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Weil Representation, Howe Duality,
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These are some expository lectures given in Montreal on the Weil representa-
tion. The aim of these lectures was to introduce the audience to this important
representation and to show how it has been useful in constructing representations
of p-adic groups and automorphic forms via dual reductive pairs. These lectures
contain no serious proofs, for given the limitations of time, the inclusion of all the
technical details would only have served to detract from the global structure. We
refer the reader to the nice book of Moeglin, Vigneras, Waldspurger MV W] for all
the proofs in the local non-Archimedean case, and the basic papers of Howe [H2]
and [H3] for the real theory.

I would like to thank M. Ram Murty for inviting me to CRM to give these lec-
tures, and for his interest in these lectures and his hospitality in Montreal. Thanks
are also due to S. Gelbart for encouragement and to B. Sury for a careful reading
of the manuscript.

1. Heisenberg group

In this section k will denote a non-Archimedean local field which will never
be of characteristic 2. All the representations will be over complex numbers and
smooth in the sense that every vector in the representation space is fixed by a
compact open subgroup. For any finite dimensional vector space V' over k, S(V)
will denote the space of locally constant compactly supported functions on V.

Let W be a finite dimensional vector space over £ with a non-degenerate al-
ternating form ( , ). Such a vector space will be called a symplectic space. Its
dimension is even and we denote it by 2n. The Heisenberg group H(W) associated
to the symplectic space W is a non-trivial central extension of W by k and is defined
to be the group of pairs

{{w,t)|w € W)t € k},
with the law of multiplication
1
2
The Heisenberg group H (W) clearly sits in the exact sequence

0—=k—-HW)->W —0.

(wy,t1)(we, t2) = (w1 + wo, 81 + t2 + = (w1, w2)).

The commutator subgroup of H(W) is k and all the one dimensional representations
of H(W) factor through W. We construct below an infinite dimensional smooth
1991 Mathematics Subject Classification. Primary: 11F27; Secondary: 11F37.

© 1993 American Mathematical Society
1065-8580/93 $1.00 + $.25 per page

105



106 DIPENDRA PRASAD

representation of H(W). For this fix a decomposition of W as W = W; @ W,
where W1 and W, are maximal totally isotropic subspaces of W (i.e., subspaces
on which the alternating form is identically zero). Such a decomposition will be
called a complete polarisation of W. The representation depends on the choice of
an additive character ¥ of k which will be fixed in all these lectures.

Define the representation py of the Heisenberg group H(W') on S(W7) as fol-
lows:

py(w1) f(x) = f(z + w1) for all z,w; € Wy,
py(we) f(z) = Y({z,w2)) f(z) forall xe Wi, wy € Wy,
Py () f(z) = ¥(t) f(z) forall tek,zec W

It can be easily checked that this gives a smooth representation of H(W). This
representation of H(W) is called the Schrédinger representation.

REMARK 1.1. If ¢ denotes the character ¥(z) = ¥(—z), then py is the smooth
dual of p,. To see this observe that

(Fir fo) — /W fifadw,  fusfo € S(WY)

is a non-degenerate bilinear form on py, ® py.

There is another model of this representation, called the lattice model which
is also quite useful. In fact we define a representation which is more general than
both of these.

Let A C W be a closed subgroup and define Ay, = Ax &k C HW). It isa
subgroup of H(W). Assume now that A = A+ where

L={y€W|1f)(<£E,y>)=1, V:EEA}

In this case the character ¥ of £ can be extended to Ax. Fix such an extension and
call it ¥ 4.
Let S4 be the space of functions on H(W) such that
(i) f(ah) = ala)f(h) for all a € Ax,h € HW).
(ii) f(hl) = f(h) for all | € L, a lattice in W, and h € H(W).

By a simple calculation one can show that functions in S4 are compactly sup-
ported modulo Ag. Clearly the Heisenberg group operates on S4 via right transla-
tions and this representation is smooth because of (ii).

Since k operates via the character v on functions in S4, one can realise this
representation also on a certain space of functions on H(W)/k. To do this, let
f be a function on H(W) such that f(ht) = ¢¥(t)f(h) for t € k, and define a
function f on W by f(w) = f(w,t)y(t)~" for any t € k,w € W. Conversely given
f, the same equation can be used to define the function f on H (W). Under this
isomorphism, the space S4 gets identified to the space of functions f in S (W) such

that f(a+w) = (}(w,a))f(w) for all a € A, and b e W C H(W) acts OJ this

space of functions f by, (b- f)(w) = Y& (w, ) F(b+ w).

PROPOSITION 1.2. Each Sa is an irreducible representation of H(W).
We now give some examples of closed subgroups A with A+ = A

(1) A=W, a maximal totally isotropic subspace of W.
(2) A=L=3%" 0ve;®3 " Ocf; where {e;, f;} is a symplectic basis bf W
ie. (e e;) =0,(fi, ;) =0,{e:, f;) = bij, and Oy, is the ring of integers of
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k with uniformising parameter ;. Then if the conductor of ¢ is Oy i.e.,
Y(Ok) =1 but Y(r, 'Ox) # 1, Lt = L.

It is easy to see that in case (1), we get the Schrodinger model of the repre-
sentation of the Heisenberg group discussed earlier, and the second case gives what
are called lattice models.

We have now constructed several smooth irreducible representations of the
Heisenberg group on which the centre acts by the character 1. All these represen-
tations are isomorphic. In fact one has the following basic theorem.

THEOREM 1.3 (STONE, VON NEUMANN). The Heisenberg group H(W) has a
unique irreducible smooth representation on which k operates via the character 1.
We will denote this unique irreducible smooth representation of H(W) by

2. Metaplectic group and the Weil representation

The main theme of these lectures is not the representation (py,S) of the Heisen-
berg group constructed in the last section but rather a (projective)-representation
of the symplectic group which is constructed using intertwining operators of this
representation of the Heisenberg group. To define this, observe that the symplectic
group Sp(W) of W (i.e. the automorphisms of W preserving the alternating form
{, )) operates on H(W) by g - (w,t) = (gw,t). Clearly this action is trivial on
the centre of H(W) and therefore by the uniqueness theorem of Stone and von
Neumann, there is an operator wy,(¢g) (unique up to scaling) on & such that

™) pu(gw,t) - wy(g) = wy(g) - py(w,t), forall (w,t) € H(W).

Now define .
Spy (W) = {(g,wy(g)) suchthat () holds}.

Then S‘Bw(W) is a group under pointwise multiplication, called the metaplectic
group, and fits in the following exact sequence:

0 — C* — Spy, (W) B Sp(W) — 0.

The metaplectic group comes equipped with a natural representation obtained by
projection on the second factor (g,wy(g9)) — wy(g) € Aut(S). This representa-
tion of the metaplectic group is called the Weil representation or the metaplectic
representation or the oscillator representation.

THEOREM 2.1. The map p restricted to the commutator subgroup .@w(W) =
[Spy(W), Spy(W)] of Sp, (W) is a surjection onto Sp(W) with a kernel of order
2. In particular,

Spy (W) = Spy, (W) xz,, C*.

Moreover, the two sheeted covering g})w (W) of Sp(W) is independent of the additive

character 3 but the Weil representation restricted to @d,(W) does depend on 9.
We now give an explicit model, called the Schrédinger model, of the metaplec-
tic representation over a local field. For this, let W = W), & W; be a complete
polarisation of W. We will write elements of Sp(W) as matrices with respect to
the basis {e1,e2, -+ ,en, f1, -, fn} Where e, € Wi and f; € W and (e;, f;) = 6, ;.
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One can easily check that

(3 tA0_1> belongs to  Sp(W) if A € GL(W}),
and the action of this matrix in the metaplectic representation on S(W;) is given
by
A 0
oo (g ) fa) = et AP/25C ),
i.e., the operator so defined has the property (*) above. (Observe that since g —
wy(g) is a homomorphism on such matrices, the metaplectic covering splits on the

subgroup {(‘3 tAO_l) |A e GL(Wl)} of Sp(W)). The purpose of the scaling factor

|det A|'/2 in the above action is to make the action of GL(W1) unitary for the
hermitian structure on S(Wy): (f1, f2) = le fi fadw.
We have

0 1
and the action of this matrix is given by

oo (5 %) 1@ =(Z52) 1ta)

o (O o) 1@ =f@)

where 7 is an 8-th root of unity to be described below and f is the Fourier transform,
f(z) = / Fly)w (Z $iyi) dy,
kn i=1

the Haar measure dy being chosen so that f(z) = f(—z).

