

Oleg Mitrofanov University College London

Terahertz research at UCL

High spatial resolution THz imaging

O. Mitrofanov

Optoelectronics for THz applications A. Seeds, C. Renaud

Novel THz devices

THz applications for scientific research Sir M. Pepper

Waveguide mode mapping

Appl. Phys. Lett. 94, 171104 (2009 Opt. Express **18**, 1898 (2010) JOSA B **1**, (2013)

Surface wave excitation

J. Infrared Milli. Terahz Waves **32**, 1031 (2011)

Surface wave imaging near strongly focused THz beams

Opt. Express 19, 3212 (2011)

Antenna analysis

Opt. Express 20, 16023 (2012)

THz spectroscopy on small scale

Opt. Express 20, 6197 (2012)

THz high-resolution imaging – near-field microscopy

Spatial resolution

- better than diffraction limit

- 10 micron or better is can be achieved (0.1 - 3 THz)

B. Hu and M. Nuss (AT&T 1995)

Mitrofanov et al. (2001)

UCL

Terahertz waveguide and waveguide characterization technologies

Overview of THz waveguide challenges and solutions

THz waveguide characterization: near-field imaging, time-domain analysis

Dielectric-lined hollow metallic waveguides

Application and integration of THz waveguides

Transmission losses – absorption in dielectrics, Ohmic losses

Fabrication – material challenges

Characterization – THz sources, THz detection and imaging systems

Integration into THz systems – efficient coupling

[•]UCL

high loss (10-100 dB/m) at THz frequencies

THz waveguides – transmission loss and dispersion

IEEE Transactions on THz Science and Technology, 1, 124 (2011)

Terahertz absorption in air due to water vapour

UCL

[Transmission spectra obtained from spectra.iao.ru/en/en/home/ for 2.59% H₂O.]

Terahertz absorption in air

167 m, RH 7%

UCL

RH 50%

Waveguides with hollow regions

Closed walls – for dry air purging

Minimal interaction with waveguides walls – large core

Multimode waveguides - mode management, efficient coupling

DCL

Characterization of THz waveguides

THz time-domain spectroscopy system

Required: Modified THz-TDS for WG studies

≜UCL

- long wg samples (10-100cm)
- mode interference
- mode-dependent coupling

Wave mapping – near-field probe

Transparent substrate

LT GaAs PC antenna

APL. 77, 3496 (2000)

Near-field waveform detection

Waveguide field mapping

Space-time mapping

- near-field time-resolved waveform detection

Spatial mode mapping

- near-field imaging of the waveguide output end

DCL

Appl. Phys. Lett. 94, 171104 (2009)

Space-time mapping

Appl. Phys. Lett. 94, 171104 (2009)

-1000

0

5

10

Time (ps)

15

2.5

3

20 1

produces periodic variations in the THz-TDS spectrum

Mitrofanov et al. Appl. Phys. Lett. 94, 171104 (2009)

2

Frequency (THz)

1.5

Fourier transform of space-time maps

Space-time mapping

Mode profile mapping

Mode profile mapping – temporal mode overlap

x (μm)

Appl. Phys. Lett. 94, 171104 (2009)

Selective excitation

Alignment time

x (µm)

Dielectric-lined hollow metallic waveguides

Dielectric-lined hollow cylindrical metallic waveguides

Miyagi and Kawakami, JLT (1984)

Core d = 1 - 4 mm

Opt. Lett. 32, 2945-2947(2007) Appl. Phys. Lett. 93, 181104 (2008) J. Appl. Phys. 104, 093110 (2008) Optics Express 18, 1898 (2010) JOSA B 1, 134 (2013)

Dielectric-lined hollow cylindrical metallic waveguides

Opt. Lett. **32**, 2945-2947(2007) *Appl. Phys. Lett.* **93**, 181104 (2008) *J. Appl. Phys.* **104**, 093110 (2008) *Optics Express* **18**, 1898 (2010)

CW (FIR laser, 2.5 THz) far-field mode imaging

Bor D

iameter

1.7 mm / no PS

2.2 mm / no PS

2.2 mm / 2.5 μm

2.2 mm / 4.7 μm

1.6 mm / 10.0 μm

1.6 mm / 9.8 μm

2.2 mm / 11.3 μm

Dielectric-lined hollow cylindrical metallic waveguides

Electric field, horizontal component. (each image is 2mm x 2mm)

