Exercise Sheet 6

1. Given an L-function $L(f, s)$, let

$$
N(f, T):=\#\{\rho \in \mathbb{C}|L(f, \rho)=0,0 \leq \operatorname{Re}(\rho) \leq 1,|\operatorname{Im}(\rho)| \leq T\}
$$

Assuming $L(f, s)$ has no zeros with $|\operatorname{Im}(\rho)|=T$, prove that

$$
N(f, T)=\operatorname{Re}\left(\frac{1}{\pi i} \int_{C} \frac{\Lambda^{\prime}}{\Lambda}(f, s) d s\right)+\mathcal{O}(\log (2 q(f)))
$$

where C is the path starting at $\frac{1}{2}-i T$, passing through the points $3-i T$ and $3+i T$, and ending at $\frac{1}{2}+i T$.
Hint: The implied constants here and below may depend on the degree d and the local parameters $\mu_{f, i}$ at infinity of $L(f, s)$.
2. Show that, for $T \geq 2$,

$$
\operatorname{Re}\left(\frac{1}{\pi i} \int_{C} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{s+\mu_{f, i}}{2}\right) d s\right)=\frac{2 T}{\pi} \log \frac{T}{2 e}+\mathcal{O}(\log T)
$$

3. Show that, for $T \geq 2$,

$$
\operatorname{Re}\left(\frac{1}{\pi i} \int_{C} \frac{L^{\prime}}{L}(f, s) d s\right) \ll \log (q(f) T)
$$

4. Counting zeros of $L(f, s)$. Prove the following asymptotic formula for the number of zeros of $L(f, s)$,

$$
N(f, T)=\frac{T}{\pi} \log \frac{q(f) T^{d}}{(2 \pi e)^{d}}+\mathcal{O}(\log (q(f) T)) .
$$