We define the y-factor ¥(Q, ) more generally for any quadratic form @ on k™
to be ¥(Q,¥) = ¢{Q, ¥)/|9(Q, ¥)| where g(Q, ) is defined as follows. (Our v will
be ¥(Q,9) for Q = 377, 27.)

def

9(Q,¢) = P.V. - P(Q(z))dz = lim Y(Q(x))dz,

m—o0 T=mOpP

(1 B) € Sp(W) ifandonly if B="'B,

Finally, we have

where dz is now chosen so that Fourier inversion holds for B(z,y) = 2(Q(z +y) —
Q(z) - Q(y)).
REMARK 2.2. One might wonder why this care about the 8-th root of unity

1 .
1 0) is defined only up to scalar

anyway. This has to do with the fact that the metaplectic group %w(W) contains
S/'E)(W) which is a two sheeted covering of Sp(W), and therefore the scaling factor
can be normalised up to an ambiguity of sign.

REMARK 2.3. It can be proved that for the function g (z) = ¥(Q(x)) on k",
125 = 'ywél in the sense of distributions.

REMARK 2.4. The construction of the Heisenberg group and the uniqueness
theorem of Stone and von Neumann is also true in the case of finite fields. Therefore

factor v when the intertwining operator wy, ( 0
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as above, one can construct a projective representation of dimension ¢” of Sp(n, F,).
This projective representation in fact lifts to an ordinary representation of Sp(n, F,)
(in a unique way except if n = 1, ¢ = 3). The representation of Sp(n, F,) so obtained
depends on the choice of the additive character ¢ of F,, and the representation
associated to v and ¥,(x) = 1(az) are isomorphic if and only if a is a square in F,,.

REMARK 2.5. Representation of the Heisenberg group and of the metaplectic
group can be combined to give a representation of the semi-direct product H{W) %

%w(W) where the semi-direct product is via the natural action of Sp(W) on H(W).

2.6 Lattice Model of the Weil Representation. Let A be a finitely gen-
erated Qx-module of maximal rank in W such that AL = A. Then in the lat-
tice model of the representation of the Heisenberg group on functions on W,
(g, M[g]) € Sp,, (W) for the operator M|g]:

(i) = Y o5 a7 e w)

ac gAmA

In particular for K, the stabiliser of A, the above formula simplifies to

(Mglf)(w) = f(g™"w).

Observe now that this K is a maximal compact subgroup of Sp(W), and since
the above is clearly a representation of K (instead of a projective representation),
the metaplectic covering splits on K.

Moreover, from the above action of K it is clear that the characteristic function
of A is invariant under K and it is easy to see that it is the unique vector invariant
under K.

REMARK 2.7. For W = W! @ W2, the direct sum of two symplectic spaces,
let W!=Wlo Wi W2=W2o W2 and W = (W} o W3) @ (Wi @ W2) be com-
plete polarisations. One has representations (py, S(W{)) of H(W1), (py, S(W2))
of H(W?), and (py, S(Wi ®@W32)) of H(W). Since S(W®&W?) = S(W])QS(W3),
it follows that the representation (py, S(W{ @& W2)) of H(W) under the mapping
H(W?'Y) x HW?) — H(W) where (wy,t;) x (w2,t;) € HW1) x HW?) goes
to (w1 + wq,t1 + t2) becomes the tensor product of representations (py,S(Wi))
of H(W?!) and (py, S(W2)) of H(W?). Clearly the intertwining operator corre-
sponding to g € Sp(W!) acting on the first variable is an intertwining operator
for g thought of as an element of Sp(W?! ® W?2). This implies that the metaplec-
tic covering of Sp(W?! @ W?2) restricted to Sp(W!) is the metaplectic covering of
Sp(W1), and that the metaplectic representation of Sp(W?! @ W?) restricted to
Sp(W') x Sp(W?) is the tensor product of their metaplectic representations.

REMARK 2.8. Suppose that W is a symplectic space and V is a non-degenerate
quadratic space. Then the product of the bilinear forms gives a symplectic structure
on WQV. Suppose that the quadratic form on V' is .- | a;z7; then as a symplectic
space

WeV=> aW
=1
Therefore, from Remark 2.7, the restriction of the metaplectic representation of
Sp(W @ V) to [1;~, Sp(a;W) is the tensor product of the metaplectic representa-
tions of Sp(a;W). Since the metaplectic representation of Sp(aW) associated to
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the character 1) is isomorphic to the metaplectic representation of Sp(W) associated
to the character v¥,(z) = ¥(az), the restriction of the metaplectic representation
of Sp(W @ V) to Sp(W) is isomorphic to the tensor product of the metaplectic
representations of Sp(W) associated to the characters 4, .

REMARK 2.9. For V and W as in the previous remark, O(V) C Sp(W @ V)
in the obvious way. Let W = W] @& W, be a complete polarisation of W. Then
WeV =W ®@VeW,®V is a complete polarisation for W®V'. Recall now that the
Schrodinger model of the metaplectic representation of Sp(W ® V) is obtained on
the compactly supported locally constant functions on W; ® V. Now O(V) operates
on S(W; ® V) in a natural way, and it is easy to see from the explicit formulae
for the representation of the Heisenberg group that this action is an intertwining
operator; therefore we conclude that

(i) The metaplectic covering of Sp(W ® V) splits on the subgroup O(V).

(ii) The metaplectic representation of Sp(W ® V) restricted to O(V) is the
natural representation of O(V) on functions on W; ® V (at least, up to
a character of O(V)).

REMARK 2.10. Similarly if V = V] ® V; where V] and V, are maximal totally
isotropic subspaces of the quadratic space V, WV = WV, aW V; is a complete
polarisation of W ® V. We conclude as in the previous remark that the metaplectic
covering of Sp(W ® V) splits on Sp(W), and the metaplectic representation of
Sp(W ® V) restricted to Sp(W) is the natural representation of Sp(W) on S(W @
Vi).

REMARK 2.11. By Remark 1.1, the dual of the metaplectic representation w,,
of :S'}B(W) associated to the character v(z) is the metaplectic representation of
Sp(W) associated to the character ¥)(—z). Therefore by Remarks 2.8 and 2.10,

wy @ wy, = S(W),

where Sp(W) operates on S{W) in the natural way (observe that w,, ®wy, is a rep-
resentation of Sp(W)). This relation is specially useful for the Weil representation
of Sp(n,F,) where the Weil representation is self-dual if —1 is a square in [, (see
Remark 2.4), i.e. for ¢ = 1 mod 4, and the above relation can be used to calculate
the character of the Weil representation up to sign.

3. Dual reductive pairs

A dual reductive pair is a pair of subgroups (G,G’) in a symplectic group
Sp(W) such that
(i) G is the centraliser of G’ in Sp(W), and G’ is the centraliser of G in Sp(W).
(i1) The actions of G and G’ are completely reducible on W (recall that an action
is called completely reducible if every invariant subspace has an invariant
complement).

A dual reductive pair (G, G’) in Sp(W) will be called irreducible if one can’t de-
compose W as the direct sum of two symplectic subspaces each of which is invariant
under both G and G.

REMARK 3.1. If (G),G}) C Sp(W!) and (G2, G%) C Sp(W?) are dual reduc-
tive pairs then (G x G2, G} x G%) is a dual reductive pair in Sp(W! ® W?).

