Extended Interaction Klystrons
DNP – NMR

European COST Network on Hyperpolarization

Ross.MacHattie@cpii.com
Extended Interaction Klystrons

• EIK Technology
 – Based on Klystrons
 • Rugged
 • Reliable
 – Enhanced
 • Power
 • Bandwidth
 • Efficiency
 – GHz and THz frequencies
 – Moderate voltages
 – Compact
 – Minimal maintenance

• CPI Canada EIKs
 – Design & manufacturing
 • 40 years of experience
 – Applications
 • Radar
 – Airport
 – Space
 – Earth Observations
 • Communications
 • Instrumentation
 – DNP/ESR
 – Frequency range
 • 17 – 280 GHz proven
 • 0.7 THz modeled
EIK Principle of Operation

Tuner

Electron Beam

Cathode

Ladder

Input Cavity

Output Cavity

Collector

Magnetic Field

Power Supply

I_{cathode}

I_{body}

$I_{\text{collector}}$

2014.06.27 2014 COST Hyperpolarization
Ladder Structure

- Ladder structures provide
 - High coupling impedance
 - Thermal stability

- 30 GHz
 - 3000 W pulsed
 - 1200 W CW

- 95 GHz
 - 2000 W pulsed
 - 400 W average

- 140 GHz
 - 300 W pulsed
 - 50 W average

- 263 GHz
 - 10 W pulsed
 - 5 W CW

- 2014 COST Hyperpolarization
EIK/EIO DNP Frequencies

Signal Increase 110x*
with microwaves
16 scans /16

without microwaves
128 scans /128

*National Institutes of Health
DNP Requirements

• Highly stable mmWave source
 – Short-term pulse-to-pulse amplitude stability
 • 0.02 dB RMS
 – Comparable to lower frequency EIKs
 – Predominantly driven by PS stability

• Wide bandwidth/tuning range
 – 1 GHz bandwidth (EIK)
 – 9 GHz tuning range (EIO)

• Compact
 – Close to NMR
 – Short waveguide run
Stray Magnetic Field Isoline Map

CPI 263 GHz EIK Magnet

Contours of constant magnetic field (gauss)
264 GHz Pulsed EIK

- Gun Optics
 - 18.5 kV
 - 250 mA
 - 18 µm x 15 mm tunnel
Pulsed EIK Gain Response

Frequency (GHz)

Gain (dB)

25mW RF input
263 GHz CW Tunable EIO

- Developed for NMR experiments
- Cathode Current – 120 mA
- Cathode Voltage for Fundamental mode operation – 11.5 kV
- Cathode Voltage for High order mode operation – 12.3 kV
- Frequency separation between operating modes ~ 2 GHz
- Mechanical tuning range – 9 GHz
- Cathode Lifetime – 20,000 hours
- Liquid Cooling
- Weight < 3 kg
NMR Kidney Health Research

• 263 GHz EIO
 – USA National Institute of Health (NIH)
 • DNP enhancement of NMR spectra
 • Significant increase (110X) in NMR signal

Data provided by NIH for CPI presentation at IVEC 2013
187 GHz CW EI K

- 5 W CW
- 400 MHz Bandwidth
- Single period magnet
- Water cooled
- Single stage depressed collector
187 GHz EIK in Production

- Cold-testing
 - complete
- High-Pot testing
 - just finished
- Magnets
 - to be assembled
- Hot-testing
 - to follow
187 GHz EIK

• Six cavity EIK (fixed tuning)
• Turn-key Operation: Commercial Power Supply
Conclusions

• Proven DNP Solutions

<table>
<thead>
<tr>
<th>Amplifier (EIK)</th>
<th>Power</th>
<th>Duty</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>95 GHz</td>
<td>1 kW</td>
<td>10 %</td>
<td>1,000 MHz</td>
</tr>
<tr>
<td>95 GHz</td>
<td>100 W</td>
<td>100 %</td>
<td>200 MHz</td>
</tr>
<tr>
<td>187 GHz</td>
<td>5 W</td>
<td>100 %</td>
<td>400 MHz</td>
</tr>
<tr>
<td>263 GHz</td>
<td>10 W</td>
<td>1 %</td>
<td>800 MHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oscillator (EIO)</th>
<th>Power</th>
<th>Duty</th>
<th>Tuning Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>140 GHz</td>
<td>20 W</td>
<td>100 %</td>
<td>5,000 MHz</td>
</tr>
<tr>
<td>263 GHz</td>
<td>5 W</td>
<td>100 %</td>
<td>9,000 MHz</td>
</tr>
</tbody>
</table>