}\right)=g(m) g(n) .
$$

We write $g=0$ if and only if $g(n)=0$ for all $n \geq 1$. All along this exercise, α is a fixed non-zero completely multiplicative function.

Prove that any α-multiplicative function is multiplicative.
Let g be a non-zero α-multiplicative function. Show that $g(1)=1$. Prove also that for $c \in \mathbb{C}, c g$ is α-multiplicative if and only if $c=0$ or $c=1$.

Prove that if g and h are α-multiplicative then $g+h$ is α-multiplicative if and only if $g=0$ or $h=0$.

Let g_{1}, \ldots, g_{r} be distinct non-zero α-multiplicative functions. Prove that g_{1}, \ldots, g_{r} are linearly independent. Assume now that there exists $\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbb{C}^{r}$ such that the function g defined by

$$
g=\sum_{i=1}^{r} \lambda_{i} g_{i}
$$

is α-multiplicative. Prove that $g=0$ or $g=g_{i}$ for some $i \in\{1, \ldots, r\}$.
Let μ be the Möbius function, that is the function defined by $\mu(n)=0$ if there is a prime number p such that $p^{2} \mid n$ and $\mu(n)=(-1)^{\omega(n)}$ if n is squarefree, where $\omega(n)$ denotes the number of prime factors of n. Check that the function μ is multiplicative. Prove also that for $n \geq 1$, we have

$$
\sum_{d \mid n} \mu(d)=\delta_{n=1},
$$

where $\delta_{n=1}=1$ if $n=1$ and 0 otherwise.

Show that if g is α-multiplicative then for $m, n \geq 1$, we have

$$
\sum_{d \mid n} \mu(d) g(m n d) g\left(\frac{n}{d}\right)=\alpha(n) g(m)
$$

Prove also that for any prime number p and any $\ell \geq 0$, we have

$$
g\left(p^{\ell+2}\right)=g(p) g\left(p^{\ell+1}\right)-\alpha(p) g\left(p^{\ell}\right)
$$

Let $U_{n}(x)$ be the Chebyshev polynomials of the second kind, that is the polynomials defined by $U_{1}(x)=2 x, U_{2}(x)=4 x^{2}-1$ and, for $\ell \geq 1$,

$$
U_{\ell+2}(x)=2 x U_{\ell+1}(x)-U_{\ell}(x)
$$

Let g be a non-zero α-multiplicative arithmetic function. Show that for any prime number p and any $\ell \geq 1$, we have

$$
g\left(p^{\ell}\right)=\alpha(p)^{\ell / 2} U_{\ell}\left(\frac{g(p)}{2 \alpha(p)^{1 / 2}}\right)
$$

Note that the right-hand side is well-defined if $\alpha(p)=0$ and that it does not depend on the choice of the square root of $\alpha(p)$.

Exercise 2 (On the Dirichlet convolution of arithmetic functions)

Let g_{1}, g_{2} be two arithmetic functions and let $g_{1} * g_{2}$ be their Dirichlet convolution, that is the arithmetic function defined for $n \geq 1$, by

$$
\left(g_{1} * g_{2}\right)(n)=\sum_{d \mid n} g_{1}(d) g_{2}\left(\frac{n}{d}\right)
$$

For $i \in\{1,2\}$, let

$$
G_{i}(s)=\sum_{n=1}^{\infty} \frac{g_{i}(n)}{n^{s}}
$$

be the Dirichlet series respectively associated to g_{1} and g_{2}. Assume that there exists $\sigma>0$ such that the series G_{1} and G_{2} converge absolutely in the half-plane $\Re(s)>\sigma$.

Prove that for $\Re(s)>\sigma$, we have

$$
G_{1}(s) G_{2}(s)=\sum_{n=1}^{\infty} \frac{\left(g_{1} * g_{2}\right)(n)}{n^{s}}
$$

Exercise 3 (On Euler products). - Let g be a non-zero arithmetic function. Assume that there exists $\sigma>0$ such that the Dirichlet series G associated to g converges absolutely in the half-plane $\Re(s)>\sigma$.