Dielectric-coated WGMetallic WGImage: Dielectric-coated WG<

Transmission loss is reduced to ~1 dB/m (from ~3dB/m in MWG)

Linearly-polarized mode

Mode structure is ideal for free-space coupling: >80% (experiment)

Appl. Phys. Lett. 94, 171104 (2009)

Transmission Loss at 2.5THz

Opt. Lett. **32**, 2945-2947(2007) *Appl. Phys. Lett.* **93**, 181104 (2008) **UCL**

Time-resolved mode profile imaging

IEEE Trans THz Science and Technology, 1, 124 (2011)

Experiment: Mitrofanov and Harrington, OpEx (2010)

DCL

Theory: Miyagi and Kawakami, JLT (1984)

HE₁₁ $E_x(r,\theta) = E_0 \cdot J_0(k_t r), \quad E_y = 0$

[•]UCL

Mitrofanov and Harrington, *Optics Express* (2010)

^AUCL

$$k_z = \sqrt{k_0^2 - k_t^2} = k_0 n_{eff}$$
$$n_{eff}(\omega) = \sqrt{1 - \frac{\omega_c^2}{\omega^2}}$$

Loss in dielectric-lined waveguides

IEEE Trans THz Sci. and Techn. (2011)

DCL

Fabrication challenges: Dielectric-lined HMWG

Opt. Lett. **32**, 2945-2947(2007) *Appl. Phys. Lett.* **93**, 181104 (2008) *J. Appl. Phys.* **104**, 093110 (2008) *Optics Express* **18**, 1898 (2010)

Flexible dielectric-lined hollow metallic waveguides

Ag/Agl Waveguides - thin dielectric, dominant mode?

Flexible WGs made of 1 mm diam. thin glass tubes with Ag/AgI coatings (1micron):

Far-field cw characterisation: indicated that HE11 can exist in this waveguide at ~2.7THz

Near-field mode mapping and numerical modelling:

revealed that 1 micron Agl coating is not thick enough;

far-field mode profiles – obscured by mode interference.

Navarro-Cia et al., JOSA B (2013)

Stacked-ring corrugated waveguides

- Stacked Rings: Overcome the limitations of conventional machining
- \circ Propagate an HE₁₁ mode
- Materials choice:

Aluminum, Brass, Titanium, Stainless Steel, Copper, Molybdenum etc...

E. De Rijk, Rev. Sci. Instr. , Vol. 82, (2011)

DCL

Corrugated waveguide - Bandwidth tuning

Parameters:

- Choice of metal: Brass, Titanium, Stainless steel
- Waveguide Inner diameter
- Corrugation design

E.g. variation of inner diameter for given corrugation geometry

DCL

Standard Transmission Lines Modules

Benefits of multimode waveguides:

- Low loss (< 1dB/m)
- Mode quality (linearly polarized, coupling >95% for HE_{11})

- Use of higher order modes (TE₀₁)
- Reduced chromatic dispersion
- System simplicity

Applications:

- Imaging systems (beam quality, system simplicity)
- Communications/power delivery

(low-loss, beam quality, dispersion, bandwidth)

Potential applications:

- Spectroscopy (challenges: mode suppression)
- Communication (challenges: modal dispersion, MIMO)

Dielectric-lined hollow metallic waveguides

Mode quality (coupling >95%)

Low loss (<1 dB/m)

Analytical approximation (modelling)

Bandwidth (> 1THz)

DCL

Waveguide applications and integration

Waveguides for imaging applications – beam quality

Waveguides for near-fild imaging applications

UCL

Mitrofanov et al., APL. 93, 181104 (2008)

Micro-ring QCL

Vitiello et al., Opt. Express 19, 1122 (2011)

Broadband THz confinement – surface waves

DCL

Mitrofanov et al., Opt. Express 20, 6197 (2012)

Conclusions – THz waveguide technologies

Waveguide probing: near-field imaging time-resolved characterization,

Dielectric-lined hollow metallic waveguides Low losses, low dispersion, coupling

Application and integration of THz waveguides

Miguel Navarro-Cia, Richard James, Anibal Fernandez UCL

James Harrington, Bradley Bowden, Carlos Bendt Rutgers University

Miriam Vitiello, Alessandro Tredicucci NEST, CNR

Harvey Beere, David Ritchie, Themis Mavrogordatos *Cambridge*

Alessandro Macor, Emil De Rijk SWISSto12

