

Metamaterials Role In Millimeter-Wave and THz Industries

Claire Watts

Boston College, Chestnut Hill, MA, USA

THz radiation has many applications and creates a need for products

Can MMs inspire new technology?

Metamaterials offer means to translate existing RF and IR technologies into the THz Gap

Presentation Outline

- 1. Metamaterials: concepts and history
- 2. THz Metamaterials
- 3. The THz Regime: promising yet problematic
- 4. Current metamaterial research that can inspire industry products
- 5. Conclusions and future outlook

Metamaterials

Electromagnetic Metamaterial (MM): <u>designer</u> electromagnetic materials comprised of subwavelength elements whose properties can be tuned through their geometry

Designer EM Materials:

Through the geometry, the user has control of $\varepsilon(\omega)$ and $\mu(\omega)$. This gives control of transmission, reflection, etc.

w

The Emergence of Metamaterials

- 1940's: Bell Laboratories makes strides in artificial dielectrics
- 1999: John Pendry's artificial magnetism opens up possibility for negative index of refraction (NIR)
- $n = \sqrt{\varepsilon(\omega) \cdot \mu(\omega)}$
- negative $\varepsilon(\omega)$ and $\mu(\omega)$ leads to n < 0
- Veselago predicted some consequences of NIR in 1968

Opposite Phase and Group Velocity

• 2000: Negative index material achieved experimentally in microwave regime

The Emergence of Metamaterials

- 1940's: Bell Laboratories makes strides in artificial dielectrics
- 1999: John Pendry's artificial magnetism opens up possibility for negative index of refraction (NIR)
- $n = \sqrt{\varepsilon(\omega) \cdot \mu(\omega)}$
- negative $\varepsilon(\omega)$ and $\mu(\omega)$ leads to n < 0
- Veselago predicted some consequences of NIR in 1968

• 2000: Negative index material achieved experimentally in microwave regime

The Emergence of Metamaterials

- 1940's: Bell Laboratories makes strides in artificial dielectrics
- 1999: John Pendry's artificial magnetism opens up possibility for negative index of refraction (NIR)
- $n = \sqrt{\varepsilon(\omega) \cdot \mu(\omega)}$
- negative $\varepsilon(\omega)$ and $\mu(\omega)$ leads to n < 0
- Veselago predicted some consequences of NIR in 1968

• 2000: Negative index material achieved experimentally in microwave regime

1.5

2

MMs as an Effective Medium

Negative Index Materials

Metallic cut wire (microstrip) creates negative ε(ω)

Double split ring resonator creates negative μ(ω)

1. Metamaterials 2. THz Metamaterials 3. The THz Regime 4. Current Metamaterial Research 5. Conclusions and Future Outlook

Negative Index Materials

Composite structure with subwavelength elements

1. Metamaterials 2. THz Metamaterials 3. The THz Regime 4. Current Metamaterial Research 5. Conclusions and Future Outlook

5, 2015

Super-Lensing

Negative index material lenses can theoretically refocus both the far and *near field* → beat diffraction limit

- Experimental demonstration: ε = -1 and μ = -1 metamaterial resolved below the diffraction limit at ~1 GHz
- Limitation: material characteristics

Metamaterial EM Wave Absorbers (Liu, 2010)

Metamaterial EM Wave Absorbers (Liu, 2010)

• Metamaterial EM Wave Absorbers (Liu, 2010)

1. Metamaterials 2. THz Metamaterials 3. The THz Regime 4. Current Metamaterial Research 5. Conclusions and Future Outlook

Metamaterial EM Wave Absorbers (Liu, 2010)

- Multiband and broadband metamaterials
- Dynamic metamaterials: dynamically tune properties with external stimuli

Thursday, February 5, 2015

Fabrication Techniques

MMs Across the EM Spectrum

PCB techniques

Photolithography

E-Beam Lithography

1. Metamaterials 2. THz Metamaterials 3. The THz Regime 4. Current Metamaterial Research 5. Conclusions and Future Outlook

MMs Across the EM Spectrum

VNA Systems

THz Spectroscopy

FTIR Spectroscopy

The THz Frequency Regime

1. Metamaterials 2. THz Metamaterials 3. The THz Regime 4. Current Metamaterial Research 5. Conclusions and Future Outlook

Why do we care about MMs?

