TOPICS IN NUMBER THEORY - EXERCISE SHEET III

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

Ezercise 1 (On a-multiplicative arithmetic functions)
A function Z>1 — C is called an arithmetic function. An arithmetic function g
is said to be multiplicative if for m,n > 1 such that (m,n) =1, we have

g(mn) = g(m)g(n).
Moreover, g is said to be completely multiplicative if we have g(mn) = g(m)g(n)
for all m,n > 1.

Finally, if o is a non-zero completely multiplicative function then g is said to be
a-multiplicative if for m,n > 1, we have

> ald)yg <TZ§L> = g(m)g(n).

d|(m,n)

We write g = 0 if and only if g(n) =0 for alln > 1. All along this exercise, « is
a fized non-zero completely multiplicative function.

Prove that any a-multiplicative function is multiplicative.

Let g be a non-zero a-multiplicative function. Show that g(1) = 1. Prove also
that for c € C, cg is a-multiplicative if and only if c =0 or c = 1.

Prove that if g and h are a-multiplicative then g + h is a-multiplicative if and
only if g=0 or h =0.

Let g1,. .., g, be distinct non-zero a-multiplicative functions. Prove that g1, ..., g,
are linearly independent. Assume now that there exists (A1,...,\y) € C" such that
the function g defined by

.
g= Z Aigi
i—1

is a-multiplicative. Prove that g =0 or g = g; for some i € {1,...,r}.

Let p be the Mobius function, that is the function defined by p(n) = 0 if there is a
prime number p such that p? | n and p(n) = (=1)*M if n is squarefree, where w(n)
denotes the number of prime factors of n. Check that the function p is multiplicative.
Prove also that for n > 1, we have

Z :u(d) = 5n:1,
din

where dp—1 =1 if n =1 and 0 otherwise.
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Show that if g is a-multiplicative then for m,n > 1, we have
Z,u g(mnd)g <n> = a(n)g(m).
d
dln
Prove also that for any prime number p and any £ > 0, we have

Z+2) E+1)

g% = g()g(@"") — ap)g(®).
Let Uy (z) be the Chebyshev polynomials of the second kind, that is the polynomials
defined by Uy(z) = 2z, Us(x) = 422 — 1 and, for £ > 1,
Upya(x) = 22Up11(z) — Up(x).

Let g be a non-zero a-multiplicative arithmetic function. Show that for any prime
number p and any £ > 1, we have

0 — q(p)/2? 9(p)
o) = o) 0 (550075

Note that the right-hand side is well-defined if a(p) = 0 and that it does not depend
on the choice of the square root of a(p).

Ezxercise 2 (On the Dirichlet convolution of arithmetic functions)
Let g1, g2 be two arithmetic functions and let gy * g be their Dirichlet convolution,
that is the arithmetic function defined for n > 1, by

(g1 % g2)(n) =Y g1(d) < >
d|n
Fori e {1,2}, let

be the Dirichlet series respectively associated to g1 and go. Assume that there exists
o > 0 such that the series G1 and Gy converge absolutely in the half-plane R(s) > o
Prove that for R(s) > o, we have

i 1*92 )

n=1

Ezxercise 3 (On Euler products). — Let g be a non-zero arithmetic function.
Assume that there exists o > 0 such that the Dirichlet series G associated to g
converges absolutely in the half-plane R(s) > o

Show that if g is multiplicative then for R(s) > o, we have

H <Z g S ) '
p =0 p
Prove that if g is completely multiplicative then for R(s) > o, we have

) =] (1 B g(p)>_1_

p pS
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Let a be a non-zero completely multiplicative arithmetic function. Prove that if g
is a-multiplicative then for R(s) > o, we have

Gs) =] (1 _ o) O‘(p))_l.

2
» p* p=*

Ezxercise 4 (On the Riemann zeta function). — Recall that the Riemann zeta
function ¢ is defined for R(s) > 1 by

(s) = n
Prove also that )
1\~
w0 =11(-5)

Ezxercise 5 (On Dirichlet series associated to Eisenstein series)
Let k > 2 and let @y, be the Dirichlet series associated to the normalized Eisenstein
series of weight 2k. The series @y, is thus defined for R(s) > 2k by

) — = O2k—1(n)
ka( ) nz::l ns )

where

O'Qk_l(n) = Z d2k_1.

dln
Prove that for R(s) > 2k, we have

er(s) = C(s)C(s +1 - 2k).

Ezxercise 6 (On the Dirichlet series associated to the Discriminant A)
Let ¢ be the Dirichlet series associated to the normalized modular cusp form of
weight 12. The series ¢ is thus defined for R(s) > 7 by

o~ 7(n)

p(s) =Y

n=1

ns ’

where T is the Ramanujan T function defined by

(2m)TPA(2) = Y m(n)g",
n=1
where q = €™,
Prove that for R(s) > 7, we have

o(s) = H (1 — () + 25111)_1.

> p* P
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Ezxercise 7 (On Fourier coefficients of modular forms)
Prove that for n > 1, we have

n—1
o7(n) = o3(n) +120 Y o3(j)os(n — j),
j=1
and )
11og(n) = 21o5(n) — 1003(n) + 5040 > _ o3(j)os(n — j).
j=1
Show that for n > 1, we have
65 691 6912 ,
7(n) = ﬁall(n) + ﬁ%(n) T3 Jz::l o5(4)os(n — j).

Prove that this implies Ramanugjan’s congruence
7(n) =o11(n) mod 691,
forn > 1.

Ezercise 8 (On the Petersson inner product). — Let M} denote the space of

modular cusp forms of weight 2k. For fi, f2 € My, we define the Petersson inner

product of f1 and fo by

o ddy
2

Y

(i) = [ HERE

where
D ={z e H,|R(2)| < 1/2,|2| > 1}.
Prove that for fi, fo € Mp, (f1, f2) is well-defined.
Let T' be the modular group. Show that for any A € T', and for any fi1, f2 € MY,
we have

—— o dzxd —— o dxd
| r@REHEY = [ peRE S
A-D Y D Y
Prove that (-,-) is a hermitian inner product.

To go further. — It is possible to show that the Hecke operators are hermitian
with respect to the Petersson inner product. This allows one to prove the existence
of an orthonormal basis of M consisting of simultaneous eigenforms. In addition,
this implies that the eigenvalues of the Hecke operators are real numbers.
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