Navigation
|
Coupling by diffusion : continuous complex model with diffusion
(1) $latex \displaystyle{ \Large \frac{d}{dt} z(x,t) = (\mu +i \omega(x)) z - z |z|^2 + e^{i \theta} A(x,t) }$ (2) $latex \displaystyle{ \Large ~A_t = \alpha ~ z(x,t) ~-\gamma A } + D A_{xx}$
Pdf version : https://wiki.epfl.ch/synchro/documents/continuous/fieldaandselfcons.pdf General case : Searching for solution of the type : $latex \displaystyle{ \Large z(x,t) = R(x) e^{i~\Omega~t + i~\phi(x)} }$ (Solutions observed in numerical solutions)
Then $latex \displaystyle{ \Large ~ A(x,t) = e^{i~\Omega~t} \frac{ \alpha } {2 D^{1/2} \sqrt{(i\Omega + \gamma)}} \int R(\tau) e^{i~\phi(\tau) } e^{-\sqrt{(i \Omega + \gamma)/D )} ~ |x-\tau| } ~ d\tau }$
Replacing in (1) :
$latex \displaystyle{ \Large \Omega = \omega(x) + Im \left( \frac{1}{z(x,t)} e^{i \theta} A(x,t) \right) = \omega(x) + Im \left( e^{i~\theta } \frac{1}{R(x)} e^{-i~\phi(x) } \frac{ \alpha } {2 D^{1/2} \sqrt{(i\theta + \gamma)}} \int R(\tau) e^{i~\phi(\tau) } e^{-\sqrt{(i \Omega + \gamma)/D )} ~ |x-\tau| } ~ d\tau \right) }$
$latex \displaystyle{ \Large R(x)^2 = \mu + Re \left( \frac{1}{z(x,t)} e^{i \theta} A(x,t) \right) = \mu + Re \left( e^{i~\theta } \frac{1}{R(x)} e^{-i~\phi(x) } \frac{ \alpha } {2 D^{1/2} \sqrt{(i\Omega + \gamma)}} \int R(\tau) e^{i~\phi(\tau) } e^{-\sqrt{(i \Omega + \gamma)/D )} ~ |x-\tau| } ~ d\tau \right) }$
The kernel in the convolution is : $latex \displaystyle{ \Large e^{-\sqrt{(i \Omega + \gamma)/D )} ~ |x| } = e^{ -\frac{1}{\sqrt{D}} (\Omega^2 + \gamma^2)^{1/4} \cos(\frac{1}{2} atan(\Omega / \gamma))~ |x| } ~ e^{-i \frac{1}{\sqrt{D}} (\Omega^2 + \gamma^2)^{1/4} \sin( \frac{1}{2} atan(\Omega / \gamma)) ~ |x| } }$
Linear phase :
Let's assume $latex \displaystyle{ \Large R(x)=R$ and $\phi(x)=\beta x }$ : |