Experimental Verification of a Negative Index of Refraction R. A. Shelby *et al. Science* 292, 77 (2001); DOI: 10.1126/science.1058847

Metamaterial Electromagnetic Cloak at Microwave Frequencies D. Schurig *et al. Science* **314**, 977 (2006); DOI: 10.1126/science.1133628

Ehe New York Eimes

Light Fantastic: Flirting With Invisibility

Bam! Science Inspired by Superheroes

BloombergBusinessweek

Technology

Innovator

Nathan Kundtz's MTenna May Replace theAntenna Company Raises \$12 MillionSatellite DishFrom Bill Gates and Lux Capital

Ehe New York Times

The start-up uses a lightweight material called metamaterials to produce antennas intended to improve satellite connections used for broadband Internet.

Kymeta and the mTenna

Using metamaterials for wide-angle, all-electronic beam steering

Example: highly applicable as an aeronautical terminal

1. Metamaterials 2. THz Metamaterials 3. The THz Regime 4. Current Metamaterial Research 5. Conclusions and Future Outlook

Kymeta and the mTenna

Introduction The 50 Companies Apple's Next Innovation

Q+A Steve Ballmer Ambri's Better Battery on Q+A Ursula Burns BGI's Genome Machine Nest's Smarter Home Q+A Ben Silbermann

1. Metamaterials 2. THz Metamaterials 3. The THz Regime 4. Current Metamaterial Research 5. Conclusions and Future Outlook

Presentation Outline

- 1. Metamaterials: concepts and history
- 2. THz Metamaterials
- 3. The THz Regime: promising yet problematic
- 4. Current metamaterial research that can inspire industry products
- 5. Conclusions and future outlook

Thursday, February 5, 2015

Introduction of the THz Metamaterial

In 2004 the classic split ring resonator (SRR) was scaled to give a magnetic response in the THz regime

What Makes THz MMs So Effective?

- The geometry can be scaled and give a similar response at higher frequencies
- Most natural materials have weak electromagnetic responses and generally cannot be made scalable

Dynamic THz Metamaterials

General Considerations with Dynamic THz MM Devices

Presentation Outline

- 1. Metamaterials: concepts and history
- 2. THz Metamaterials
- 3. The THz Regime: promising yet problematic
- 4. Current metamaterial research that can inspire industry products
- 5. Conclusions and future outlook

1. Metamaterials 2. THz Metamaterials 3. The THz Regime 4. Current Metamaterial Research 5. Conclusions and Future Outlook

Potential Applications

Personnel Screening with THz Imaging

Biomedical and Medical Applications

n on

Spectroscopic Screening MDMA methamphetamine aspirin log attenuation [a.u.] 3 2 1.6 1.8 2.0 1.0 1.2 4 frequency [THz] Visually identical substances

have different THz responses

THz Devices: Getting From Demand to Supply

Supply

THz Metamaterial Imaging Components and Systems

> THz Biospectroscopy Metamaterials

THz Metamaterial Filters and Modulators

1. Metamaterials 2. THz Metamaterials 3. The THz Regime 4. Current Metamaterial Research 5. Conclusions and Future Outlook

Presentation Outline

- 1. Metamaterials: Concepts and History
- 2. THz Metamaterials
- 3. The THz Regime: Promising yet Problematic
- 4. Current metamaterial research that can inspire industry products
- 5. Conclusions and future outlook

Maturity of Device

Summary of Industry-Geared THz Metamaterial Research

Evolv Technologies

Based on metamaterial imaging technology developed at Duke University

Biospectroscopy with THz metamaterials

Single pixel THz imaging using an active THz metamaterial spatial light modulator

Dynamically tunable THz and millimeter wave filters and resonators

Imaging With MM Coded Apertures MM Device Fully Integrated Into Industry

- 1D leaky waveguide couples energy into characteristic far field modes
- Modes determined through parameters of resonant metamaterials

- Frequency is used to index far-field modes
- Scene is illuminated and back-scattered radiation is incident on the metamaterial
- Spectral measurement is used to reconstruct the scene

Hunt, 2013

Imaging With MM Coded Apertures MM Device Fully Integrated Into Industry

- Frequency is used to index far-field modes
- Scene is illuminated and back-scattered radiation is incident on the metamaterial
- Spectral measurement is used to reconstruct the scene

Hunt, 2013

Imaging With MM Coded Apertures MM Device Fully Integrated Into Industry

Bill Gates, General Catalyst back Boston startup Evolv in \$11.8M round

Intellectual Ventures spinout Evolv gets \$11.8M from Bill Gates and others, aims to transform security scanning

Application to the THz and millimeter wave regimes?

