

Metamaterials Role In Millimeter-Wave and THz Industries

Claire Watts
Boston College, Chestnut Hill, MA, USA

How are metamaterials enabling new products in the THz and MillimeterWave Industries?

THz radiation has many applications and creates a need for products

Metamaterials offer means to translate existing RF and IR technologies into the THz Gap

Presentation Outline

1. Metamaterials: concepts and history
2. THz Metamaterials
3. The THz Regime: promising yet problematic
4. Current metamaterial research that can inspire industry products
5. Conclusions and future outlook

Metamaterials

Electromagnetic Metamaterial (MM): designer electromagnetic materials comprised of subwavelength elements whose properties can be tuned through their geometry

Designer EM Materials:

Through the geometry, the user has control of $\varepsilon(\omega)$ and $\mu(\omega)$. This gives control of transmission, reflection, etc.

The Emergence of Metamaterials

- 1940's: Bell Laboratories makes strides in artificial dielectrics
- 1999: John Pendry's artificial magnetism opens up possibility for negative index of refraction (NIR)
- $n=\sqrt{\varepsilon(\omega) \cdot \mu(\omega)}$

Opposite Phase and Group Velocity

- negative $\varepsilon(\omega)$ and $\mu(\omega)$ leads to $n<0$
- Veselago predicted some consequences of NIR in 1968

- 2000: Negative index material achieved experimentally in microwave regime

The Emergence of Metamaterials

- 1940's: Bell Laboratories makes strides in artificial dielectrics
- 1999: John Pendry's artificial magnetism opens up possibility for negative index of refraction (NIR)
- $n=\sqrt{\varepsilon(\omega) \cdot \mu(\omega)}$

Reverse Doppler Shift

- negative $\varepsilon(\omega)$ and $\mu(\omega)$ leads to $n<0$
- Veselago predicted some consequences of NIR in 1968

- 2000: Negative index material achieved experimentally in microwave regime

The Emergence of Metamaterials

- 1940's: Bell Laboratories makes strides in artificial dielectrics
- 1999: John Pendry's artificial magnetism opens up possibility for negative index of refraction (NIR)
- $n=\sqrt{\varepsilon(\omega) \cdot \mu(\omega)}$
- negative $\varepsilon(\omega)$ and $\mu(\omega)$ leads to $n<0$
- Veselago predicted some consequences of NIR in 1968

Snell's Law Reversed

- 2000: Negative index material achieved experimentally in microwave regime

MMs as an Effective Medium

LC Resonator Analogy

c

L

- Similar to an LC circuit, SRR will have a resonance condition

$$
\omega_{0} \sim \frac{1}{\sqrt{L C}}
$$

- Effective capacitance and inductance determined by geometry and material properties

Effective Optical Constant

- Single resonator \rightarrow gives no effective response (too subwavelength)
- Many subwavelength resonators \rightarrow Collective response gives an effective $\mu(\omega)=\mu_{1}+i \mu_{2}$

Negative Index Materials

Metallic cut wire (microstrip) creates negative $\varepsilon(\omega)$

Double split ring resonator creates negative $\mu(\omega)$

Shelby, 2001

Negative Index Materials

Composi̊te structure with subwavelength elements

Shelby, 2001

Super-Lensing

Negative index material lenses can theoretically refocus both the far and near field \rightarrow beat diffraction limit

- Experimental demonstration: $\varepsilon=-1$ and $\mu=-1$ metamaterial resolved below the diffraction limit at $\sim 1 \mathrm{GHz}$
- Limitation: material characteristics

Beyond Negative Index Materials

- Metamaterial EM Wave Absorbers (liu, 2010)

Beyond Negative Index Materials

- Metamaterial EM Wave Absorbers (Liu, 2010)

Beyond Negative Index Materials

- Metamaterial EM Wave Absorbers (liu, 2010)

Beyond Negative Index Materials

- Metamaterial EM Wave Absorbers (Liu, 2010)

