DE LA RECHERCHE À L'INDUSTRIE

THz real-time cameras

Uncooled antenna-coupled bolometer array technology for real-life applications

Manager for Strategic Programs for Imaging Technologies, Dr François Simoens (<u>francois.simoens@cea.fr</u>)

13/02/2013- EPFL

www.cea.fr

The CEA et a glance

CEA DRT: Leti-List-Liten business units

@CEA All right reserved

DE LA RECRERCHE À L'INDUSTR

Research Technology Organisations in EU

DE LA RECHERCHE À L'INDUSTRI

Leti-List-Liten in France

CEA-Leti at a glance

1,700 researchers

210 PhD students + 30 post PhD with 85 foreign students (35%)

CEO Dr. Laurent Malier

Over 1,880 patents

273 generated in 2011 40% under license

250 M€ budget

~ 30M€ CapEx

50 start-ups & 365 industrial partners

PHOTONICS DIV. : IMAGING DETECTORS 280 people **Covering a wide spectral range 10**⁻² **10**⁻³ **10**⁻¹ **10**⁻⁵ **10**⁻⁶ **10**⁻⁸ 10-4 10-7 10⁻⁹ m **TeraHertz** Infrared Visib Radio **Microwaves** UV X-rays **10**¹⁰ **10**¹¹ **10**¹² **10**¹³ **10**¹⁴ **10**¹⁶ 10¹⁷ Hz 10⁸ 10⁹ THz arrays APS HgCdTe a-Si µbolometers Sub-mm bolometers SOFRADIR InGaAs InSb III-∨ lab LETI Focal Plane array for ALCATEL-THALES ESA Herschel satellite

THz imaging at CEA-LETI – Dr F Simoens – 2012-07-27

Terahertz imaging

Market requirements for volume applications

THz 2D images with standard IR µbolometer FPA

« Real-time, continuous-wave terahertz imaging by use of a microbolometer_FPA », Lee & Hu, October 1, 2005 / Vol. 30, No. 19, Optics Letters 2005

THz 2D images with standard IR µbolometer FPA

MIT, 2006

Lee, A. W. M., Williams, B. S., Kumar, S., Hu, Q. and Reno, J. L., "Real-Time Imaging Using a 4.3-THz Quantum Cascade Laser and a 320x240 Microbolometer Focal-Plane Array", IEEE Photonics Technology Letters, 18(13), 1415-1417 (2006).

Ex. (very) cooled real-time THz cameras (1D array)

 4K NbN bolometers at 0.6THz (VTT-NIST)

-2 0 2 4 6 Azimuth Angle (degree)

 4K NbN bolometers at 0.6THz (FhG Jena, Ge)

Fig. 5. Freeze images of a person sitting on a lab chair, with a handgun mock-up hidden underneath its clothing. The images have been taken from a movie with 4 Hz frame rate.

Ex. uncooled real-time THz cameras (2D arrays only)

Traycer (US) 80x64 ou 100x100, 0.6 – 1.2 THz

 Agiltron (US) 130x190, 1-10THz
 Heterostructure Backward Diodes hybridized on CMOS ROIC

INO (Canada)
 160x120 pixels, NEP<70pW
 @3THz

NEC (JP)
 320x240, NEP<100pW @4THz

 Univ Wuppertal-IEMN-STm (Ge-Fr) FET CMOS 32x32, 7nW / pixel @0.9THz

THZ IMAGING DETECTORS AT CEA-LETI

2 complementary technologies

Both operate at ambient temperature (no cooling system) and exhibit sensitivity in the order of few pW.

1.Bolometer large array real-time	2. CMOS antenna-coupled FET array
camera	direct direct detection camera
High level maturity on large focal plane array imaging with real-time imaging capabilities mainly in the high frequency range, i.e. the QCL operation spectrum.	FET CMOS detectors imaging demonstrated for smaller arrays size and with sensitivity lowered as frequency rises Advantage of very short relaxation time and suitability for heterodyne detection.