REMARK 3.2. Every dual reductive pair is constructed from irreducible ones
by repeating the process in Remark 3.1.
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We will give a general method of constructing irreducible dual reductive pairs.
For this we begin by defining a hermitian form on a vector space over a division
algebra with involution.

Let D be a division algebra over k and 7 an involution of D over k (i.e. 7(z +
y) = 7(z) + 7(y), 7(zy) = 7(¥)7(z), 7*(z) = z for all 2,y € D, and 7(a) = a for all
a € k). Let V be a right vector space over D with a k-bilinear form H : V xV — D
such that

(1) H(Uldl,’()gdg) = T(dl)H(Ul,Ug)dg, for all v1,v, € V and dy,d> € D.
(ii) T7(H{v1,v2)) = eH (v, v1) for all v, v, € V, where € = 1.

A right D-vector space V together with a bilinear form H having the properties
(i) and (ii) above is called an e-hermitian space.

The group of D-automorphisms of V preserving the e-hermitian form H is
called the unitary group associated to the e-hermitian space V, and is denoted by
U(V,H) (or U(V) for short).

REMARK 3.3. If k is a local field then any division algebra over k with an
involution is at most 4-dimensional over its centre. Moreover, if the involution is
non-trivial on the centre then the division algebra is commutative.

REMARK 3.4. If D = k, then for ¢ = 1, U(V, H) is the usual orthogonal
group and for € = —1, U(V, H) is the symplectic group. If D = K = k(/d) is a
quadratic field extension of k, and 7 is the non-trivial Galois automorphism of K /k,
U(V,H) is what is generally called a unitary group. In this case one can multiply
an e-hemitian form by v/d to go from hermitian to skew-hermitian and vice-versa
without changing the unitary group. More generally, multiplying an e-hermitian
form by a € D such that 7(a) = —a, takes the e-hermitian form to a —e-hermitian
form (for 7 = ara™1).

REMARK 3.5. Let D be a quaternion division algebra over k with the standard
involution. Then if e = 1, U(V, H) is a form of the symplectic group and if e = —1,
the U(V, H) is a form of the orthogonal group.

REMARK 3.6. The unitary groups U(V, H) for e-hermitian forms H constructed
above, together with general linear groups over division algebras, constitute what
are called the classical groups.

Classification theorem for irreducible dual reductive pairs. The irre-
ducible dual reductive pairs (G, G') in Sp(W) are of two types:

Type 1. The action of G- G’ on W is irreducible.

In this case there exists a division algebra D/k with an involution 7, and for
i = 1,2 spaces W; over D and ¢;-hermitian forms H; on W; with €;e3 = —1 such
that W = W; @ p W, and the alternating bilinear form on W = W, @p W, is
given by (w1 ® wy, wy ® wh) = trp /p(Hy(wy, wi)Ha(wse, wy)), and the pair (G, G")
is (U(W), U(W5)).

Type 2. The action of G- G’ on W is reducible.

In this case there exists a division algebra D/k and a right D-vector space Wy
and a left D-vector space W, such that W = W) ®p Wy & (W) ®p W)* with
the natural symplectic structure, and (G,G’) = (Autp(W)), Autp(Ws)) with the
natural action of Autp (W) and Autp(W;) on W@ p W, and its dual, and therefore
on W.
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4. Howe duality
We begin with the following general lemma, [MVW, Lemma I1.5].

__ LEmMA 4.1. If two elements in Sp(W) commute then their arbitrary lifts in
Spy, (W) also do.

Now for a closed subgroup H C Sp(W), let HcC %w(w) be the full inverse
image of H in the metaplectic group. Let Ry(H) be the set of smooth irreducible
representations 7 of H such that

Homg (S, n) # 0,

where (wy, S) is the metaplectic representation of S’:‘z’)w(W)
Note that for a dual reductive pair (G,G’) in Sp(W), the subgroups G and
G’ of Spw(W) commute by Lemma 4.1, and there is a surjective map from G x

G to GG Therefore a representation of G -G’ is a tensor product 7 ® 7w’ of
representations 7 of G and 7’ of G'. Clearly if 7 ® 7' belongs to Rw(G/'-\G/") then
7 belongs to Rd,(é) and 7’ to Rw(a). Tt follows that there is a natural map from
Ry (G- G") to Ry(G) x Ry(GY).

CONJECTURE 1 (HOWE). For a dual reductive pair (G, G’), the image of the
mapping from Rw(G/'-\Z") to Rd,(é) X Rd,(a/’) constructed above is the graph of a
bijective correspondence between R¢,((~}') and Ry(G").

Actually there is a slightly more refined conjecture which takes into account
the multiplicities too. To state it, define for an irreducible representation 7 of G

S(m) = ﬂ ker «,

where the intersection is taken over all the possible homomorphisms « from the
Weil representation (wy,S) onto 7, and let

S[r] = 8/S(x).

Note that S|[r] is the largest quotient of S which is m-isotypical. Since G’ commutes
with G, S[n] is also a G' module and therefore a G x G’-module. We now have the
following general lemma.

LEMMA 4.2. Let T be a smooth representation of the product G1 x G2 of two
locally compact totally disconnected groups, and let 1 be a smooth irreducible ad-
missible representation of Gi. If the intersection of the kernels of all the G-
homomorphisms of T onto 11 is trivial, then T =2 71 @2 for a smooth representation
T2 Of Gz. N

From the above lemma, there is a smooth representation go(w) of G’ such that
S[#] = 7 ® oo(7) as a G x G'-module.

CONJECTURE 2 (HOWE). The representation oo(m) of G’ has a unique irre-
ducible quotient denoted by o{r), and the mapping m — o (=) is a bijection between
Ry(G) and Ry(Q).

REMARK 4.3. The Howe conjecture is now proved for non-Archimedean local
fields of residue characteristic not 2. Howe himself proved it in many cases and it
was recently completed in residue characteristic not 2 by Waldspurger [Wa2].
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The conjecture also makes sense in the Archimedean case and was proved by
Howe (we take up the Archimedean case in the next section).

Though the conjecture is technically speaking false for finite fields (as was
observed by Howe), it should essentially be true there too (this statement can be
made more precise).

It is a theorem of Kudla [Kul] that oo(7) has finite length and that if 7 is
supercuspidal then o,(7) is irreducible.

The following lemma is very useful in the study of Howe correspondence, i.e.
the correspondence given by conjecture 2.

LEMMA 4.4. For a dual reductive pair (G,G’) in Sp(W), the metaplectic cov-
ering Sp,,(W) splits on G unless (G, G") is the pair (Sp(U),O(V)) in Sp(U @ V),
with dim V' odd.

REMARK 4.5. The Lemma 4.4 is not true for the two sheeted cover of the
symplectic group in place of S%MW)

4.6 Examples of the Howe Correspondence. We will be looking at certain
examples of the Howe correspondence for the dual pair (Sp(W),O0(V)) C Sp(W ®
V), mostly for dim W = 2 in which case Sp(W) =& SL(2,k).

4.6.1. dimV = 1,q(z) = az?. Therefore O(V) = {£1} and has two represen-
tations. Both of these appear in the Weil representation and the corresponding
representation of §I(2, k) are on the even and odd functions on k. The represen-
tation of §I(2, k) on odd functions is supercuspidal, cf. [Gel], thm.5.19(c).

4.6.2. dimV = 2,q(z) = a- (norm form of a quadratic field extension K of k).
In this case SO(V) & K! = norm one elements of K, and O(V) is the semi-direct
product of K! with a group of order 2 acting on K! by x — z = z~!. Therefore the
representations of O(V) are constructed from the characters of K in the following
way:

(a) For a character p of K such that p? # l,Indi(lV) p is an irreducible two
dimensional representation of O(V'). Moreover the representations of O(V)
corresponding to characters p and p~! are the same.

(b) A character p of K! with p? = 1 extends to a character of O(V) in exactly
two ways.