- Multiband and broadband metamaterials
- Dynamic metamaterials: dynamically tune properties with external stimuli

MMs Across the EM Spectrum

PCB techniques

Photolithography

1 mm

E-Beam Lithography

1um

MMs Across the EM Spectrum

VNA Systems

THz Spectroscopy

FTIR Spectroscopy

1um

1 m

The THz Frequency Regime

Millimeter Wave Regime $70 \mathrm{GHz}-300 \mathrm{GHz}$

THz Regime $300 \mathrm{GHz}-10 \mathrm{THz}$

[^0]
Why do we care about MMs?

Experimental Verification of a Negative Index of Refraction

Ebe New Hork Eimes

Light Fantastic: Flirting With Invisibility
Bam! Science Inspired by Superheroes
BloombergBusinessweek Technology

The New Hork Times

Innovator

E Bloomberg

Nathan Kundtz's MTenna May Replace the Antenna Company Raises \$12 Million Satellite Dish

The start-up uses a lightweight material called metamaterials to produce antennas intended to improve satellite connections used for broadband Internet.

Kymeta and the mTenna

园园园园园园园园园园园

Using metamaterials for wide－angle，all－electronic beam steering

Example：highly applicable as an aeronautical terminal

Kymeta and the mTenna

Q+A Steve Ballmer Ambri's Better Battery Q+A Ursula Burns

BGI's Genome Machine Nest's Smarter Home Q+A Ben Silbermann

Presentation Outline

1. Metamaterials: concepts and history
2. THz Metamaterials
3. The THz Regime: promising yet problematic
4. Current metamaterial research that can inspire industry products
5. Conclusions and future outlook

Introduction of the THz Metamaterial

In 2004 the classic split ring resonator (SRR) was scaled to give a magnetic response in the THz regime

[^1]
What Makes THz MMs So Effective?

- The geometry can be scaled and give a similar response at higher frequencies
- Most natural materials have weak electromagnetic responses and generally cannot be made scalable

Dynamic THz Metamaterials

[^2]
General Considerations with Dynamic THz MM Devices

Tuning Depth

Modulation Speed

Semiconductor-based devices: very fast (up to MHz speeds)

Liquid crystal devices: slower (operate best at kHz speeds)

Presentation Outline

1. Metamaterials: concepts and history
2. THz Metamaterials
3. The THz Regime: promising yet problematic
4. Current metamaterial research that can inspire industry products
5. Conclusions and future outlook

Difficulties of the THz Gap

1. Metamaterials 2. THz Metamaterials 3. The THz Regime 4. Current Metamaterial Research 5. Conclusions and Future Outlook

Potential Applications

Personnel Screening with THz Imaging

Biomedical and

 Medical Applications
b) Sample 8

c) Sample 12

THz absorption of basal cell carcinoma

Spectroscopic Screening

Visually identical substances have different THz responses

[^3]
THz Devices: Getting From Demand to Supply

Supply

Natural materials have difficulty supplying these devices \rightarrow Metamaterials
can do this!

THz Devices: Getting From Demand to Supply

Demand

Security
 Screening

Spectroscopic Screening

THz Systems

Supply

THz Metamaterial Imaging
Components and Systems

THz Biospectroscopy Metamaterials

THz Metamaterial Filters

 and Modulators
Presentation Outline

1. Metamaterials: Concepts and History
2. THz Metamaterials
3. The THz Regime: Promising yet Problematic
4. Current metamaterial research that can inspire industry products
5. Conclusions and future outlook

Summary of Industry-Geared THz Metamaterial Research

Evolv Technologies

Based on metamaterial imaging technology developed at Duke University

Biospectroscopy with THz metamaterials

Single pixel THz imaging using an active THz metamaterial spatial light modulator

Dynamically tunable THz and millimeter wave filters and resonators

Imaging With MM Coded Apertures MM Device Fully Integrated Into Industry

- 1D leaky waveguide couples energy into characteristic far field modes
- Modes determined through parameters of resonant metamaterials

