Exercise Sheet 5

1. Completed Dirichlet L-functions. Let χ be a primitive Dirichlet character mod q. The completed Dirichlet L-function $\Lambda(s, \chi)$ is defined as

$$
\Lambda(s, \chi):=q^{\frac{s}{2}} \gamma(s, \chi) L(s, \chi)
$$

where

$$
\gamma(s, \chi):=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s+\kappa}{2}\right) \quad \text { and } \quad \kappa:= \begin{cases}0 & \text { if } \quad \chi(-1)=1 \\ 1 & \text { if } \quad \chi(-1)=-1\end{cases}
$$

Show that $\Lambda(s, \chi)$ is a function of order 1 .
2. Show that

$$
-\frac{L^{\prime}}{L}(s, \chi)=\frac{\log q}{2}+\frac{\gamma^{\prime}}{\gamma}(s, \chi)-B(\chi)-\sum_{\rho}\left(\frac{1}{s-\rho}+\frac{1}{\rho}\right),
$$

where $B(\chi)$ is a complex number such that

$$
\operatorname{Re}(B(\chi))=-\sum_{\rho} \operatorname{Re}\left(\rho^{-1}\right)
$$

Here the sums over ρ run over all zeros of $L(s, \chi)$ inside the critical strip counted with their multiplicity.
3. Let $\mathcal{N}(T, \chi)$ be the number of zeros of $L(s, \chi)$ inside the critical strip which have imaginary part in $[-T, T]$ counted with multiplicity. Prove that

$$
\mathcal{N}(T+1, \chi)-\mathcal{N}(T, \chi) \ll \log (q(T+2)) \quad \text { and } \quad \mathcal{N}(T, \chi) \ll T \log (q(T+2))
$$

Hint: Show first that

$$
\sum_{\rho} \frac{1}{1+|T-\operatorname{Im}(\rho)|^{2}} \ll \log (q(T+2))
$$

4. Prove that, for $-\frac{1}{2} \leq \operatorname{Re}(s) \leq 2$ and $|\operatorname{Im}(s)| \geq 1$, we can approximate $\frac{L^{\prime}}{L}(s, \chi)$ by

$$
\frac{L^{\prime}}{L}(s, \chi)=\sum_{\substack{\rho \\|\operatorname{Im}(\rho-s)| \leq 1}} \frac{1}{s-\rho}+\mathcal{O}(\log (q|\operatorname{Im}(s)|)) .
$$

5. Weil's explicit formula for Dirichlet L-functions. Let $f:(0, \infty) \rightarrow \mathbb{C}$ be a smooth and compactly supported function, and let \tilde{f} be its Mellin inverse. Prove the identity

$$
\begin{aligned}
\sum_{n} \Lambda(n)(\chi(n) & \left.f(n)+\bar{\chi}(n) n^{-1} f\left(n^{-1}\right)\right) \\
& =f(1) \log q+\frac{1}{2 \pi i} \int_{(1 / 2)}\left(\frac{\gamma^{\prime}}{\gamma}(s, \chi)+\frac{\gamma^{\prime}}{\gamma}(1-s, \bar{\chi})\right) \tilde{f}(s) d s-\sum_{\rho} \tilde{f}(\rho)
\end{aligned}
$$

6. Let $X, Y \in \mathbb{R}$ such that $1 \leq Y \leq X$. Construct a smooth and compactly supported function $f:(0, \infty) \rightarrow \mathbb{R}$ which satisfies

$$
f(\xi)=1 \quad \text { for } \quad \xi \in\left[\frac{X}{2}, X\right] \quad \text { and } \quad \operatorname{supp} f \subset\left[\frac{X-Y}{2}, X+Y\right]
$$

and

$$
f^{(\nu)}(\xi) \ll Y^{-\nu} \quad \text { for } \quad \nu \geq 0
$$

7. Let f be the function constructed above. Show that its Mellin transform satisfies the bound

$$
\tilde{f}(s) \ll X^{\operatorname{Re}(s)} \min \left(1, \frac{X}{Y|s||s+1|}\right)
$$

8. Prove that

$$
\sum_{\frac{x}{2}<n \leq x} \Lambda(n)=\frac{x}{2}+\mathcal{O}\left(x e^{-C \sqrt{\log x}}\right)
$$

for some constant $C>0$.
Hint: Use Weil's explicit formula for the Riemann zeta function with the weight function constructed in Exercise 6.
9. Prime number theorem. Prove that

$$
\sum_{n \leq x} \Lambda(n)=x+\mathcal{O}\left(x e^{-C \sqrt{\log x}}\right)
$$

for some constant $C>0$.