- Demand: need for imaging systems in this regime
- Scalability of metamaterials

Biosensing with THz MMs MM Device on the Verge of Industrial Application

Biosensing with THz MMs MM Device on the Verge of Industrial Application

1. Metamaterials 2. THz Metamaterials 3. The THz Regime 4. Current Metamaterial Research 5. Conclusions and Future Outlook

Biosensing with THz MMs MM Device on the Verge of Industrial Application

Park, 2014

THz Single Pixel Imager

MM Device With High Potential for Application

Single pixel imaging in THz regime:

- Single pixel detectors more sensitive than detector arrays
- Using an active mask negates the need for any mechanical motion

Problem: lack of viable natural materials for THz spatial light modulator

Solution: THz MMs

Watts, 2014

THz Single Pixel Imager

MM Device With High Potential for Application

Watts, 2014

THz MM-SLM allows for accurate imaging in the THz regime without any moving parts and with the sensitivity of a single pixel detector

Thursday, February 5, 2015

THz Single Pixel Imager

MM Device With High Potential for Application

THz MM-SLM allows for accurate imaging in the THz regime without any moving parts and with the sensitivity of a single pixel detector

Watts, 2014

THz Single Pixel Imager

MM Device With High Potential for Application

THz MM-SLM allows for accurate imaging in the THz regime without any moving parts and with the sensitivity of a single pixel detector

Watts, 2014

Existing MM device that could be used to solve a problem in the THz regime

 Microwave and RF systems → components are very mature at low frequencies

Current devices don't scale to the THz gap

Tunable Metamaterial Filters

Existing MM device that could be used to solve a problem in the THz regime

Can we use dynamic metamaterial filters to solve this problem?

Shrekenhamer, 2013

More Metamaterial Devices

Infrared metamaterial phase holograms

Stéphane Larouche, Yu-Ju Tsai, Talmage Tyler, Nan M. Jokerst & David R. Smith

Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit

M. A. Seo¹, H. R. Park¹, S. M. Koo², D. J. Park¹, J. H. Kang³, O. K. Suwal⁴, S. S. Choi⁴, P. C. M. Planken⁵, G. S. Park¹, N. K. Park², Q. H. Park^{3*} and D. S. Kim^{1*}

Metamaterial Electromagnetic Cloak at Microwave Frequencies

D. Schurig,¹ J. J. Mock,¹ B. J. Justice,¹ S. A. Cummer,¹ J. B. Pendry,² A. F. Starr,³ D. R. Smith¹*

Presentation Outline

- 1. Metamaterials: concepts and history
- 2. THz Metamaterials
- 3. The THz Regime: promising yet problematic
- 4. Current metamaterial research that can inspire industry products
- 5. Conclusions and future outlook

Are MMs the answer to all our problems in the THz and millimeter wave regime?

Material Loss

- Material losses can become high, specifically as we move to higher frequencies
- Solutions →
 - Alternative materials
 - Introduction of gain medium
 - Electrical loss compensation (i.e. embedded transistors Xu, 2012)

Are MMs the answer to all our problems in the THz and millimeter wave regime?

Bandwidth

- Traditional metamaterials are typically narrow-band
- Solutions →
 - Different types of unit cells (Bingham, 2008)
 - Higher order modes
 - Tunable metamaterials

How can we use metamaterials to fulfil existing needs?

How can we better connect basic research to product development in industry?

3rd TeraHertz: New opportunities for industry Materials measurements and applications towards THz frequencies

What is the future role of metamaterials in industry?

THz: Opportunities for Industry

Thank you!

*All referenced works are included at the end of the presentation

References

Slide	Reference
1. Title	
2. Big topic	
3. Outline	
4. Metamaterials	Martin, M. C., <i>et al. LBNL</i> (2005). Yen, TJ., <i>et al. Science</i> 303 , 1494-1496 (2004). NSF, Directorate for Engineering. <i>Getting Light to Bend Backwards. ENG News</i> . 16 Oct. 2007.
5. – 7. The emergence of MMs	Kock, W. E. <i>Bell System Technical Journal</i> 27 , 58 – 82 (1948). Pendry, J. B., <i>et al. IEEE Trans. on Microwave Theory and Techniques</i> 47 , 2075 – 2084 (1999). Veselago, V. G. <i>Physics-Uspekhi</i> 10 , 509-514 (1968). Pendry, J. B. <i>Sci. Am.</i> 295 , 60 – 67 (2006). Smith, D. R., <i>et al. Phys. Rev. Lett.</i> 84 , 4184 (2000).
8. MMs as an effective medium	Yen, TJ., et al. Science 303 , 1494 – 1496 (2004).
9. – 10. Negative Index materials	Shelby, R. A., <i>et al. Science</i> 292 , 77 – 79 (2001).
11. SuperLens	Pendry, J. B. <i>Sci. Am.</i> 295 , 60 – 67 (2006). Grbic, A. <i>et al. Physical Review Letters</i> 92 , 117403 (2004).
12. – 15. Beyond negative index	Liu, X., et al. Physical Review Letters 104 , 207403 (2010).
16. – 17. MMs across the EM spectrum	 http://about.keysight.com/en/newsroom/imagelibrary/library/67GHz_NVNA_images/ http://www.riken.jp/lab-www/THz-img/English/annual_gas.htm Fourier transform infrared spectroscopy. (2015, January 8). In Wikipedia, The Free Encyclopedia. (http://en.wikipedia.org/w/index.php?title=Fourier_transform_infrared_spectroscopy&oldid=641537941) Chen, H.T., <i>et al. Nature Photonics</i> 3, 148 – 151 (2009). Xu, X., <i>et al. Nano Letters</i> 11, 3232 – 3238 (2011).
18. The THz frequency regime	Williams, G. P. Reports on Progress in Physics 69, 301 (2006).
19. Why do we care about MMs?	
20. Kymeta and the mTenna	www.kymetacorp.com http://www.intellectualventureslab.com/invent/metamaterial-surface-antenna-technology
21. Kymeta and the mTenna	

