Nanoscale WI RF
Discussion
français | english
Navigation
Home
Sitemap
This wiki
This page

Characterization and Modeling of nanoscale MOSFET for RF design

Discussion

The discussion on previous pages clearly shows that there might be an opportunity to use nanoscale MOSFETs for ultralow-power analog and RF circuits, taking advantage of the scaling of the transit frequency in weak inversion, as long as there is no velocity saturation. But, this still remains to be demonstrated. Indeed, today, to our knowledge, no work has been published showing a full characterization of nanoscale MOSFETs in weak inversion for applications in analog and RF circuits. All the published measurements on transit frequency, maximum frequency of oscillation, minimum noise factor are made at high bias in strong inversion. No data exists for operation of nanoscale MOSFETs in weak inversion for analog and RF circuits. It would actually be risky to use the current long-channel models for weak inversion to design ultralow-power analog and RF circuits using transistors biased in weak inversion integrated in nanoscale technologies. This further motivates the investigations proposed in this project.

References

[1] G. E. Moore, "No exponential is forever: but "Forever" can be delayed!" IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 20-23 vol.1, Feb. 2003.

[2] M. Bohr, "The New Era of Scaling in an SoC World," IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 23-28 vol.1, Feb. 2009.

[3] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, "Design of ionimplanted MOSFET's with very small physical dimensions," IEEE Journal of              Solid-State Circuits, vol. 9, no. 5, pp. 256-268, May 1974.

[4] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H.-S. P. Wong, "Device Scaling Limits of Si MOSFETs and Their Application Dependencies," Proc. of the IEEE, vol. 89, no. 3, pp. 259-288, March 2001.

[5] A. P. Chandrakasan, S. Sheng, and R. W. Broderson, "Low-power CMOS digital design," IEEE Journal of Solid-State Circuits, vol. 27, no. 4, pp. 473-484, Apr. 1992.

[6] E. Vittoz, "Weak Inversion for Ultimate Low-Power Logic," in Low-Power Electronics Design, C. Piguet, Ed., 1st ed: CRC Press, 2005, pp. 16.1-16.18.

[7] A. Wang, A. P. Chandrakasan, and S. V. Kosonocky, "Optimal supply and threshold scaling for subthreshold CMOS circuits," Proc. IEEE Computer Society Annual Symposium on VLSI, pp. 7-11, Apr. 2002.

[8] E. A. Vittoz, B. Gerber, and F. Leuenberger, "Silicon-Gate CMOS Frequency Divider for the Electronic Wrist Watch," IEEE Journal of Solid-State Circ., vol. 7, no. 2, pp. 100-104, April 1972.

[9] E. A. Vittoz, "Origins of Weak Inversion (or Sub-threshold) Circuit Design," in Sub-Threshold Design for Ultra Low-Power Systems, A. Wang, B. H. Calhoun, and A. P. Chandrakasan, Eds., 1st ed: Springer, 2006, pp. 147-166.

[10] C. Piguet, Low-Power Electronics Design, 1st ed: CRC Press, 2005.

[11] A. Wang, B. H. Calhoun, and A. P. Chandrakasan, Sub-Threshold Design for Ultra Low-Power Systems, 1st ed: Springer, 2006.

[12] B. C. Paul, A. Raychowdhury, and K. Roy, "Device optimization for digital subthreshold logic operation," IEEE Trans. on Electron Devices, vol. 52, no. 2, Feb. 2005.

[13] B. C. Paul and K. Roy, "Oxide Thickness Optimization for Digital Subthreshold Operation," IEEE Trans. on Electron Devices, vol. 55, no. 2, pp. 685-688, Feb. 2008.

[14] S. Hanson, S. Mingoo, D. Sylvester, and D. Blaauw, "Nanometer Device Scaling in Subthreshold Logic and SRAM," IEEE Trans. on Electron Devices, vol. 55, no. 1, pp. 175-185, Jan. 2008.

[15] J. J. Kim and K. Roy, "Double gate-MOSFET subthreshold circuit for ultralow power applications," IEEE Trans. on Electron Devices, vol. 51, no. 9, pp. 1468–1474, Sept. 2004.

