

NMR Signals Enhanced by Dynamic Nuclear Polarization

Application to Structural Biology and Material Science

Frank Engelke

Bruker BioSpin GmbH

TeraHertz Workshop Lausanne, 11.-13. Feb. 2013

NMR signals enhanced by DNP – Application to structural biology and material science

- 1. Nuclear magnetic resonance (NMR) and electron spin resonance (ESR or EPR)
- 2. Dynamic nuclear polarisation (DNP)
- 3. DNP-NMR in liquids
- 4. Solid-state DNP NMR
- 5. Applications

Nuclear Magnetic Resonance - NMR

Atomic nuclei (¹H, ¹³C, ...), Intrinsic angular momentum (spin), Magnetic moment, External const. magnetic field.

Quantization of spins, splitting of energy levels (Nuclear Zeeman effect) defines spin Larmor frequency

Transition between Zeeman levels.

If irradiation with an ac field oscillating at Larmor frequency (*radio frequency range*) then resonance.

Figure courtesy of Sami Jannin, EPFL

Electron Paramagnetic Resonance - EPR

Analog for the electron spin:

Spin quantization Energy level splittingirradiation

Transitions between Zeeman levels.

If irradiation with an ac field oscillating at electron Larmor frequency (*microwave frequency range*) then resonance.

Magnetic moment of electron $I_z =$ ca. 660 times larger than proton magnetic moment

Electron spin resonance frequencies ca. 660 times higher than those of ¹H NMR.

Figure courtesy of Sami Jannin, EPFL

The electromagnetic spectrum

NMR of spin-1/2 nuclei

Nucleus	Natural abundance (%)	Sensitivity (abs.)	NMR frequency at 14.1T (MHz)	EPR frequency (GHz)
¹ H	99.98	1	600	395
¹⁹ F	100	0.83	564.5	
³¹ P	100	0.066	242.9	
¹³ C	1.1	0.00018	150.9	
²⁹ Si	4.7	0.00037	119.2	
¹⁵ N	0.37	0.000039	60.8	

Zeeman coupling and chemical shift

NMR of liquids

 μI flow NMR probe

Overview

Magnets - B₀

- NMR console B_1 + NMR signal
- Probes -
- B₀ + B₁ + sample + NMR signal
- Accessories additional functionality for example, for DNP

NMR magnets

NMR Experiment

Digital FID

Analog FID out / Receiver

Mathematical

Spectrum

representation of FID

FFT

Digitization of a properly filtered (anti-aliasing) FID gives the exact mathematical representation of the NMR signal.

Digital Pulse Sequence

A mathematically exact representation of the excitation signals can be converted to real distortion-free RF using an D/A converter

Pulse Sequence (Theory) converter

Some basic issues ...

Spin polarization calculation

The polarization is the ratio between the difference of population and the total population :

Spin polarization calculation

$$P = \frac{\Delta N}{N_{tot}} = \frac{N_{\alpha} - N_{\beta}}{N_{\alpha} + N_{\beta}}$$

Boltzmann equilibrium

$$\frac{\mathbf{N}_{\alpha}}{\mathbf{N}_{\beta}} = \mathbf{e}^{\left(\frac{\gamma h B_0}{k_{B}T}\right)} = \mathbf{e}^{\left(\frac{\hbar \omega}{k_{B}T}\right)}$$

 $N\alpha$ spins at lower energy level $N\beta$ spins at upper energy level

Figure courtesy of S. Jannin, DNP course EPFL 2012

Some basic issues ...

Polarization and magnetic resonance signal

For a thermally polarized sample :

$$\mathbf{P} = \frac{\mathbf{N}_{\beta} \cdot \mathbf{e}^{\left(\frac{\gamma h B_{0}}{k_{B} T}\right)} - \mathbf{N}_{\beta}}{\mathbf{N}_{\beta} \cdot \mathbf{e}^{\left(\frac{\gamma h B_{0}}{k_{B} T}\right)} + \mathbf{N}_{\beta}} = \frac{\mathbf{e}^{\left(\frac{\gamma h B_{0}}{k_{B} T}\right)} - \mathbf{l}}{\mathbf{e}^{\left(\frac{\gamma h B_{0}}{2k_{B} T}\right)} + \mathbf{l}} \cdot \frac{\mathbf{e}^{\left(-\frac{\gamma h B_{0}}{2k_{B} T}\right)}}{\mathbf{e}^{\left(-\frac{\gamma h B_{0}}{2k_{B} T}\right)}} = \frac{\mathbf{e}^{\left(\frac{\gamma h B_{0}}{2k_{B} T}\right)} - \mathbf{e}^{\left(-\frac{\gamma h B_{0}}{2k_{B} T}\right)}}{\mathbf{e}^{\left(-\frac{\gamma h B_{0}}{2k_{B} T}\right)} + \mathbf{e}^{\left(-\frac{\gamma h B_{0}}{2k_{B} T}\right)}} = \tanh\left(\frac{\gamma h B_{0}}{2k_{B} T}\right)$$