References

Slide	Reference
22. Outline	
23. Introduction of the THz MM	Yen, TJ., <i>et al. Science</i> 303 , 1494 – 1496 (2004).
24. What makes MMs so effective?	Smith, D. R., <i>et al. Applied Physics Letters</i> 77 , 2246 – 2248 (2000). Yen, TJ., <i>et al. Science</i> 303 , 1494 – 1496 (2004).
25. Dynamic THz MMs	Mittleman, Daniel. "A tunable terahertz response." (2008). H. Tao <i>et al., J. Infrared Milli. Terahz. Waves</i> 32 , 580-595 (2011) H.T. Chen <i>et al., Nature</i> 444 , 597 (2006) T. Driscoll <i>et al., Science</i> 325 , 1518 (2009)
26. General considerations with THz MM devices	
27. Outline	
28. Difficulties of the THz gap	Armstrong, C. M. IEEE Spectrum 49, 28 (2012).
29. Potential Applications	Image courtesy of Qinetic (https://www.qinetiq.com/Pages/default.aspx) Woodward, Ruth M., <i>et al. Journal of Investigative Dermatology</i> 120 , 72 – 78 (2003). Kawase, K., <i>et al. Optics Express</i> 11 , 2549 – 2554 (2003).
30. – 31. THz Devices: Getting from Demand to Supply	Image courtesy of Qinetic (https://www.qinetiq.com/Pages/default.aspx) Kawase, K., <i>et al. Optics Express</i> 11 , 2549 – 2554 (2003). Moloney, Jerome V., <i>et al.</i> "Compact, high-power, room-temperature, narrow-line terahertz source." <i>SPIE Newsroom</i> , (2011).
32. Outline	
33. Summary of Industry-Geared	
34 36. Imaging with Coded apertures	Hunt, John, <i>et al. Science</i> 339 , 310 – 313 (2013). Evolv Technologies (http://evolvtechnology.com/).
37. – 39. Biosensing with THz MMs	Park, S. J., et al. Scientific Reports 4, 4988 (2014).

References

Slide	Reference
40. – 43. THz single pixel imager	Watts, Claire M., et al. "Coded and compressive THz imaging with metamaterials." SPIE OPTO.
	International Society for Optics and Photonics, 2014.
	Watts, Claire M., et al. Nature Photonics 8, 605 – 609 (2014).
44. Tunable MM Filters	YIG sphere. (2014, December 24). In Wikipedia, The Free Encyclopedia.
	(ttp://en.wikipedia.org/w/index.php?title=YIG_sphere&oldid=639462436)
	Kapilevich, B. Microwave Journal 50, 106 (2007).
45. Tunable MM Filters	Shrekenhamer, et al. Advanced Optical Materials 1, 950 (2013).
46. More Metamaterial Devices	Larouche, S. et al. Nature Materials 11, 450 (2012).
	Seo, M. A. et al. Nature Photonics 3, 152 (2009).
	Schurig, D. et al. Science 314 , 977 (2006).
47. Outline	
48. – 49. Final Questions: Are MMs the	Xu, W. et al. Optics Express 20 , 22406 (2012).
answer to all our problems in the THz and	Bingham, C. et al. Optics Express 16, 18565 (2008).
mm-wave regime?	
50. Final Questions: How can we use	Bingham, C. et al. Optics Express 16, 18565 (2008).
metamaterials to fulfil existing needs?	Shrekenhamer, et al. Advanced Optical Materials 1, 950 (2013).
51. Final Questions	