[16] C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Brodersen, "Millimeter-wave CMOS design," IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan. 2005.

[17] B. Razavi, "CMOS transceivers for the 60-GHz band," IEEE RFIC Symp. Dig., pp. 4, June 2006.

[18] A. M. Niknejad, S. Emami, B. Heydari, M. Bohsali, and E. Adabi, "Nanoscale CMOS for mm-Wave Applications," IEEE Compound Semiconductor Integrated Circuit Symposium (CSIC), pp.1-4, Oct. 2007.

[19] S. Emami, C. H. Doan, A. M. Niknejad, and R. W. Brodersen, "A Highly Integrated 60GHz CMOS Front-End Receiver," IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 190-191, Feb. 2007.

[20] A. Hajimiri, "mm-wave silicon ICs: An opportunity for holistic design," IEEE RFIC Symp. Dig., pp.357-360, June 2008.

[21] S. Sankaran, C. Mao, E. Seok, D. Shim, C. Cao, R. Han, C.-M. Hung, and K. K. O, "Towards Terahertz Operation of CMOS," IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2009.

[22] H. Li, B. Jagannathan, J. Wang, T.-C. Su, S. Sweeney, J. J. Pekarik, Y. Shi, D. Greenberg, Z. Jin, R. Groves, L. Wagner, and S. Csutak, "Technology Scaling and Device Design for 350 GHz RF Performance in a 45nm Bulk CMOS Process," Proc. IEEE Symposium on VLSI Technology, pp. 56-57, June 2007.

[23] S. Lee, B. Jagannathan, S. Narasimha, A. Chou, N. Zamdmer, J. Johnson, R. Williams, L. Wagner, J. Kim, J.-O. Plouchart, J. Pekarik, S. Springer, and G. Freeman, "Record RF performance of 45-nm SOI CMOS Technology," IEDM Tech. Digest, pp. 255-258, Dec. 2007.

[24] C. C. Enz and E. A. Vittoz, Charge-Based MOS Transistor Modeling - The EKV Model for Low-Power and RF IC Design, 1st ed: John Wiley, 2006.

[25] C. Enz and Y. Cheng, "MOS Transistor Modeling for RF IC Design," IEEE Journal of Solid-State Circuits, vol. 35, no. 2, pp. 186-201, Feb. 2000.

[26] A. S. Roy and C. C. Enz, "Analytical Noise Modeling in MOSFET," Proc. of the Int. Conf. on Noise and Fluctuations (ICNF), pp. 57-62, Sept. 2007 (Invited).

[27] T. Melly, A.-S. Porret, C. C. Enz, and E. A. Vittoz, "An Ultralow-Power UHF Transceiver Integrated in a Standard Digital CMOS Process: Transmitter," IEEE Journal of Solid-State Circuits, vol. 36, no. 3, pp. 467 -472, March 2001.

[28] A.-S. Porret, T. Melly, D. Python, C. C. Enz, and E. A. Vittoz, "An Ultralow-Power UHF Transceiver Integrated in a Standard Digital CMOS Process: Architecture and Receiver," IEEE Journal of Solid-State Circuits, vol. 36, no. 3, pp. 452-466, March 2001.

[29] V. Peiris, C. Arm, S. Bories, S. Cserveny, F. Giroud, P. Graber, S. Gyger, E. Le Roux, T. Melly, M. Moser, O. Nys, F. Pengg, P.-D. Pfister, N. Raemy, A. Ribordy, P.-F. Ruedi, D. Ruffieux, L. Sumanen, S. Todeschini, and P. Volet, "A 1V 433/868MHz 25kb/s-FSK 2kb/s-OOK RF Transceiver SoC in Standard Digital 0.18μm CMOS," Int. Solid-State Circ. Conf. Dig. of Tech. Papers, pp. 258-259, Feb. 2005.56-57, June 2007.

 

 

<Subthreshold Operation for Utra Low-Power RF circuits

Introduction>>

 

 

 

 

Search
Share