The Weil representation of Sp(W ®V') can be realised on S(V), and by Remark
2.9, the restriction of the Weil representation of Sp(W ® V') to O(V) is the natural
action of O(V') on S(V'). From this it is easy to see that Ry(O(V)) consists of all
the representations of O(V') except the non-trivial representation of O(V') which is
trivial on SO(V). If the norm form of K is z? + dy?, then the Weil representa-
tion of Sp(W ® V) restricted to Sp(W) = SLs(k) is, by Remark 2.8, the tensor
product of the Weil representations of ﬁq(k) associated to the characters ¥, and
¥qa4. The Howe correspondence is therefore a way of parametrising the irreducible
constituents of this tensor product in terms of characters of K!. This example is
originally due to Shalika and Tannaka.

4.6.3. dimV = 3,¢(z) = a - (norm form on trace zero elements of a quaternion
algebra D). In this case O(V) = SO(V) x {£1}, and SO(V) = D*/k*, and the
Howe correspondence is between representations of §I(2,k) and D*/k* x {#1}
which is the local analogue of the Shimura correspondence. In this case we have
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the following results.

(a) In the case when D a quaternion division algebra, Ry, (D*/k* x {£1}) is
a set of representations of D*/k* x {£1} which goes bijectively to the set
of all irreducible representations of D*/k* under the restriction map. The
set Rw(é/i(l k)) consists of all genuine representations of 5‘1(2, k) (i.e. not
factoring through SL(2,k)) not accounted for by the Weil representation
on odd functions in 4.6.1 and which are square integrable but do not have
a ¥-Whittaker model.

(b) D= M(2,k). In this case Ry, (PGL(2,k) x {£1}) is a set of representations
of PGL(2,k) x {£1} which goes bijectively to the set of all irreducible
infinite dimensional representations of PGL(2, k) under the restriction map,
and Ry (S/'\L(2, k)) is the set of all genuine representations of 5’1(2, k) which
have a ¥-Whittaker model.

ProOOF. Here we prove the statement about Ry, (D*/k* x {£1}) only. Analo-
gous proof can also be given in the case of D = M(2,k) but in this case there are
some additional problems due to non-compactness, see [R-S].

The 3-dimensional representation of O(V) 2 Dj/k* x {1} can be identified
to the representation of Dy /k* x {£1} on the Schwartz space of functions on the
vector space of trace 0 elements of Dy on which D} acts by conjugation, and {+1}
by multiplication.

For a quadratic field K/k, let NK* be the normaliser of K* in D}, and let ¢x
be the character of order 2 of NK* which is trivial on K*. Let Hx be the index-2
subgroup of NK* x {£1} given by the kernel of the homomorphism ¢x x {£1} to
C*.

The orbits for the action of Df/k* x {£1} on the trace zero elements of Dy, are,
besides the origin, of the form [D} /k* x {£1}]/Hg for a quadratic field extension
K/k. Tt follows from the Mackey theory that the only representations of O(V)
appearing in S(V') are those representations of D} /k* x {£1} which are trivial on
Hy for some quadratic extension K/k. Therefore to prove that the map taking an
irreducible representation of D} /k* x {£1} appearing in S(V') to its restriction to
D} /k* is an injection, it suffices to prove that for any two quadratic extensions K
and L (not necessarily different) of &

Homp; [Ind Y. 1,Indys . 6] = 0.
We therefore have to prove that there are no non-zero functions f on D} such that
flagb) = ¢L(b)f(g) Yaoe NK*,ge Di,be NL*.

To prove this, let jx (resp. ji) be an element of NK* (resp. NL*) which is not in
K (resp. L), and observe that for any g € D}, jx - K Ng(jr - L)g~* # 0. This is
because j - K and g(j;,- L)g™! are 2-dimensional k-vector spaces, contained in the
3-dimensional space of trace zero elements of Dy. Therefore for all g € Dy, there
exists k' € jx - K,l' € j; - L such that gl’'g™! = k’, or ¢ = k'gl’"!. Therefore

flg)=f(K'gl'" ")y = ") f(g9) = —f(g) = 0.
Similarly to prove that the map taking an irreducible representation of D /k* x
{£1} appearing in S(V) to its restriction to Dj/k* is a surjection, it suffices to
prove that given any irreducible representation of Dy, there exists a quadratic field
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extension K/k such that the representation has a K*-invariant vector. This is a
well-known fact about representations of quaternion division algebras.
4.6.4. dimV = 4. Suppose that V' does not represent any zeros. In that case

SO(V) = [D* x D*|' = {(dy.d2) € D* x D*|Nd, = Nd,},

where D is the unique quaternion division algebra over k, which can be identified
to V as a quadratic space over k (with the quadratic form on V getting identified
to the norm form on D), and the action of (dy,dp) € [D* x D*|! is by = —
dlxdgl. Let GSO(V) = D* x D*, with the natural action on D. Clearly there are
exactly 2 orbits for the action of GSO(V) = D* x D* on D, one consisting of the
origin only, and the other all of D*. Therefore from the Mackey theory, the only
representations of D* x D* appearing in its natural action on S(D) are of the type
W @ W™ for W an irreducible representation of D*. The representation W & W™ of
GSO(V) extends in two ways to a representation of GO(V'), the group of orthogonal
similitudes, and exactly one of these appears in S(D). The representations of O(V)
appearing in S(D) are the restrictions of these representations. To conclude, for
every irreducible representation of D*, one can associate a sum of representations
of O(V) each of which occurs in the Howe correspondence with SLs, and conversely
every representation of O(V) which occurs in the Howe correspondence with SLo
occurs in this way.

4.6.5. The Howe duality conjecture is specially simple to state (though not
to provel) for a dual reductive pair of type 2. Take for example the dual pair
(GL(n,k),GL(m,k)). In this case one is looking at the representation of GL(n, k) x
GL(m,k) on S(M(n,m;k)), where M(n, m;k) is the space of n x m matrices over
k with the action of (4,B) € GL(n,k) x GL(m,k) on X € M(n,m;k) given by
AX*'B (this is the restriction of the metaplectic representation of Sp(nm,k) to
GL(n,k) x GL(m, k) up to twisting by a character). The Howe duality conjecture
in this case states that given an irreducible representation 7 of GL(n, k), there exists
a unique irreducible representation 7’ of GL{m, k) such that 7 @ 7’ is a quotient of
the GL(n, k) x GL(m, k) module S(M(n,m; k)). In this case a very explicit form
of the Howe duality conjecture is expected, which as far as this author could find
out, is not known. If n < m, and if ¢, and o, are the representations of the Weil-
Deligne group associated by the Langlands correspondence to 7 and 7’ respectively,
then one expects that o, = v(™~™"/26* @ y~"/2_ where v is the character |z| on
k*. In particular, if m = n, one expects that the Howe correspondence is simply
taking the dual representation.

REMARK 4.7. Howe correspondence for the case when dimV = 3 produces
a correspondence between representations of D*/k*, for D a quaternion division
algebra, and representations of 5’1(2, k), and also between square integrable rep-
resentations of PGL(2, k) and representations of 5’1(2, k). On the other hand one
has the Jacquet-Langlands correspondence between representations of D*/k* and
PGL(2,k) (which does not depend on the additive character ). Therefore given
a finite dimensional representation of D*/k* one can construct representations of
SL(2,k) in two different ways: either directly using Howe correspondence or first
using Jacquet-Langlands correspondence and then Howe. It is a basic observation
of Waldspurger that these two representations of S/’E(Q, k) are different (as the first
one does not have a -Whittaker model whereas the second one has).
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REMARK 4.8. We saw in Example 4.6.2 above that for dimV = 2, R,,(O(V))
consists of all the representations of O(V) except the non-trivial representation of
O(V) which is trivial on SO(V'). The Howe lift of this representation to Sp(W) for
dim W = 4 is a non-zero super-cuspidal representation, and is related to Srinivasan’s
representation 8,y of Sps(F,). This representation occurs as the local component
of a cuspidal automorphic representation on Sp; which contradicts Ramanujan
conjecture on Spy.