The NMR signal is proportional to P through :

$$S(t) \propto M_{_{xy}}(t) = P \cdot N_{_{tot}} \cdot e^{-\frac{t}{T_2}} \cdot e^{-i\omega t} = tanh\left(\frac{\gamma h B_{_0}}{2k_{_B}T}\right) \cdot N_{_{tot}} \cdot e^{-\frac{t}{T_2}} \cdot e^{-i\omega t}$$

NMR magnets

Magnets with full NMR specifications and working in "persistent mode" operation

Some basic issues ...

Electron polarization vs. nuclear spin polarization

Thermal equilibrium polarization at 1.2 K and 3.35T for a spin
$$I = \frac{1}{2}$$

$$P = \frac{\langle I_z \rangle}{I_z^{\text{max}}} = B_I (\frac{\hbar \omega I}{k_B T}) = \tanh(\frac{\hbar \gamma B}{2k_B T}) = \begin{cases} 95\% \text{ for electron} \\ 0.28\% \text{ for } {}^{1}\text{H} \\ 0.072\% \text{ for } {}^{13}\text{C} \end{cases}$$

Some basic issues ...

What is DNP?

Transfer of magnetization (polarization) of a (macroscopic) system of electron spins to a (macroscopic) system of nuclear spins.

Which tools do we need in oder to fully understand DNP?

- Equilibrium and non-equilibrium thermodynamics
- Electron and nuclear spin relaxation
- Quantum mechanics and quantum statistics
- Radical chemistry, chemistry of the sample
- Theory and practice of microwave/sub-THz interaction with matter

A very concise history of DNP

1953	- Overhauser experiment in metal - Slichter experimental proof
1956	- Slichter DNP in other media (¹ H)
1960 - 1980	 Liquids and Solids (0.3300 T, ~10 GHz) Hauser, Mueller-Warmuth, Richards, and others Solids Abragam, Goldman, Atsarkin, Provotorov, and others . Nuclear magnetic ordering, polarized targets for particle physics, liquids at low fields
-1980 - today	- Griffin , DNP-MAS coupled with a Gyrotron - Golman, Hyperpolarized MRI

Hyperpolarization techniques

Hyperpolarization:

increase of spin polarization M_I above the Boltzmann polarization by establishing a coupling between a low-polarized spin system Iwith a spin system S of high polarization or coherence order.

DNP mechanisms

How to transfer the polarization of the electron spin system to the nuclear spin system?

From where do we get the electron spins? What is a radical?

The electrons in atomic or molecular orbitals are often spin paired (spin-up and spin down) yielding a net e spin of zero. In radicals this "rule" is violated and at least a single electron spin is not paired resulting in a paramagnetic center.

NMR of solids Magic angle spinning - MAS

Dynamic Nuclear Polarization

(µw) DNP

- Enhance nuclear polarization by transfer from electron spins
- Principles known for 50 years
- Potential gains: γ_e / γ_N
 - For protons: ~660
 - For carbons: ~2600
- Ingredients:
 - Unpaired electron spin
 - µ wave excitation

Solid-state DNP NMR

Solid-state DNP NMR

Principle components of an DNP-NMR spectrometer for low-temperature MAS solid-state NMR

Gyrotrons for DNP applications: Basic specifications of 263 GHz gyrotron

Microwave frequency	263 GHz
Microwave output power	1-50 W
Power stability	± 1%
Frequency stability	± 10 ppm
Frequency tuning	± 50 MHz
Output microwave beam	Gaussian beam
Operation modes	Continuous on operation 10 days or longer
	Easy and safe operation

Microwave transmission to the NMR sample

- Internal mode converter:
 - Transform gyrotron cavity TE03 cavity mode to a Gaussian beam
 - Step-cut launcher (axial cut in wall)
 - Five-mirror transmission system to steer and shape RF beam
- Corrugated waveguide:
 - Very small ohmic loss for Gaussian beam
 - Loss possible due to mode conversion in case of tilt or offset

 $p = \lambda/3$ d = $\lambda/4$ w < 0.5p Gaussian beam waist = 0.64a

Transmission line components

Inside NMR probe: 8 mm waveguide

Main (19 mm) transmission line

- Microwave transmission line from gyrotron window to NMR sample
- Corrugated waveguide:
 - 0.28 x 0.28 mm groove every 0.38 mm (1/3 wavelength at 263 GHz) in 19 mm ID waveguide
 - Waveguide sections joined end to end and held on support structure
 - Helical tap for 8 mm probe waveguide
- Directional coupler for power and frequency measurements