- Frequency is used to index far-field modes
- Scene is illuminated and back-scattered radiation is incident on the metamaterial
- Spectral measurement is used to reconstruct the scene

Imaging With MM Coded Apertures MM Device Fully Integrated Into Industry

- Frequency is used to index far-field modes
- Scene is illuminated and back-scattered radiation is incident on the metamaterial
- Spectral measurement is used to reconstruct the scene

Imaging With MM Coded Apertures

 MM Device Fully Integrated Into IndustryBill Gates, General Catalyst back Boston startup Evolv in \$11.8M round

Intellectual Ventures spinout Evolv gets \$11.8M

GeekWire

 from Bill Gates and others, aims to transform security scanningApplication to the THz and millimeter wave regimes?

- Demand: need for imaging systems in this regime
- Scalability of metamaterials

Biosensing with THz MMs

MM Device on the Verge of Industrial Application

Dynamically tune metamaterial properties

Biosensing with THz MMs

MM Device on the Verge of Industrial Application

Detect change in EM response

Infer information about metamaterial properties

Tune or Be Tuned

Biosensing with THz MMs

MM Device on the Verge of Industrial Application

THz metamaterials as biosensors

- Highly sensitive
- High-speed, on-site detection
- Tunable to specific needs

THz Single Pixel Imager

MM Device With High Potential for Application

Single pixel imaging in THz regime:

- Single pixel detectors more sensitive than detector arrays
- Using an active mask negates the need for any mechanical motion

Problem: lack of viable natural materials for THz spatial light modulator

Solution: THz MMs

Watts, 2014

THz Single Pixel Imager

MM Device With High Potential for Application

$$
V_{\text {bos }}=0 \mathrm{~V}
$$

THz MM-SLM allows for accurate imaging in the THz regime without any moving parts and with the sensitivity of a single pixel detector

THz Single Pixel Imager

MM Device With High Potential for Application

$$
\mathrm{V}_{\mathrm{b} \text { bas }}=15 \mathrm{~V}
$$

THz MM-SLM allows for accurate imaging in the THz regime without any moving parts and with the sensitivity of a single pixel detector

THz Single Pixel Imager

MM Device With High Potential for Application

THz MM-SLM allows for accurate imaging in the THz regime without any moving parts and with the sensitivity of a single pixel detector

[^4]
Tunable Metamaterial Filters

Existing MM device that could be used to solve a problem in the THz regime

- Microwave and RF systems \rightarrow components are very mature at low frequencies

Current devices don't scale to the THz gap

- Operates up to 90 GHz
- High frequency \rightarrow components too small

Varactor Diodes

- Operates up to 50 GHz
- High frequency \rightarrow parasitic capacitance

Tunable Metamaterial Filters

Existing MM device that could be used to solve a problem in the THz regime
Can we use dynamic metamaterial filters to solve this problem?

No Bias
Biased

More Metamaterial Devices

Infrared metamaterial phase holograms
Stéphane Larouche, Yu-Ju Tsaí, Talmage Tyler, Nan M. Jokerst \& David R. Smith

Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit

M. A. Seo ${ }^{1}$, H. R. Park ${ }^{1}$, S. M. Koo ${ }^{2}$, D. J. Park ${ }^{1}$, J. H. Kang ${ }^{3}$, O. K. Suwal ${ }^{4}$, S. S. Choi ${ }^{4}$, P. C. M. Planken ${ }^{5}$, G. S. Park', N. K. Park ${ }^{2}$, Q. H. Park ${ }^{3 \star}$ and D. S. Kim ${ }^{1 \star}$

Metamaterial Electromagnetic Cloak at Microwave Frequencies
 D. Schurig, ${ }^{1}$ J. J. Mock, ${ }^{1}$ B. J. Justice, ${ }^{1}$ S. A. Cummer, ${ }^{1}$ J. B. Pendry, ${ }^{2}$ A. F. Starr, ${ }^{3}$ D. R. Smith ${ }^{1 *}$

[^5]
Presentation Outline

1. Metamaterials: concepts and history
2. THz Metamaterials
3. The THz Regime: promising yet problematic
4. Current metamaterial research that can inspire industry products
5. Conclusions and future outlook

Final Questions

Are MMs the answer to all our problems in the THz and millimeter wave regime?