REMARK 4.9. As in the previous remark, one can more generally ask how does
the Howe lift vary as we fix the orthogonal group O(V) but change the symplectic
group Sp(W). Tt is a theorem of Kudla [Kul] that if we start with a supercuspidal
representation of O(V) then there is a symplectic space Wy such that the Howe lift
to Sp(Wp) is non-zero supercuspidal and the Howe lift to all symplectic spaces of
smaller dimensions are zero. Moreover, for a symplectic space W with dim W >
dim Wy, the Howe lift to Sp(W) is non-zero and non-supercuspidal and can be
described explicitly in terms of parabolic induction from the Howe lift to Sp(Wy).
Kudla has a similar theorem when one fixes W but instead changes V' in the same
Witt class. Both results are local analogues of Rallis’ global theory of towers of
theta series liftings [Ral].

5. Howe conjecture in the Archimedean case

The Howe conjecture makes sense in the Archimedean case too. In this case one
works with the Harish-Chandra module of the unitary metaplectic representation
defined on square integrable functions on a maximal totally isotropic subspace by
formulae exactly similar to the one in the non-Archimedean case. We give below the
Harish-Chandra module in the Fock model which is more convenient to work with.
We will work with the two sheeted covering Sp(n, R) of Sp(n,R) and the inverse
image U(n) of U(n) C Sp(n,R) as the maximal compact subgroup of Sp(n,R).
Let sp be the Lie algebra of g;)(n,R) and u, the Lie algebra of U(n). One has the
Cartan decomposition

sp=ud®p=sp’! ©sp20 @ sp”2,

with u = sp"!. The Fock model of the Weil representation of (sp, U(n)) is realised
on the space S of polynomial functions on C", with representations of u, p>9,p%2
given as follows.

(1) u operates via the differential operators

a 1 .
Zla—zj +’2_6‘L]7 1 Slv.] < n,

(2)

2) p?9 operates by multiplication by ziz;,1 <4,7 <n, and
(3) p?

operates via the differential operators
32
8z102j ’

1<i,j<n.

The action of U (n) is the standard representation of U/(n) on polynomials on
C™ twisted by a character of U(n) which does not factor through U(n).
Let now (G, G’) be a dual reductive pair in Sp(n) with maximal compact sub-

group K in G and K’ in G’ such that K - K’ is contained in ﬁ(n) and let g be
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the Lie algebra of G, and g’ of G’. For any irreducible, admissible (g, K)-module
(m,Va), let S() and S[n] be defined as in the non-Archimedean case but now tak-
ing homomorphisms in the sense of (g, K)-modules. Then Howe proves in [H2] that
just as in Lemma 4.2,
S[r] 2 7 ® op(r)

as (g, K) x (¢, K’)-modules for a certain finitely generated representation og(7)
of (g’, K') on which the centre of the universal enveloping algebra of g’ acts by
a character. Furthermore, the representation oo(7) has a unique irreducible quo-
tient o(r), and the mapping = — o(r) is a bijective correspondence between the
irreducible admissible representation of (g, K) occuring in the metaplectic repre-
sentation and the irreducible admissible representation of (g’, K’) occuring in the
metaplectic representation. In fact Howe proves a much more precise statement
which we take up now; we will follow his fundamental paper on the subject [Ho2]
very closely to which the reader is referred to for all the proofs.

REMARK 5.1. The simplest example of Howe duality in the real case occurs
for the compact pair (U(n),U(m)). In this case the metaplectic representation of
Sp(nm) restricted to U(n) x U(m) is essentially the representation of U(n) x U(m)
on polynomial functions on M(n,m;C) with the obvious action. If n < m, for any
irreducible representation ¢ of U(n), there is a unique representation 7 of U(m)
such that o ® 7 appears in the space of polynomial functions on M(n,m;C).

For any irreducible representation p of a compact subgroup L of U (n), let
deg(p) denote the smallest integer d such that u appears in the space S¢ of poly-
nomials of degree d under the metaplectic representation defined above.

We now discuss Howe duality in the case when one of the groups, say G, in the
dual reductive pair (G, G’) is compact. In this case the symmetric space associated
to G’ is hermitian symmetric, and the Cartan decomposition

sp=udp=sp-! @sp?° @ p°?
restricts to give the Cartan decomposition
g/ — PI @ p/ — E/ o g/2,0 o) 910’2-

Let
H(G)={PeS|X-P=0 forall X e€g*?%}.
The vector space H(G) is called the space of harmonic polynomials for the compact

group G. Clearly, H(G) is invariant under G and K’. With this notation, we have
the following theorem due to Howe, cf. [H2] and [H3].

THEOREM 5.2. Let (G,G’) be a dual reductive pair with G compact, and let o

be a finite dimensional irreducible representation of G. Then we have the following.

(a) The o-isotypic part H(G), of H(G) is precisely the o-isotypic part in S3°&(),

(b) The representation H(G), of G x K’ is irreducible.

(c) If we write H(G), = 0 ® 7/, for an irreducible representation " of K’,
then o — 1’ is an injective map from the set of irreducible representations
of G appearing in the metaplectic representation to the set of irreducible
representations of K'.

(d) The o-isotypic part S5 of S is an irreducible representation ofé X é', and
is therefore of the form o ® T for an irreducible representation T of é', and
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one has
So =U(9') - H(G),,

where U(g') is the universal enveloping algebra of g’.

(€) The representation T of G' contains the representation 1’ of K’ on which
9'%2 acts trivially. Therefore T is the unique highest weight module of g
containing 7' as the highest K'-type.

This theorem has been used by Howe to prove the general duality for real
groups, to which we come later, using the following structural theorem about dual
reductive pairs.

THEOREM 5.3. Let (G,G’) be a dual reductive pair in Sp(n) with mazimal
compact subgroups K and K’ respectively, which are assumed to be in U(n). For
any subgroup H of Sp(n), let Z(H) denote the centraliser of H in Sp(n), and let
H, = HNU(n), which will be assumed to be a mazimal compact subgroup of H.
Then we have the following.

(a) The pair (K, Z(K)) is a dual reductive pair, and similarly (K', Z(K")) is a
dual reductive pair.

(b) The pair (Z(K)y, Z(K').) is a dual reductive pair in which both the groups
Z(K)y, and Z(K'), are products of compact unitary groups.

EXAMPLE 5.4. For the dual reductive pair (O(p, q), Sp(n)) with pg # 0, the
maximal compact subgroup of O(p, q) is O(p) x O(q) whose centraliser in Sp(n(p +
q)) is Sp(n) x Sp(n). The maximal compact subgroup of Sp(n) is U(n) whose
centraliser in Sp(n(p + q)) is U(p, q).

The Howe duality for real groups has subordinate to it a duality correspondence
between the representations of their maximal compact subgroups which appear in
the metaplectic representation. Here is the theorem on the correspondence between
the irreducible representations of maximal compact subgroups.

THEOREM 5.5. Let (G,G’) be a dual reductive pair with K as a mazimal com-
pact subgroup of G and K’ as a mazimal compact subgroup of G’. Then for an
irreducible representation o of K, there exists a unique irreducible representation
o' of K" such that H(K), "H(K’)sr # 0. Moreover, if H(K), NH(K")s» # 0, then
H(K)e NH(K )y 20 @0’ as a K X K'-module.

REMARK 5.6. In the cases such as (O(p, q), Sp(n)) or (U(p,q),U(r, s)), where
K is isomorphic to K; x K3, and the centraliser of K is isomorphic to G’ x G,
with (K;,G’) and (K2, G’) themselves dual reductive pairs, the correspondence of
Theorem 5.5 between representations of K and K’ can be described in terms of
the correspondence of Theorem 5.2(c) as follows. Let o1 ® o3 be a representation
of K = K, x K,. If the representations of K’ associated by Theorem 5.2(c) to
representations ¢y and g5 of Ky and K, are 7{ and 7; respectively, then the rep-
resentation of K’ associated to the representation o; ® oo of K is the irreducible
representation in the tensor product 7{ ® 75 whose highest weight is the sum of
highest weights of 7{ and 3.

