Exercise Sheet 3

1. Quadratic Gauss sums. Let a and c be integers such that $(a, c)=1$. The quadratic Gauss sum $G(a ; c)$ is defined as

$$
G(a ; c):=\sum_{n \bmod c} e\left(\frac{a n^{2}}{c}\right)
$$

Check that $G(-a ; c)=\overline{G(a ; c)}$ and $G\left(a b^{2} ; c\right)=G(a ; c)$ for $(b, c)=1$, and show that

$$
G\left(a ; c_{1} c_{2}\right)=G\left(c_{2} a ; c_{1}\right) G\left(c_{1} a ; c_{2}\right) \quad \text { for } \quad\left(c_{1}, c_{2}\right)=1
$$

2. The Legendre symbol. Let p be an odd prime. The Legendre symbol is defined as

$$
\left(\frac{n}{p}\right):= \begin{cases}1 & \text { if } n \text { is a quadratic residue } \bmod p \text { and }(n, p)=1 \\ -1 & \text { if } n \text { is a quadratic non-residue } \bmod p \\ 0 & \text { if } p \mid n\end{cases}
$$

Show that $(\dot{\bar{p}})$ defines a Dirichlet character $\bmod p$, and prove that

$$
\left(\frac{n}{p}\right)=\frac{G(n ; p)}{G(1 ; p)} \quad \text { for } \quad(n, p)=1
$$

3. Show that, for $(a, p)=1$,

$$
G(a ; p)=\sum_{n \bmod p}\left(\frac{n}{p}\right) e\left(\frac{a n}{p}\right)
$$

4. Möbius transformations. Set

$$
\gamma z:=\frac{a z+b}{c z+d} \quad \text { for } \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}^{+}(2, \mathbb{R})
$$

Show that these transformations define a group action of $\mathrm{GL}^{+}(2, \mathbb{R})$ on the upper halfplane $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$.
5. We set

$$
\tilde{\Theta}(z):=\sum_{n \in \mathbb{Z}} e\left(\frac{n^{2} z}{2}\right)
$$

Check that this defines a holomorphic function $\tilde{\Theta}: \mathbb{H} \rightarrow \mathbb{C}$, and show that it satisfies the transformation laws

$$
\tilde{\Theta}\left(T^{2} z\right)=\tilde{\Theta}(z) \quad \text { and } \quad \tilde{\Theta}(W z)=\sqrt{-i z} \tilde{\Theta}(z)
$$

where $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $W=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.
6. Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a matrix in $\mathrm{SL}(2, \mathbb{Z})$ such that $c>0$. Prove the following transformation laws for $\tilde{\Theta}(z)$:

$$
\Theta(\gamma z)=\frac{G(a ; 2 c)}{2} \sqrt{\frac{c z+d}{i c}} \tilde{\Theta}(z) \quad \text { for } \quad c, b \equiv 0 \bmod 2
$$

and

$$
\tilde{\Theta}(\gamma z)=G\left(\frac{a}{2} ; c\right) \sqrt{\frac{c z+d}{i c}} \tilde{\Theta}(z) \quad \text { for } \quad a, d \equiv 0 \bmod 2
$$

Hints: Write γz as

$$
\gamma z=\frac{a}{c}-\frac{1}{c(c z+d)}
$$

It might be helpful to show first that, for $u \in \mathbb{R}$ and $w \in \mathbb{C}$ with $\operatorname{Re}(w)>0$,

$$
\sum_{n \in \mathbb{Z}} e^{-\pi w(n+u)^{2}}=\frac{1}{\sqrt{w}} \sum_{n \in \mathbb{Z}} e^{-\frac{\pi n^{2}}{w}-2 \pi i n u}
$$

7. Let $c, d>0$, such that c is even and $(c, d)=1$. Prove that

$$
\frac{G(-2 c ; d)}{d^{\frac{1}{2}}}=\frac{G(d ; 2 c)}{2(i c)^{\frac{1}{2}}}
$$

Hint: Use the transformation laws for $\tilde{\Theta}(z)$.
8. Let b, d be odd integers, and c an integer coprime to $b d$. Show that

$$
\frac{G\left(c ; b^{2} d\right)}{\sqrt{b^{2} d}}=\frac{G(c ; d)}{\sqrt{d}}
$$

Hint: Use Exercise 7.
9. The Jacobi symbol. We can extend the Legendre symbol to odd integers by setting

$$
\left(\frac{n}{c}\right):=\frac{G(n ; c)}{G(1 ; c)} \quad \text { for } \quad(n, c)=1 \quad \text { and } \quad\left(\frac{n}{c}\right):=0 \quad \text { for } \quad(n, c)>1
$$

Let $c=p_{1}{ }^{r_{1}} \cdots p_{k}{ }^{r_{k}}$ be the prime factorization of c. Prove that

$$
\left(\frac{n}{c}\right)=\prod_{i=1}^{k}\left(\frac{n}{p_{i}}\right)^{r_{i}}
$$

where $\left(\frac{n}{p_{i}}\right)$ is the Legendre symbol defined above. This shows that $(\dot{\bar{c}})$ defines a Dirichlet character mod c.
10. The law of quadratic reciprocity. Let $c, d>1$ be odd coprime integers. Prove that

$$
\left(\frac{c}{d}\right)\left(\frac{d}{c}\right)=(-1)^{\frac{c-1}{2} \frac{d-1}{2}}
$$

Hint: Use Exercise 7 to compute $G(1 ; c)$.