Material Loss

- Material losses can become high, specifically as we move to higher frequencies
- Solutions \rightarrow
- Alternative materials
- Introduction of gain medium
- Electrical loss compensation (i.e. embedded transistors - Xu, 2012)

Final Questions

Are MMs the answer to all our problems in the THz and millimeter wave regime?

Bandwidth

- Traditional metamaterials are typically narrow-band
- Solutions \rightarrow
- Different types of unit cells (Bingham, 2008)
- Higher order modes
- Tunable metamaterials

Final Questions

How can we use metamaterials to fulfil existing needs?

Scalability

Inspiring New Technology

Final Questions

How can we better connect basic

$$
\begin{aligned}
& \text { research to product } \\
& \text { development in industry? }
\end{aligned}
$$ continue

3rd TeraHertz: New opportunities for industry Materials measurements and applications towards THz frequencies

What is the future role of metamaterials in industry?

Thank you!

References

Slide	Reference
1. Title	
2. Big topic	
3. Outline	
4. Metamaterials	Martin, M. C., et al. LBNL (2005). Yen, T.-J., et al. Science 303, 1494-1496 (2004). NSF, Directorate for Engineering. Getting Light to Bend Backwards. ENG News. 16 Oct. 2007.
5. - 7. The emergence of MMs	Kock, W. E. Bell System Technical Journal 27, 58-82 (1948). Pendry, J. B., et al. IEEE Trans. on Microwave Theory and Techniques 47, 2075 - 2084 (1999). Veselago, V. G. Physics-Uspekhi 10, 509-514 (1968). Pendry, J. B. Sci. Am. 295, 60-67 (2006). Smith, D. R., et al. Phys. Rev. Lett. 84, 4184 (2000).
8. MMs as an effective medium	Yen, T.-J., et al. Science 303, 1494 - 1496 (2004).
9. - 10. Negative Index materials	Shelby, R. A., et al. Science 292, 77 - 79 (2001).
11. SuperLens	Pendry, J. B. Sci. Am. 295, 60-67 (2006). Grbic, A. et al. Physical Review Letters 92, 117403 (2004).
12. - 15. Beyond negative index	Liu, X., et al. Physical Review Letters 104, 207403 (2010).
16. - 17. MMs across the EM spectrum	http://about.keysight.com/en/newsroom/imagelibrary/library/67GHz_NVNA_images/ http://www.riken.jp/lab-www/THz-img/English/annual_gas.htm Fourier transform infrared spectroscopy. (2015, January 8). In Wikipedia, The Free Encyclopedia. (http://en.wikipedia.org/w/index.php?title=Fourier_transform_infrared_spectroscopy\&oldid=641537941) Chen, H.T., et al. Nature Photonics 3, 148-151 (2009). Xu, X., et al. Nano Letters 11, 3232 - 3238 (2011).
18. The THz frequency regime	Williams, G. P. Reports on Progress in Physics 69, 301 (2006).
19. Why do we care about MMs?	
20. Kymeta and the mTenna	www.kymetacorp.com http://www.intellectualventureslab.com/invent/metamaterial-surface-antenna-technology
21. Kymeta and the mTenna	