For an irreducible admissible (g, K)-module =, let deg(w) denote the smallest
degree of any K-type whose image is non-zero under the surjection from S to S|x].
Then the following is the more precise version of the Howe correspondence for real
groups.
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THEOREM 5.7. Let 7 be an irreducible admissible representation of (g, K), and
let u be a representation of K appearing in m and having degree deg{u) = deg(n).
Then the representation o(n) of (g', K’) obtained by the Howe correspondence from
7, contains the representation ' of K' which is such that H(K), N H(K"), # 0.
Moreover, the representation o(rn) does not contain any representation of K' other
than ' which appears in H(K),.

REMARK 5.8. For a dual reductive pair (G, G’) in Sp(n,R) with one of G or
G’ compact, the Howe correspondence has been explicitly worked out by Kashi-
wara and Vergne in [K-V]. In this case, as already noted in theorem 5.2, all the
representations are highest weight modules.

6. The spherical case

By an unramified classical group over a non-Archimedean local field k, we will
mean one of the following groups.

(a) The group GL(n, ) where ¢ is an unramified extension of k.

(b) The unitary group of an e-hermitian space W over an unramified extension
¢ of k, with a lattice £ in W with £+ = £ (for a character v of £ such that
¥(Op) = 1 but Y(r~10,) £ 1).

The subgroup GL(n, Oy) of GL(n, £) in case (a), and the stabiliser of the lattice
L in case (b) will be called standard maximal compact subgroups.

For £L=37_, Oke; ® > 1| Ok f; where {e;, f;} is a symplectic basis of W, i.e.
(eisej) = 0,{fi, f;) = 0, (es, f;) = &, it is clear that L1 = L. Therefore Sp(W) is
an unramified classical group, and we let K be the stabiliser of L.

Given a dual reductive pair (G,G’) in Sp(W) consisting of unramified pairs,
we can assume that G has a standard maximal compact subgroup X, and G’ has a
standard maximal compact subgroup K’ such that X - K’ is contained in K.

From section 2.6, we know that the metaplectic covering of Sp(W) splits on
K. Therefore K can be thought of as a subgroup of G, and K a subgroup of G
Let Hy-1 1(G//K) denote the space of K-bi-invariant functions f on G which are
compactly supported modulo C*, such that f(zg) = ¥~!(2)f(g) for all z € C*.
val(é/ /K) is an algebra under convolution (the integral in the convolution is
over G /C*), and operates in a natural way on representations of G with central
character .

THEOREM 6.1(HOWE). Given a representation w ofCN}’ with a K fized vector,
either there is no representation ©’ of G' such that m @ is a quotient of the Weil
representation (wy,S) of %(W), or there is exactly one representation ©' of G'
such that 1@’ is a quotient of the Weil representation (wy,S) of S?)(W), and this
7' has a K' fized vector. Moreover, the algebras Hw—l(é//K), and 'Hw_l(CN}"//IC’)
operate with the same ring of endomorphisms on the space of K- K' fized vectors of
S.

7. Seesaw pairs

We introduce in this section the important concept of seesaw pairs.due to
Kudla.
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DEFINITION 7.1. A pair (G,G’) and (H, H') of dual reductive pairs in a sym-
plectic group Sp(W) is called a seesaw pair if H C G and G’ C H'.
It is generally pictorially depicted by the diagram

G H

H G’

where vertical arrows are inclusions and slanted arrows connect members of a dual

reductive pair.
EXAMPLES 7.2.

7.2.1.
Sp(Wy&W,)  O(V) x O(V)
>
Sp(Wh) x Sp(Wy)  O(V)
2 OVi®Va)  Sp(W) x Sp(W)
1 2 p
>
O(Vi) x O(Va)  Sp(W)
7.2.3.
UVieVy)  UW)xUW)
>
UVi) xU(Vz)  UW)
7.2.4.

SpWi @ W)  GL(V)
>

GL(W)) o(V).
Let (G,G’) and (H, H') be a pair of dual reductive pairs in Sp(W) forming a

seesaw pair:
G H

H ¢
Let 7y be in Ry (H) and 7 in Ry (G'), and recall the notation oo(7y) and
oo(mg+) introduced before Conjecture 2.

LEMMA 7.3. With notation as above,
HOIIlH [Uo(ﬂ'Gl), 7rH] = Homgz [0’0(7!'1.1), ﬂ'Gl].
PROOF. Let the Weil Representation of Sp(W) be realised on S. Clearly,

Homp g[S, 71 ® mgr] = Hompy x g/ [00(7g) ® Tor, ma @ Ter ]
= Hompyoo(7gr), TH].

Similarly,

Homp ' [S, 7y ® 7] = Hompy e [rg ® oo(7y), 7y ® 76/]

= HOIIIG/ [0’0(7!'1.1),71’@/].

This proves the lemma.
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REMARK 7.4. To see how seesaw pairs are used in practice, let us look at the
following seesaw pair in the real case

O(p,q)  Sp(V) x Sp(V)
>

O@p) xO(g)  Sp(V).

Let o be a representation of Sp(V), and 1 ® 15 of O(p) x O(gq). As remarked
earlier, since O(p) and O(q) are compact groups, the Howe lifts of 7, and m are
known by [K-V]. By Lemma 7.3, oo(0) contains 71 ® 72 if and only if ¢ is a
quotient of oo(71) ® oo(72). This relates the Howe lifting problem to a problem
about tensor product of representations, and information about either one therefore
gives information about the other one.

Here is an example from [HK]| who use the following seesaw pair to give the
decomposition of a discrete series representation of Sp(2) restricted to Sp(1) x Sp(1).

Sp2)  0(2,2) x 0(2,2)
>

Sp(1) x Sp(1) 0(2,2)

Towards the analysis by Harris and Kudla on the decomposition of a discrete
series representation of Sp(2) restricted to Sp(1) x Sp(1), we simply note here that
the Howe correspondence between an orthogonal group and a symplectic group is
known by the work of Adams [Ad1], and one can calculate the tensor product of
two representations of O(2,2) by the work of Repka [Re].

8. The theta correspondence

Let k be a number field, and A the adele-ring of k. For G an algebraic group
over k, let G(k) denote the group of k-rational points of G, and let G(A) denote
the adelic points of G. Let W be a symplectic vector space over k, and H(W) the
associated Heisenberg group which is an algebraic group over k.

Let W = W1@W); be a complete polarisation of W over k. Let S(W1(A)) denote
the space of Schwartz-Bruhat functions on W1 (A). Given a character ¢ : A/k — C*,
one can construct a representation of H(W)(A) on S(W1(A)) on which the centre
of H(W)(A) (which is A) operates via v

pp(w) f(z) = flz +wi) for all z,w; € W1(A),
py(w2) f(2) = P((z,w2)) f(z) for all z € Wi(A),w; € Wa(A),
po() f(z) = () f(z) forall te A ,ze Wi (A).

Define a linear functional © on S(W;(A)) by
O(p)= Y, ¢(z) for ¢eS(Wi(A)).
zeW, (k)
The following lemma is easy to prove.

LEMMA 8.1. The series defining ©(¢p) converges absolutely, and ¢ — O(p)
defines an H(W)(k)-invariant linear form on S(W1(A)).
The following basic theorem is due to Weil [We].
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THEOREM 8.2. The space of H(W)(k)-invariant forms on S(W1(A)) is gener-
ated by ©.

As in the local case, Sp(W)(A) operates on H(W)(A), and by the uniqueness
of the representation of H(W)(A) with central character 1, we obtain a projective
representation of Sp(W)(A) via intertwining operators. This gives a C*-covering
of Sp(W)(A), denoted by Sp(W)(A), such that for each place v of k one has the
following commutative diagram

0 c* Sp(W)(k,) —— Sp(W)(k,) — 0
0 c* Sp(W)(A) ——— Sp(W)(A) — 0.