Show that if g is multiplicative then for $\Re(s)>\sigma$, we have

$$
G(s)=\prod_{p}\left(\sum_{i=0}^{\infty} \frac{g\left(p^{i}\right)}{p^{i s}}\right)
$$

Prove that if g is completely multiplicative then for $\Re(s)>\sigma$, we have

$$
G(s)=\prod_{p}\left(1-\frac{g(p)}{p^{s}}\right)^{-1}
$$

Let α be a non-zero completely multiplicative arithmetic function. Prove that if g is α-multiplicative then for $\Re(s)>\sigma$, we have

$$
G(s)=\prod_{p}\left(1-\frac{g(p)}{p^{s}}+\frac{\alpha(p)}{p^{2 s}}\right)^{-1}
$$

Exercise 4 (On the Riemann zeta function). - Recall that the Riemann zeta function ζ is defined for $\Re(s)>1$ by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

Show that for $\Re(s)>1$, we have

$$
\frac{1}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}
$$

Prove also that

$$
\zeta(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

Exercise 5 (On Dirichlet series associated to Eisenstein series)

Let $k \geq 2$ and let φ_{k} be the Dirichlet series associated to the normalized Eisenstein series of weight $2 k$. The series φ_{k} is thus defined for $\Re(s)>2 k$ by

$$
\varphi_{k}(s)=\sum_{n=1}^{\infty} \frac{\sigma_{2 k-1}(n)}{n^{s}}
$$

where

$$
\sigma_{2 k-1}(n)=\sum_{d \mid n} d^{2 k-1}
$$

Prove that for $\Re(s)>2 k$, we have

$$
\varphi_{k}(s)=\zeta(s) \zeta(s+1-2 k)
$$

Exercise 6 (On the Dirichlet series associated to the Discriminant Δ)

Let φ be the Dirichlet series associated to the normalized modular cusp form of weight 12. The series φ is thus defined for $\Re(s)>7$ by

$$
\varphi(s)=\sum_{n=1}^{\infty} \frac{\tau(n)}{n^{s}}
$$

where τ is the Ramanujan τ function defined by

$$
(2 \pi)^{-12} \Delta(z)=\sum_{n=1}^{\infty} \tau(n) q^{n}
$$

where $q=e^{2 \pi i z}$.
Prove that for $\Re(s)>7$, we have

$$
\varphi(s)=\prod_{p}\left(1-\frac{\tau(p)}{p^{s}}+\frac{1}{p^{2 s-11}}\right)^{-1}
$$

Exercise 7 (On Fourier coefficients of modular forms)

Prove that for $n \geq 1$, we have

$$
\sigma_{7}(n)=\sigma_{3}(n)+120 \sum_{j=1}^{n-1} \sigma_{3}(j) \sigma_{3}(n-j)
$$

and

$$
11 \sigma_{9}(n)=21 \sigma_{5}(n)-10 \sigma_{3}(n)+5040 \sum_{j=1}^{n-1} \sigma_{3}(j) \sigma_{5}(n-j)
$$

Show that for $n \geq 1$, we have

$$
\tau(n)=\frac{65}{756} \sigma_{11}(n)+\frac{691}{756} \sigma_{5}(n)-\frac{691}{3} \sum_{j=1}^{n-1} \sigma_{5}(j) \sigma_{5}(n-j)
$$

Prove that this implies Ramanujan's congruence

$$
\tau(n)=\sigma_{11}(n) \quad \bmod 691
$$

for $n \geq 1$.

Exercise 8 (On the Petersson inner product). - Let M_{k}^{0} denote the space of modular cusp forms of weight $2 k$. For $f_{1}, f_{2} \in M_{k}^{0}$, we define the Petersson inner product of f_{1} and f_{2} by

$$
\left\langle f_{1}, f_{2}\right\rangle=\int_{D} f_{1}(z) \overline{f_{2}(z)} y^{2 k} \frac{d x d y}{y^{2}}
$$

where

$$
D=\{z \in \mathbb{H},|\Re(z)|<1 / 2,|z|>1\}
$$

Prove that for $f_{1}, f_{2} \in M_{k}^{0},\left\langle f_{1}, f_{2}\right\rangle$ is well-defined.
Let Γ be the modular group. Show that for any $A \in \Gamma$, and for any $f_{1}, f_{2} \in M_{k}^{0}$, we have

$$
\int_{A \cdot D} f_{1}(z) \overline{f_{2}(z)} y^{2 k} \frac{d x d y}{y^{2}}=\int_{D} f_{1}(z) \overline{f_{2}(z)} y^{2 k} \frac{d x d y}{y^{2}}
$$

Prove that $\langle\cdot, \cdot\rangle$ is a hermitian inner product.
To go further. - It is possible to show that the Hecke operators are hermitian with respect to the Petersson inner product. This allows one to prove the existence of an orthonormal basis of M_{k}^{0} consisting of simultaneous eigenforms. In addition, this implies that the eigenvalues of the Hecke operators are real numbers.

[^0]
[^0]: Pierre Le Boudec - Spring 2016
 École Polytechnique Fédérale de Lausanne