320x230 pixel real-time video sequence demonstrated in [1.5-3.5THz]

Imaging demonstrated between 0.3 THz & 1THz

0.3THz

Terahertz imaging

Bolometer array technology : relevent features

Innovative antenna-coupled µ-bolometer principle

- Cross-polarized bow-tie antennas
- Direct coupling antenna
- Stacked capacitive coupling antenna
- Quarter wavelength resonant cavity to enhance antenna gain
- Through–silicon Oxide Vias ensure CMOS connection
- Any frequency can be addressed by proper tailoring of antenna dimension and cavity

- IR bolometer based µ-bridge
- Size of bolometer independent of pixel pitch
 - Electro-thermal performances preserved
- Antenna current dissipated in resistive loads located within the membrane

THZ BOLOMETER ARRAY AT CEA-LETI

LETI know-how: from modeling to image characterization 200 and 300mm Si 2D imaging sensor design at CEA-LETI capabilities 8,000 m² clean rooms Continuous operation Flow chart definition Modeling (EM, Optics, thermal) (+Technological R&D) Sensor a-Si Thermometer Interconnections Pixel Collective manufacturing Antenna array ielectric cavity above CMOS ASIC Metallic reflector 200mm Si or CMOS wafer Electrical contacts Bolo↔CMOS **Characterizations Design & simulations of External fondry** ASIC ROIC **Read-**8" CMOS wafer Out-Circuit **ASIC** layout

THz imaging at CEA-LETI – Dr F Simoens – 2012-07-27

Uncooled THz imaging bolometer array

Technological features

Uncooled THz imaging bolometer array

Real-time imaging 2D arrays fabrication & tests

- Uncooled THz antennacoupled microbolometers
- Standard µ-electronic processes
- Broadband spectral absorption

320x240 pixel FPA

- Process above IC
- Avanced image signal processing (CMOS ASIC)
- Monolithic 2D sensor
- 320 x 240 50µm pitch pixels
 - : Sensitive surface
 - =16x12mm²

Imaging lab tests

Transmission optical set-up

- Real-time video output
- Sensitivity in the pW range
- Room T Operation

Uncooled THz bolometer array performance

Leti – NEC – INO THz uncooled bolometer camera

Published NEPs

@CEA All right reserved

Raster scanning image : tree leaf

→ Humidity content imaging

 Real-time 2D imaging in transmission geometry: video of scissors concealed in an envelop

Imaging demonstrations

Real-time imaging of THz TDS photoconductive emitter

@CEA All right reserved

Real-time imaging of THz TDS photoconductive emitter

2D images of a focused beam using a *f*=50 mm optics

Accepted for Optics Express + OTST2013 oral presentation

All images correspond to the same surface of 70 x 75 pixels.

THz spectro-imaging demonstrator

THz frequency-sensitive imaging: 2 combined functions

DE LA RECKERCHE À L'INDUSTRI

THz spectro-imaging demonstrator

Principle

Uncooled bolometer

FPA camera

THz spectro-imaging demonstrator

Camera integration

320x240 pixel FPA

Specific vacuum packaging

FPGA front-end electronics

Camera housing

@CEA All right reserved

THz spectro-imaging demonstrator

Complete system

THz source (QCLs)

Real-time imaging of a concealed object

Real-time imaging of a concealed object

Resolution of the order of 2mm

THz spectro-imaging demonstrator

Localization and identification of sugar pellets

MUTIVIS FP7 imaging in multiple spectral band for security applications

- VIS, IR for surveillance
- . THz for spectroscopic analysis of threats

• Monolithic detector \rightarrow FPA bolometers

- Fully compatible with CMOS standard technology
- Similar process flow for IR and THz antenna coupled bolometer
- Low-cost both in fabrication and operation

@CEA All right reserved

Integration agility : Multispectral FPA

Real-time VIS / THz simultaneous imaging

- Very simple optical system \rightarrow Tsurupica lens doublet
- 2.5THz QCL modulated at 1.25Hz imaged through paper sheet
- « CEA » test pattern imaged with VIS photo-diode

DE LA RECHERCHE À L'INDUSTRI

Perspectives

@CEA All right reserved

Thanks for your attention

Manager for Strategic Programs for Imaging Technologies,

Dr François Simoens (<u>francois.simoens@cea.fr</u>)