We note that Sp(W)(A) is not the adelic points of an algebraic group over k, so the
notation is not very appropriate but is customary. The global metaplectic group
comes equipped with a representation on S(W7j(A)), called the global metaplectic
or Weil representation. ‘

For any k-algebraic subgroup H of Sp(W), let H(A) denote the inverse image
of H(A) in .’S:;)(W)(A), and let H(k) denote the inverse image of H(k) in S';)(W)(A)

Since there is an action of the semi-direct product H(W)(k) x §1,)(W)(k) on
S(W1(A)), it is clear that for all g € S‘}/)(W)(k), ¢ — O(go) is also an H(W)(k)-
invariant form on S(Wy(A)). Therefore by the uniqueness Theorem 8.2 above,
O(gp) = AgO(9) for some A\, € C*. Clearly g — A, is a character on §13(W)(k),
which gives the unique splitting of the exact sequence

0 — C* — Sp(W)(k) — Sp(W)(k) — 0.

Because of this splitting, we can think of Sp(W)(k) as a subgroup of Sp(W)(A),
and for any k-algebraic subgroup H of Sp(W), H(k) can also be thought of as a
subgroup of H (A). The reader must be cautioned here that if the global metaplectic
covering of Sp(W)(A) splits on H(A), it is not a priori clear that one can choose a
splitting such that the image of H(A) contains H(k). The problem arises of course
because there may not be a unique splitting of H(A); see [Ge2] for H a unitary
group.

Given any function ¢ € S(W;(A)), the following formula defines a function 6,
on Sp(W)(k) \ Sp(W)(A) '

05(9) = O(g- 4).

The function 8, is known to be an automorphic function on Sp(W(k)) \ Sp(W)(A)
(i-e., it is a slowly increasing, K-finite, Z-finite function where Z is the centre of
the universal enveloping algebra of Sp(W)(R)). It has the property that 84(hg) =
Ore(g)-

We are now ready to define the so-called theta correspondence which defines
a correspondence between automorphic forms on one member of a dual reductive
pair to those of the other member of the dual reductive pair.

-Let (G,G’) be a pair of algebraic groups over k which form a dual reductive
pair in Sp(W). Restricting the function 8, on Sp(W)(A) to G(A) x G'(A), we
get a function 64(g,g’) on G(A) x G'(A), called the theta-kernel. Now let A be
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an irreducible space of cusp forms on G(k) \ G(A). For f € A, define a function
85(f)(g') on G'(k) \ G'(A) by

0¢(f)(g’)=/ _ B4(g,9") f(g)dg.
G(k\G(A)

The span of 6,4(f) where ¢ runs over S(W;(A)) is a G'(A)-invariant space of func-
tions. From the property 64(hg) = 6rs(g) noted above, it follows that if f; and
f2 belong to the same irreducible representation of G(A), the span of 84(f,) and
04(f2) are the same. The span of 84(f) as f runs over A, and ¢ runs over S{W;(A))
is called the 6-lift of the cuspidal representation .4, and will be denoted by (A, ¢).
This space is not necessarily irreducible, and any irreducible sub-quotient of it is
called a representation obtained by theta correspondence.

8.3 Examples of the theta Correspondence. We will be looking at certain
examples of the theta correspondence for the dual pair (Sp(W),O(V)) C Sp(W ®
V), when dim W = 2 in which case Sp(W) = SL(2, k).

8.3.1. dimV = 1,q(z) = ax?, k = Q. Automorphic forms fg = [] f, on O(V)
correspond bijectively to finite subsets S of even cardinality of the set of places of
Q such that f,(—1) = —1 if and only if v € §. Theta lift of fs is a modular form of
weight J or 3 depending on whether co & S, or 0o € S. If S is the empty set, then
the theta lift of fg for an appropriate choice of the function ¢ is the usual theta
function on the upper half plane: 8(z) =3 ., e™n’z If S is not empty, the theta
lift of fs is a cusp form. See [Gel] for details on all this.

8.3.2. dimV = 2,¢q(z) = a - (norm form of a quadratic field extension K of k).
An automorphic form on O(V) is given by a grossencharacter on the idele class
group Jx /K*, and the theta lift constructs an automorphic form on GLy(k). This
construction in the case of k = QQ goes back to Hecke and Maass.

8.3.3. dimV = 3,¢(z,y, 2) = 22 — y2,SO(V) ® PGL,. The theta lift in this
case from .ﬁg to PG L4 is the Shimura lifting which associates a modular form of
weight n — 1 to a modular form of half-integral weight 7.

8.34. dimV = 4. If V is anisotropic over k, then the theta lifting is related
to the Jacquet-Langlands correspondence which constructs automorphic forms on
G L, from automorphic forms on quaternion division algebras.

If V has Witt index 1, then there is a unique quadratic extension K/k over
which V splits. In this case the theta lifting is the base change from G L4 over k to
GLp over K. If k = Q, and K is a real quadratic field, it is the Doi-Naganuma lift.

8.4 Global Howe Conjecture. Let (G,G’) be a dual reductive pair and
T = ®7,, a representation of C?(A). One knows that at almost all the places v
of k, the group G is an unramified classical group and the representation m, has
a fixed vector under a standard maximal compact subgroup of G(k,). Therefore
from Theorem 6.1, if the Howe lift o(r,) of 7, is non-zero, it also has a fixed vector
under a standard maximal compact subgroup of G'(k,). We can therefore form
the restricted direct product of the representations o(r,), to be denoted by o(w).
Howe had conjectured that if = is an automorphic representation of G then o(r) is
also automorphic. This turned out to be false as was shown by Piatetski-Shapiro
in [Ps], following the work of Waldspurger. One hopes that this conjecture, though
not entirely correct, is basically correct. Possibly, the problems are related to L-
indistiguishability and the counter-example of Piatetski-Shapiro suggests that even
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though o(7) may not be automorphic, there may be a representation ¢’(m) which
differs from o() in only finitely many places and is automorphic.

On the positive side, we have the following (folklore) theorem for which we
refer to [GRS] for the proof.

THEOREM 8.5. Let (G,G’) be a dual reductive pair and m = @, a cuspidal
automorphic representation of G such that O(m, ) consists of cusp forms on é’(A).
Then

(i) ©(m, o) is an trreducible representation ©’' = 7, of G'(A).

(ii) Al the local representations w) are the Howe lifts of m, (for the character
¥y); in particular the global Howe conjecture is true in this case.

(iii) The theta lift ©(n',¢) of ©’ is non-zero. If it is cuspidal, it is equivalent to
.

REMARK 8.6. To see a situation where ©(, 1) is known to consist only of cusp
forms, we recall a theorem of Rallis [Ral] (see also [H-Ps]) that for the dual pair
(O(V), Sp(n)), 7 a cuspidal automorphic representation on O(V), ©(r, 1) consists
only of cusp forms if and only if the theta lift of 7 to Sp(n — 1) is zero for the dual
pair (O(V), Sp(n — 1)) .

The following fundamental theorem of Waldspurger [Wal] gives criterion for
the non-vanishing of theta lifts in the simplest situation of the dual reductive pair
(0(2,1),SL,). As we saw in 4.6.3, there is no loss of information in going from
0(2,1) to SO(2,1) = PGLy, and this is what Waldspurger considers: the pair
(PGLs, SLy).

THEOREM 8.7.

(a) The theta lift of an automorphic cuspidal representation ™ of PG L2 to SL,
is non-zero if and only if L(m, 3) # 0.

(b) The theta lift of an automorphic cuspidal representation = of PGL4 to SL,
s orthogonal to all the automorphic forms on .Sf'fz arising from the pair
(O(1), SL,) (and for any choice of the additive character v) where O(1) is
the orthogonal group in one variable.

