Exercise Sheet 1

1. Dirichlet characters. A Dirichlet character $\bmod q$ is an arithmetic function $\chi: \mathbb{Z} \rightarrow \mathbb{C}$ which satisfies the following conditions:
i) $\chi(n)=\chi(m) \quad$ for $\quad n \equiv m \bmod q$,
ii) $\chi(n) \neq 0$ exactly when $(n, q)=1$,
iii) $\chi(n) \chi(m)=\chi(m n)$ for all $n, m \in \mathbb{Z}$.

The principal character $\chi_{0} \bmod q$ is defined as

$$
\chi_{0}(n)= \begin{cases}1 & \text { if } \quad(n, q)=1 \\ 0 & \text { if } \quad(n, q) \neq 1\end{cases}
$$

Check that the set of all Dirichlet characters $\bmod q$ forms a group under pointwise multiplication with identity element χ_{0} and inverses given by $\chi^{-1}=\bar{\chi}$, and show that this group is isomorphic to \mathbb{Z}_{q}^{\times}.
Hint: Use the fundamental theorem of finite abelian groups.
2. Prove the orthogonality relations for Dirichlet characters:

$$
\sum_{a \bmod q} \chi(a)=\left\{\begin{array}{ll}
\varphi(q) & \text { if } \quad \chi=\chi_{0}, \\
0 & \text { if } \quad \chi \neq \chi_{0},
\end{array} \quad(\text { for a Dirichlet character } \chi \bmod q)\right.
$$

and

$$
\sum_{\chi \bmod q} \chi(a)= \begin{cases}\varphi(q) & \text { for } \quad a \equiv 1 \bmod q \\ 0 & \text { otherwise }\end{cases}
$$

3. Dirichlet L-functions. Let χ be a Dirichlet character mod q. The Dirichlet L-function $L(s, \chi)$ is defined by

$$
L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}} \quad \text { for } \quad \operatorname{Re}(s)>1
$$

Prove that $L(s, \chi)$ can be written as an Euler product:

$$
L(s, \chi)=\prod_{p \text { prime }}\left(1-\frac{\chi(p)}{p^{s}}\right)^{-1} \quad \text { for } \quad \operatorname{Re}(s)>1
$$

What is the relationship between $L\left(s, \chi_{0}\right)$ and $\zeta(s)$?
4. Let $\chi \neq \chi_{0}$ be a Dirichlet character mod q. Initially, the Dirichlet L-function $L(\chi, s)$ is defined only for $\operatorname{Re}(s)>1$. Find an analytic continuation of $L(\chi, s)$ to the half-plane $\operatorname{Re}(s)>0$.

Hint: First prove that

$$
\left|\sum_{n \leq x} \chi(n)\right| \leq q \quad \text { for all } \quad x>0
$$

and then use partial summation.
5. Let χ be a Dirichlet character. Prove that, for $s \in \mathbb{R}, s>1$,

$$
\log L(s, \chi)=\sum_{p \text { prime }} \frac{\chi(p)}{p^{s}}+\mathcal{O}(1)
$$

6. Let $s \in \mathbb{R}, s>1$. Prove that

$$
\prod_{\chi \bmod q} L(s, \chi) \geq 1
$$

where the product runs over all Dirichlet characters mod q.
7. Let the modulus q be fixed. Show that there can be at most one character $\chi \bmod q$ such that $L(1, \chi)=0$, and that this χ must be real.
8. Let $\chi \neq \chi_{0}$ be a real Dirichlet character $\bmod q$. Define

$$
T(x)=\sum_{n \leq x} \frac{\rho(n)}{n^{\frac{1}{2}}} \quad \text { with } \quad \rho(n)=\sum_{d \mid n} \chi(d)
$$

Prove that

$$
\text { i) } T(x) \gg \log x \quad \text { and } \quad \text { ii) } T(x)=2 L(1, \chi) x^{\frac{1}{2}}+\mathcal{O}(1)
$$

What follows for the value of $L(1, \chi)$?
Hints: For i, show that $\rho(n) \geq 0$ and $\rho\left(n^{2}\right) \geq 1$. For ii), use the hyperbola method and partial summation.
9. Dirichlet's theorem on primes in arithmetic progressions. Let $(a, q)=1$. Show that the series

$$
\sum_{\substack{p \text { prime } \\ p \equiv a \bmod q}} \frac{1}{p}
$$

is divergent. In other words, there are infinitely many primes $p \equiv a \bmod q$.

