Exercise Sheet 2

1. Primitive characters. Let χ be a Dirichlet character mod q. We say that χ is induced by the character $\chi_{1} \bmod q_{1}$, if $q_{1} \mid q$ and

$$
\chi(n)=\chi_{1}(n) \quad \text { for all } \quad(n, q)=1
$$

A character is called primitive if it is induced only by itself. Show that any Dirichlet character χ is induced by a unique primitive character χ_{1}. What is the relationship between $L(s, \chi)$ and $L\left(s, \chi_{1}\right)$?
2. Let $q=r s$ with $r>1$, and let χ be a primitive Dirichlet character mod q. Prove that

$$
S(v)=\sum_{a \bmod r} \chi(a s+v)
$$

vanishes for any $v \in \mathbb{Z}$.
Hint: The sum $S(v)$ is periodic $\bmod s$, and $\chi(b) S(v)=S(b v)$ for $(b, q)=1$.
3. Gauss sums. Let χ be a primitive Dirichlet character mod q. The Gauss sum of χ is defined as

$$
\tau(\chi):=\sum_{a \bmod q} \chi(a) e\left(\frac{a}{q}\right)
$$

Prove that

$$
\tau(\bar{\chi}) \chi(n)=\sum_{a \bmod q} \bar{\chi}(a) e\left(\frac{a n}{q}\right)
$$

Is this statement still true when χ is not primitive?
4. Show that $|\tau(\chi)|=\sqrt{q}$ for any primitive Dirichlet character $\chi \bmod q$.

Hint: Look at $|\tau(\chi)|^{2}$ and use Exercise 3.
5. Let χ be a primitive Dirichlet character $\bmod q$ such that $\chi(-1)=1$. We define

$$
\theta(x, \chi)=\sum_{n \in \mathbb{Z}} \chi(n) e^{-\pi n^{2} \frac{x}{q}} .
$$

Check that $\theta(x, \chi)$ is well-defined for $x \in(0, \infty)$ by showing that

$$
\theta(x, \chi) \ll \sqrt{\frac{q}{x}} \quad \text { for } \quad x \leq 1, \quad \theta(x, \chi) \ll e^{-\pi \frac{x}{q}} \quad \text { for } \quad x \geq 1,
$$

and prove the functional equation

$$
\theta\left(\frac{1}{x}, \chi\right)=\frac{\sqrt{x q}}{\tau(\bar{\chi})} \theta(x, \bar{\chi}) .
$$

Hint: Use Exercise 3 to write $\chi(n)$ in terms of additive characters, so that you can then use Poisson summation.
6. The functional equation for Dirichlet L-functions (even case). Let χ be a primitive Dirichlet character $\bmod q$ such that $\chi(-1)=1$. Show that $L(s, \chi)$ can be continued analytically to the whole complex plane, and prove the functional equation

$$
\pi^{-\frac{1-s}{2}} q^{\frac{1-s}{2}} \Gamma\left(\frac{1-s}{2}\right) L(1-s, \bar{\chi})=\frac{\sqrt{q}}{\tau(\chi)} \pi^{-\frac{s}{2}} q^{\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) L(s, \chi) .
$$

What goes wrong when $\chi(-1)=-1$?
Hint: Start with the integral representation

$$
2 \pi^{-\frac{s}{2}} q^{\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) L(s, \chi)=\int_{0}^{\infty} \theta(x, \chi) x^{\frac{s}{2}} \frac{d x}{x},
$$

and make use of the functional equation for $\theta(x, \chi)$.
7. The functional equation for Dirichlet L-functions (odd case). Let χ be a primitive Dirichlet character mod q such that $\chi(-1)=-1$. Find an analytic continuation of $L(s, \chi)$ to the whole complex plane, and show that it satisfies the functional equation

$$
\pi^{-\frac{2-s}{2}} q^{\frac{2-s}{2}} \Gamma\left(\frac{2-s}{2}\right) L(1-s, \bar{\chi})=\frac{i \sqrt{q}}{\tau(\chi)} \pi^{-\frac{s+1}{2}} q^{\frac{s+1}{2}} \Gamma\left(\frac{s+1}{2}\right) L(s, \chi) .
$$

Hint: Look at the function

$$
\theta_{1}(x, \chi)=\sum_{n \in \mathbb{Z}} \chi(n) n e^{-\pi n^{2} \frac{x}{q}},
$$

and prove a functional equation relating $\theta_{1}(1 / x, \chi)$ with $\theta_{1}(x, \bar{\chi})$. Then follow the steps of Exercise 6 .

