
TOPICS IN NUMBER THEORY - EXERCISE SHEET III

École Polytechnique Fédérale de Lausanne

Exercise 1 (On α-multiplicative arithmetic functions)
A function Z≥1 → C is called an arithmetic function. An arithmetic function g

is said to be multiplicative if for m,n ≥ 1 such that (m,n) = 1, we have

g(mn) = g(m)g(n).

Moreover, g is said to be completely multiplicative if we have g(mn) = g(m)g(n)
for all m,n ≥ 1.

Finally, if α is a non-zero completely multiplicative function then g is said to be
α-multiplicative if for m,n ≥ 1, we have∑

d|(m,n)
α(d)g

(
mn

d2

)
= g(m)g(n).

We write g = 0 if and only if g(n) = 0 for all n ≥ 1. All along this exercise, α is
a fixed non-zero completely multiplicative function.

Prove that any α-multiplicative function is multiplicative.
Let g be a non-zero α-multiplicative function. Show that g(1) = 1. Prove also

that for c ∈ C, cg is α-multiplicative if and only if c = 0 or c = 1.
Prove that if g and h are α-multiplicative then g + h is α-multiplicative if and

only if g = 0 or h = 0.
Let g1, . . . , gr be distinct non-zero α-multiplicative functions. Prove that g1, . . . , gr

are linearly independent. Assume now that there exists (λ1, . . . , λr) ∈ Cr such that
the function g defined by

g =
r∑
i=1

λigi

is α-multiplicative. Prove that g = 0 or g = gi for some i ∈ {1, . . . , r}.
Let µ be the Möbius function, that is the function defined by µ(n) = 0 if there is a

prime number p such that p2 | n and µ(n) = (−1)ω(n) if n is squarefree, where ω(n)
denotes the number of prime factors of n. Check that the function µ is multiplicative.
Prove also that for n ≥ 1, we have∑

d|n
µ(d) = δn=1,

where δn=1 = 1 if n = 1 and 0 otherwise.
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Show that if g is α-multiplicative then for m,n ≥ 1, we have∑
d|n

µ(d)g(mnd)g
(
n

d

)
= α(n)g(m).

Prove also that for any prime number p and any ` ≥ 0, we have

g(p`+2) = g(p)g(p`+1)− α(p)g(p`).

Let Un(x) be the Chebyshev polynomials of the second kind, that is the polynomials
defined by U1(x) = 2x, U2(x) = 4x2 − 1 and, for ` ≥ 1,

U`+2(x) = 2xU`+1(x)− U`(x).

Let g be a non-zero α-multiplicative arithmetic function. Show that for any prime
number p and any ` ≥ 1, we have

g(p`) = α(p)`/2U`

(
g(p)

2α(p)1/2

)
.

Note that the right-hand side is well-defined if α(p) = 0 and that it does not depend
on the choice of the square root of α(p).

Exercise 2 (On the Dirichlet convolution of arithmetic functions)
Let g1, g2 be two arithmetic functions and let g1 ∗g2 be their Dirichlet convolution,

that is the arithmetic function defined for n ≥ 1, by

(g1 ∗ g2)(n) =
∑
d|n

g1(d)g2

(
n

d

)
.

For i ∈ {1, 2}, let

Gi(s) =
∞∑
n=1

gi(n)
ns

be the Dirichlet series respectively associated to g1 and g2. Assume that there exists
σ > 0 such that the series G1 and G2 converge absolutely in the half-plane <(s) > σ.

Prove that for <(s) > σ, we have

G1(s)G2(s) =
∞∑
n=1

(g1 ∗ g2)(n)
ns

.

Exercise 3 (On Euler products). — Let g be a non-zero arithmetic function.
Assume that there exists σ > 0 such that the Dirichlet series G associated to g
converges absolutely in the half-plane <(s) > σ.

Show that if g is multiplicative then for <(s) > σ, we have

G(s) =
∏
p

( ∞∑
i=0

g(pi)
pis

)
.

Prove that if g is completely multiplicative then for <(s) > σ, we have

G(s) =
∏
p

(
1− g(p)

ps

)−1
.
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Let α be a non-zero completely multiplicative arithmetic function. Prove that if g
is α-multiplicative then for <(s) > σ, we have

G(s) =
∏
p

(
1− g(p)

ps
+ α(p)

p2s

)−1
.

Exercise 4 (On the Riemann zeta function). — Recall that the Riemann zeta
function ζ is defined for <(s) > 1 by

ζ(s) =
∞∑
n=1

1
ns
.

Show that for <(s) > 1, we have
1
ζ(s) =

∞∑
n=1

µ(n)
ns

.

Prove also that
ζ(s) =

∏
p

(
1− 1

ps

)−1
.

Exercise 5 (On Dirichlet series associated to Eisenstein series)
Let k ≥ 2 and let ϕk be the Dirichlet series associated to the normalized Eisenstein

series of weight 2k. The series ϕk is thus defined for <(s) > 2k by

ϕk(s) =
∞∑
n=1

σ2k−1(n)
ns

,

where
σ2k−1(n) =

∑
d|n

d2k−1.

Prove that for <(s) > 2k, we have
ϕk(s) = ζ(s)ζ(s+ 1− 2k).

Exercise 6 (On the Dirichlet series associated to the Discriminant ∆)
Let ϕ be the Dirichlet series associated to the normalized modular cusp form of

weight 12. The series ϕ is thus defined for <(s) > 7 by

ϕ(s) =
∞∑
n=1

τ(n)
ns

,

where τ is the Ramanujan τ function defined by

(2π)−12∆(z) =
∞∑
n=1

τ(n)qn,

where q = e2πiz.
Prove that for <(s) > 7, we have

ϕ(s) =
∏
p

(
1− τ(p)

ps
+ 1
p2s−11

)−1
.
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Exercise 7 (On Fourier coefficients of modular forms)
Prove that for n ≥ 1, we have

σ7(n) = σ3(n) + 120
n−1∑
j=1

σ3(j)σ3(n− j),

and

11σ9(n) = 21σ5(n)− 10σ3(n) + 5040
n−1∑
j=1

σ3(j)σ5(n− j).

Show that for n ≥ 1, we have

τ(n) = 65
756σ11(n) + 691

756σ5(n)− 691
3

n−1∑
j=1

σ5(j)σ5(n− j).

Prove that this implies Ramanujan’s congruence
τ(n) = σ11(n) mod 691,

for n ≥ 1.

Exercise 8 (On the Petersson inner product). — Let M0
k denote the space of

modular cusp forms of weight 2k. For f1, f2 ∈ M0
k , we define the Petersson inner

product of f1 and f2 by

〈f1, f2〉 =
∫
D
f1(z)f2(z)y2k dxdy

y2 ,

where
D = {z ∈ H, |<(z)| < 1/2, |z| > 1}.

Prove that for f1, f2 ∈M0
k , 〈f1, f2〉 is well-defined.

Let Γ be the modular group. Show that for any A ∈ Γ, and for any f1, f2 ∈ M0
k ,

we have ∫
A·D

f1(z)f2(z)y2k dxdy

y2 =
∫
D
f1(z)f2(z)y2k dxdy

y2 ,

Prove that 〈·, ·〉 is a hermitian inner product.

To go further. — It is possible to show that the Hecke operators are hermitian
with respect to the Petersson inner product. This allows one to prove the existence
of an orthonormal basis of M0

k consisting of simultaneous eigenforms. In addition,
this implies that the eigenvalues of the Hecke operators are real numbers.
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