References

Slide	Reference
22. Outline	
23. Introduction of the THz MM	Yen, T.-J., et al. Science 303, 1494 - 1496 (2004).
24. What makes MMs so effective?	Smith, D. R., et al. Applied Physics Letters 77, 2246 - 2248 (2000). Yen, T.-J., et al. Science 303, 1494 - 1496 (2004).
25. Dynamic THz MMs	Mittleman, Daniel. "A tunable terahertz response." (2008). H. Tao et al., J. Infrared Milli. Terahz. Waves 32, 580-595 (2011) H.T. Chen et al., Nature 444, 597 (2006) T. Driscoll et al., Science 325, 1518 (2009)
26. General considerations with THz MM devices	
27. Outline	
28. Difficulties of the THz gap	Armstrong, C. M. IEEE Spectrum 49, 28 (2012).
29. Potential Applications	Image courtesy of Qinetic (https://www.qinetiq.com/Pages/default.aspx) Woodward, Ruth M., et al. Journal of Investigative Dermatology 120, 72 - 78 (2003). Kawase, K., et al. Optics Express 11, 2549 - 2554 (2003).
30. - 31. THz Devices: Getting from Demand to Supply	Image courtesy of Qinetic (https://www.qinetiq.com/Pages/default.aspx) Kawase, K., et al. Optics Express 11, 2549 - 2554 (2003). Moloney, Jerome V., et al. "Compact, high-power, room-temperature, narrow-line terahertz source." SPIE Newsroom, (2011).
32. Outline	
33. Summary of Industry-Geared..	
34. - 36. Imaging with Coded apertures	Hunt, John, et al. Science 339, 310 - 313 (2013). Evolv Technologies (http://evolvtechnology.com/).
37. - 39. Biosensing with THz MMs	Park, S. J., et al. Scientific Reports 4, 4988 (2014).

References

Slide	Reference
40. - 43. THz single pixel imager	Watts, Claire M., et al. "Coded and compressive THz imaging with metamaterials." SPIE OPTO. International Society for Optics and Photonics, 2014. Watts, Claire M., et al. Nature Photonics 8, 605 - 609 (2014).
44. Tunable MM Filters	YIG sphere. (2014, December 24). In Wikipedia, The Free Encyclopedia. (ttp://en.wikipedia.org/w/index.php?title=YIG sphere\&oldid=639462436) Kapilevich, B. Microwave Journal 50, 106 (2007).
45. Tunable MM Filters	Shrekenhamer, et al. Advanced Optical Materials 1,950 (2013).
46. More Metamaterial Devices	Larouche, S. et al. Nature Materials 11, 450 (2012). Seo, M. A. et al. Nature Photonics 3, 152 (2009). Schurig, D. et al. Science 314, 977 (2006).
47. Outline	Xu, W. et al. Optics Express 20, 22406 (2012). Bingham, C. et al. Optics Express 16, 18565 (2008).
48. - 49. Final Questions: Are MMs the answer to all our problems in the THz and mm-wave regime?	Bingham, C. et al. Optics Express 16, 18565 (2008). Shrekenhamer, et al. Advanced Optical Materials 1, 950 (2013).
50. Final Questions: How can we use metamaterials to fulfil existing needs?	
51. Final Questions	

[^0]: 1. Metamaterials 2. THz Metamaterials 3. The THz Regime 4. Current Metamaterial Research 5. Conclusions and Future Outlook
[^1]: 1. Metamaterials 2. THz Metamaterials 3. The THz Regime 4. Current Metamaterial Research 5. Conclusions and Future Outlook
[^2]: 1. Metamaterials 2. THz Metamaterials 3. The THz Regime 4. Current Metamaterial Research 5. Conclusions and Future Outlook
[^3]: 1. Metamaterials 2. THz Metamaterials 3. The THz Regime 4. Current Metamaterial Research 5. Conclusions and Future Outlook
[^4]: 1. Metamaterials 2. THz Metamaterials 3. The THz Regime 4. Current Metamaterial Research 5. Conclusions and Future Outlook
[^5]: 1. Metamaterials 2. THz Metamaterials 3. The THz Regime 4. Current Metamaterial Research 5. Conclusions and Future Outlook