(c) Let o be a cuspidal automorphic representation of 5’12 orthogonal to all the
automorphic forms on SL, arising from the pair (O(1), ﬁg) (and for any
choice of the additive character ), then the theta lift of o to PGL, is an
irreducible cuspidal representation which is non-zero if and only if o has a
Whittaker model for 1~'. Moreover, the condition that o has a Whittaker
model can be interpreted as a non-vanishing of a certain L-function at %

We now come to the global analogue of Lemma 7.3 about seesaw pairs. Before

we state it, let us introduce the notation (f;, fo)g = fC*E(k)\E(A) f1fode where E

is a k-algebraic subgroup of Sp(W), and f}, f» are functions on E(k) \ E(A) with
the same unitary central characters. Let

G H
>

~H/ Gl

be a seesaw pair. The proof of the following analogue of Lemma 7.3 is clear and
will be omitted.
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LEMMA 8.8. For f, a cusp form on H' and fy a cusp form on G’, and an
arbitrary ¢ € S(W1(A)), we have

(Bo(f1), f2yor = (f1,06(f2)) Hr,

where 0,4(f1) which is a function on H (A) has been restricted to G'(A), similarly
64(f2) which is a function on G(A) has been restricted to H'(A).

This is an identity between inner products of automorphic forms on different
groups, and is often useful to relate L-functions of automorphic forms to certain
period integrals involving Eisenstein series (which arise as theta lifts of certain
automorphic forms by the Siegel-Weil theorem). We do not go into the details on
this but refer to [Ku2] for several examples.

9. Questions

Here we want to point out some of the main open problems of the theory that
we have been discussing.

9.1 Local question. As the Howe conjecture is now basically proved (ex-
cept in residue characteristic 2 case), the question arises what exactly is the Howe
correspondence in terms of familiar parametrisations of representations. For exam-
ple, one would like to understand the Howe correspondence in terms of Langlands’
functoriality. More precisely, let (G,G’) be a dual reductive pair and assume for
simplicity that the metaplectic covering of the corresponding symplectic group splits
over G x G'. Let m be an irreducible representation of G, and ¢ (r) the Howe lift of 7
(which of course depends on the additive character). Then the question is whether
there is a mapping pr : “G — LG’ such that the representation o(m) of G’ lies in
the L-packet of the lift of the representation m of G under this map. Of course for
a general pair (G, G’), there may not be any non-trivial maps of G to LG, so this
naive question is meaningless but one might hope that there are non-trivial maps
from endoscopic subgroups “H of G to G’, and the representation 7 comes from
an endoscopic lift of a representation of H. So we can modify our naive question to
ask that if o(m) is non-zero, whether there is an endoscopic subgroup L H, of LG
(more precisely an endoscopic data) such that the representation 7 is an endoscopic
lift of a representation of H, with Langlands parameter o, with values in © H,, and
a mapping pr : 'H, — LG’ such that () lies in the L-packet of p.(c,). Even
this conjecture seems to be false as two representations of G which are in the same
L-packet might lift to representations of G’ which are not in the same L-packet.
But the question is expected to have an affirmative answer if one replaces L-packets
by the bigger Arthur packets. A related question is to understand how does the
Howe correspondence change when one replaces G or G’ by groups which are inner
forms of these. See the work of J. Adams in [Ad2] for precise conjectures and
results in the real case. See also the work of Rallis [Ra2] and the paper of Gelbart
in this volume [Ge2] concerning this question. For the dual pair (GL(n), GL(m)),
see 4.6.5 for what is expected.

9.2 Global question. Let k be a global field, (G,G’) a dual reductive pair
over k, and m = ®m, a cuspidal automorphic representation of é(A) It is clear
that if O(m, ) # 0, then for all the local components m, of 7, the Howe lift (with
respect to 3, ) is non-zero. The main question concerning the global theory is to find
necessary and sufficient conditions for ©(x, ) to be non-zero. If we assume that
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7 = ®n, is such that the Howe lift of =, is non-zero for all v, then in many cases
there is a condition involving global L-function which controls whether or not there
is an automorphic representation 7’ = ®=/, in the same global L-packet as 7 (i.e., 7,
and 7, belong to the same L-packet for all v and are equal for almost all v) whose
theta lift is non-zero. The work of Waldspurger [Wal] recalled in Theorem 8.7
above, and the subsequent work of Rallis [Ra3] are in this direction. However, in
many other cases, there is no such condition involving global L-function and there
is an automorphic representation 7’ in the same global L-packet as m whose theta
lift is non-zero as soon as all the local Howe lifts are non-zero. The situation is not
clear at the moment. See also the work [GRS] where rather complete results have
been obtained for the theta lifts of global L-packets for the pair (U(2,1),U(1,1)).

References

[Ad1l] = Adams, J., Discrete spectrum of the reductive dual pair (O(p, q), Sp(2m)), Inv. 74 (1983),
449-475.

, L-functoriality for dual pairs, Astrisque 171-172, Orbites Unipotentes et Repré-
sentatlons 2 (1989), 85-129.

[Gel] Gelbart, S., Weil’s representation and the spectrum of the metaplectic group, LNM 530,
Sprmger—Verlag, 1975.

[Ad2]

[Ge2] ____, On theta series liftings for unitary groups, This volume.

[GRS] Gelbart, S., Rogawski, J. and Soudry D., On periods of cusp forms on U(3) (to appear).

[HK] Harris, M. and Kudla, S., Arithmetic automorphic forms for the nonholomorphic discrete
series of GSp(2), Duke Math J. 66 (1992), no. 1, 59-121.

[Hol] Howe, R., ©-series and invariant theory, in Proc. Symp Pure Math., vol. 33, part 1,
AMS, 1979, pp. 275-286.

[Ho2] , Transcending classical invariant theory, J. of the Amer. Math. Soc. 2 (1989), no. 3,
535 552

[Ho3] __—_, Remarks on classical invariant theory, Transactions of AMS 313, vol 2, 1989,
pp. 539-570.

[H-Ps] Howe, R. and Piatetski-Shapiro, 1., Some ezamples of automorphic forms on Spy, Duke
Math. J. (1983), 55-106.

[K-V] Kashiwara, M. and Vergne, M., On the Segal-Shale-Weil representations and harmonic
polynomials, Inv. math. 44 (1978), 1-47.

[Kul] Kudla, S., On the local theta correspondence, Inv. Math. 83 (1986), 229-255.

[Ku2] _____, See-saw dual reductive pairs, Taniguchi Symposium, Katata 1983, Birkhauser,
1984, pp. 244-268.

[MVW] Moeglin, C., Vigneras, M.-F. and Waldspurger, J.L., Correspondence de Howe sur un’
corps p-adique, LNM 1291,Springer-Verlag, 1987.

[Ps] Piatetski-Shapiro, 1., Work of Waldspurger, Lie Group Representations II; LNM 1041,
1984, pp. 280-302.

{Ral] Raliis, S., On the Howe duality conjecture, Comp. Math. 51 (1984), 333- 399

[Ra2] ____, Langlands functoriality and the Weil representation, Amer. J. Math. 104 (1982),
469-515. ‘

[Ra3] , L-functions and the oscillator representation, LNM 1245, Springer-Verlag, 1988.

[R-S]  Rallis, S. and Schiffmann, G., On a relation between SLo cusp form and cusp form on

tube domains associated to orthogonal groups, Trans. Amer. Math. Soc. 263 (1981), 1-58.
[Re] Repka, J., Tensor product of unitary representations of SLz(R), Amer. J. Math 100
(1978), 747-774.
[Wal] Waldspurger, J.L., Correspondence de Shimura, J. Math. Pures Appl. 59 (1980), 1-133.
[Wa2] , Démonstration d’une conjecture de dualité de Howe dans le cas p-adique, p # 2, in:
Festschrift in honor of Piatetski-Shapiro, Israel Math. Conf. Proc., vol 2, 1990, pp. 267~

324.




WEIL REPRESENTATION, HOWE DUALITY, AND THE THETA CORRESPONDENCE 127

[We] Weil, A., Sur certains groupes d’opérateurs unitaires, Acta. Math. 111 (1964), 143-211.

ScHooL oF MATHS, TATA INSTITUTE OF FUNDAMENTAL, RESEARCH, COLABA, BOMBAY—
400005, INDIA

E-mail address: dprasad@tifruax.bitnet