DNP NMR MAS probes

Solid-State NMR/DNP system: 400 MHz / 263 GHz

FMP Berlin, February 2009

Solid-state NMR/DNP system: 600 MHz / 395 GHz BBIO, Billerica, July 2012

Solid-state NMR/DNP system: 800 MHz / 527 GHz

University of Utrecht, November 2012

Requirements for Solid State DNP-NMR

Thermal mixing/cross effect (TM/CE) mechanism demonstrated at high field

• Follows *general trend*:

DNP signal enhancement

$$\sim \left(\frac{B_1^2}{B_0}\right) T_{1e} T_{1n}$$

- B₁ = microwave field amplitude
- B_0 = static magnetic field
- T_{1e} = electron spin lattice relaxation time
- T_{1n} = nuclear spin lattice relaxation time

Biradicals: two unpaired electron spins in one molecule

•

T_{1e} (100K): on the order of 100 µs

Data courtesy of M. Rosay, et al., 2009

- High sample temperature (117 K) for stable temperature during 2-day acquisition of field dependence curve Intermolecular e-e Gyrotron frequency: 263.343 GHz
- dipolar coupling small (at 10...20mM conc.)
- Intramolecular e-e dipole coupling: 22 MHz

Calculated frequency match Current position Signal Enhancement 1 (Normalized) 0 DNP 398 398.5 399 399.5 400 400.5 401 1H Frequency

Song, et al. JACS 128, 2006 Maly, et al. JCP 128, 2008

Solid-state DNP NMR: applications

Examples

- Membrane proteins (proteo and bacteriorhodopsin) retinal conformations, role of 1H spin diffusion
- TIM: binding ligands to enzymes
- Molecules adsorbed on surfaces

Rhodopsin

Proteorhodopsin – LT.MAS

Solid-State Dynamic Nuclear Polarization (DNP)

DNP experiments on TIM (TPI)

Triose phosphate isomerase dimer.

Each subunit 250 aa with 8 α -helices outside and 8 parallel β -strands inside. α/β protein folds including alternating pattern of α -helices and β -strands form a solenoid that closes on itself in a toroidal shape (TIM barrel)

TPI

- to be found in almost every organism
- important enzyme in glycolysis (energy production)
- catalyzes the reversible interconversion of *dihydroxy acetone phosphate* and *D-glyceraldehyde 3phosphate* (both are isomers of triose phosphate)

DNP experiments on TIM (TPI)

DNP experiments on TIM (TPI)

- DNP-enhanced ¹³C -¹³C correlation experiment
- Protron-driven spin diffusion with 22 ms mixing time
- 9 kHz MAS, 105 K sample temperature
- 100 kHz decoupling
- 4 scans, 2.5s recycle delay, 768 t1 points. Total experiment time: 2h 10min

Sample courtesy of Ann McDermott, Yimin Xu, Ansgar Siemer, NYSBC

DNP on molecules adsorbed on surfaces

Figure 2. (a). Pulse sequence used for 1D CP MAS. The microwave (MW) irradiation was switched on or off continuously. (b) Carbon-13 CP MAS spectra of 1a with (top and middle spectra) and without (bottom spectra) MW irradiation at 263 GHz to induce DNP. All spectra were recorded with 2048 scans, with an interval between scans of 1 s. The figures compare the best enhancements observed using TEMPO and TOTAPOL radicals (T \approx 105 K, B₀ = 9.4 T, $\omega_{\rm H}/(2\pi) = 400$ MHz, $\omega_{\rm C}/(2\pi) = 100$ MHz, $\omega_{\rm red}/(2\pi) = 8.0$ kHz). (c) Experimental ¹H DNP enhancement ($\varepsilon_{\rm H}$, black triangles) and integrals of the ¹³C peak at 115 ppm (blue squares) as a function of the TEMPO concentration.

* with traces of -OCH₃, -OCH₂CH₃, -OSi(CH₃)₃

Figure 1. (a) Transmission Electronic Microscopy (TEM) image of the nanoporous silica material. (b) Schematic diagram of the pore and channel network with phenolic derivatization. (c) Different covalently incorporated aromatic substrates.

A. Lesage, M. Lelli, D. Gajan, M.A.Caporini, V. Vitzthum, P. Mieville, J. Alauzun, A. Roussey, C. Thieuleux, A. Medhi, G. Bodenhausen, C. Coperet, L. Emsley in: Euromar, Florence, 2010.